
The Business Value
of Secure Software

W H I T E P A P E R

The Business Value of Secure Software

PARASOFT.COM

2

HACKERS TARGET THE APPLICATION LAYER
Software security has become a board level
issue. One need only look at the fallout from the
2017 Equifax breach to see why. The company’s
CEO, CIO, and CSO were all forced to resign,
and the company faces up to $700 million in
settlement costs.

In years past, adversaries focused on hacking
networks. Now, applications are the target.
The reason is simple. Software organizations
continue to focus on features and functionality.
Errors in the design and execution of software
can result in vulnerabilities that are easy to
access and simple to exploit using attacks such as
SQL injection and cross-site scripting.

Unfortunately, many organizations continue
to view security as it was many years ago; a
challenge of perimeter defense. As shown in
Figure 1, security spending by organizations
continues to focus on the network layer, while
risk is highest in the application layer. Focusing
on perimeter defenses ignores the fact that
attacks on web applications are the most
common cause of data breaches1.

Today, the application is the perimeter. Web
applications manage critical information and IP.
There is no need to attack network firewalls when
the data is available through a web application.

Building secure software makes business sense.
Improved software security can improve revenue
growth (as a competitive advantage), raise margins
(through lower maintenance expense), improve
customer satisfaction (fewer security patches and
updates), and simplify regulatory compliance. As
hackers increasingly target the application layer,
organizations need to respond appropriately.

Figure 1:
Security Risk v. Spending
Source: The State of Risk-based
Security Management,
Ponemon Institute, 2013

1 2018 Verizon Data Breach Investigations Report

The Business Value of Secure Software

PARASOFT.COM

3

HACKING APPLICATIONS IS BIG BUSINESS
Security professionals are not simply defending
against script kiddies and amateurs. Adversaries
are more skilled than ever, criminal organizations
are well-funded and the market demand for
financial data, health information, and consumers’
personal information is high.

While consumer data is often sought for
identity theft, industrial espionage is an ongoing
concern. Most concerning for organizations
with valuable intellectual property (IP) are
attacks from nation states seeing to steal design
information and trade secrets. State-sponsored
attacks and organized crime groups are real and
make for interesting headlines. The WannaCry
ransomware attack in 2017 that infected over
300,000 devices was attributed to North Korea,
and according to Europol’s Internet Organised
Crime Threat Assessment, Ransomware remains
the top cybercrime threat.

"Five years ago, we were
aware of nation-state attacks
but we would've seen them
as something that only a
nation-state needs to worry
about. Today they're a
problem for everybody…"

Robert Hannigan
Former director general of GCHQ.

The Business Value of Secure Software

PARASOFT.COM

4

SOFTWARE SECURITY AND
REGULATORY STANDARDS
The Equifax penalties are representative of
a growing trend. Privacy regulations include
substantial financial penalties for non-
compliance. The EU General Data Protection
(GDPR) lower level fines are up to €10 million or
2% of the worldwide annual revenue of the prior
financial year. Upper level fines double those
amounts! In 2019, British Airways was fined
$230 million for violations of GDPR after data
of around 500,000 British Airways customers
was compromised. Meanwhile, Marriott paid
over $120 million after it exposed personal data
from 339 million customers, including credit card
details, passport numbers and dates of birth.

Complying with the myriad of regulatory
standards can be challenging for software
development teams. Some are very prescriptive.
For example, the PCI-DSS for software
processing credit card information and the
UL-2900 standard recently adopted by
the Federal Drug Administration (FDA) for
network-connected medical devices, require
that organizations test for specific types of
vulnerabilities such as those enumerated in
the CWE Top 25 and CWE On the Cusp
weaknesses, and the OWASP Top 10.

HIPAA is less prescriptive, requiring instead
that covered entities “Conduct an accurate
and thorough assessment of the potential
risks and vulnerabilities to the confidentiality,
integrity, and availability of electronically
protected health information held by the covered
entity” and “Implement security measures
sufficient to reduce risks and vulnerabilities to
a reasonable and appropriate level to comply
with § 164.306(a).” Others provide no guidance
at all. Section 5 of the FTC Act simply requires
“reasonable security”, California’s SB-327
targeting Internet of things (IoT) devices requires
manufacturers of any connected device sold in
California to have “reasonable security features”,
and GDPR requires both “Privacy by Design” and
“Privacy by Default”.

While differences exist between the various
standards, the underlying requirements are the
same; organizations need to have visibility to
the risks they face and a plan for addressing
those risks.

RISK APPETITE AND RESIDUAL RISK
The goal of security testing is two-fold. First,
to provide visibility into the risk resulting from
coding errors that could be exploited by an
adversary, and prevent those errors from entering
the codebase by enforcing best practices.

Secondly, it’s important to remember that, except
in the most critical applications, eliminating risk
entirely is unlikely to be the goal. Unremediated
issues will result in residual risk and that may
be acceptable. Different applications present
different levels of risk, and a mature organization
will determine their appetite for risk and make
informed decisions about the amount of residual
risk with which they are comfortable.

The Business Value of Secure Software

PARASOFT.COM

5

STATIC ANALYSIS
Static Application Security Testing (SAST) tools
do not require a running application and therefore
can be used early in the development lifecycle
where remediation costs are low. At its most
basic level, SAST works by analyzing source code
and checking sets of rules against it. While most
often associated with identifying vulnerabilities,
SAST tools also provide early alerts to developers
regarding poor coding patterns, violations of
secure coding policies, or a lack of conformance
with engineering standards that will lead to
unstable or unreliable functionality.

There are two primary types of analysis used for
identifying security issues.

Flow Analysis
In flow analysis, the tools analyze source code to
understand the underlying control flow and data

THE SECURITY TESTING TOOLBOX
There are several techniques for identifying vulnerabilities in systems, and smart organizations will
use a combination of each of them, including static analysis, dynamic analysis, source composition
analysis, vulnerability scanners, and penetration testing. As shown in Figure 2, because code
refactoring becomes more complicated as the application nears release, the cost of remediating
vulnerabilities increases dramatically as the software development lifecycle (SDLC) progresses.
The goal of security testing, therefore, should be to “shift left” in the SDLC the identification and
remediation of vulnerabilities as early as possible.

flow of the code. The result is an intermediate
representation, or model, of the application.
The tools run rules—or checkers—against that
model to identify coding errors that result in
security vulnerabilities. For example, in a C or
C++ application, a rule may identify string copies,
then traverse the model to determine if it is ever
possible for the source buffer to be larger than
the destination buffer. If so, a buffer overflow
vulnerability could result.

Pattern Analysis
Modern software engineering standards like
AUTOSAR C++14, MISRA C 2012 and Joint
Strike Fighter (JSF) are based on the idea that
certain constructs should be avoided in code that
is safety critical, because of the possibility for
that code to be misinterpreted, misunderstood
or incorrectly implemented and therefore be
unreliable. Pattern analysis helps developers

Figure 2

https://en.wikipedia.org/wiki/Joint_Strike_Fighter_program
https://en.wikipedia.org/wiki/Joint_Strike_Fighter_program

The Business Value of Secure Software

PARASOFT.COM

6

use a safer subset of the development language
given the context of safety or security,
prohibiting the use of code constructs that allow
vulnerabilities to occur. Some rules can identify
errors by checking syntax, similar to a spell-
checker in a word processor. Others can detect
more subtle patterns associated with poor
coding patterns.

DYNAMIC ANALYSIS
Dynamic application security testing (DAST)
tools analyze running applications to identify
vulnerabilities. Commercial DAST tools are
typically automated. They work by identifying
inputs to an application (e.g., a login or order
form) and applying various preconfigured data to
attempt to cause the application to misperform
or crash (i.e. “fuzzing data”). A common example
would be to enter a SQL command into a form
(SQL injection attack) to bypass authentication
or access sensitive information.

Results from DAST tools do not link to a line
of code. Instead, vulnerabilities are reported
as a URL/action/result (e.g., “on https://app.
mycompany.com/order, for the customer number
I entered “99 ‘ OR 1=1” and received output of
all customer names”). The software engineering
team must determine where the error in the
source code occurs. This is complicated when
the error is from unvalidated user input, as the
error will manifest itself wherever that untrusted
data is used.

PENETRATION TESTING
For most organizations, hiring external
penetration testers (“pen testers”) will be their
initial foray into security testing. Instead of
running automated DAST scans, penetration
testers are trained to understand and identify
common errors in software development that
can lead to security vulnerabilities. Pen testers
use a combination of commercial, open source
and custom tools to conduct reconnaissance on
the target system, identify potential entry points,

and gain/maintain access to a system. Like DAST
tools, penetration tests report vulnerabilities in a
URL/Action/Results format.

While helpful, penetration testing can be
expensive. In addition, because it requires
a running system and data in a staging
environment, it occurs very late in the
development process.

SOURCE COMPOSITION ANALYSIS
Applications are generally comprised of
custom code and third-party components;
being most often open source components.
Like any software, open source can include
vulnerabilities, and thousands are disclosed each
year in NIST’s National Vulnerability Database
(NVD). Source composition analysis tools parse
the application’s package manager or inspect
component “fingerprints” to generate a software
bill of materials (SBoM) then map known
vulnerabilities from NVD or other sources to
those components. Vulnerable components are
flagged (or those with restrictive licenses), but it
is important to note that the component may or
may not be exploitable depending on how it was
used and in what portion of the component the
vulnerable code is located.

VULNERABILITY SCANNERS
Vulnerability scanners analyze running IT
systems to identify unpatched or misconfigured
applications or systems. Typically, they will
have hundreds of “plug-ins” or “rule packs”,
each designed to identify a specific issue on
a specific platform. Vulnerability scanners
can flag out-of-date operating systems, the
use of default passwords, and previously
disclosed vulnerabilities in applications
and components. These solutions focus
on commercial software and operating
systems but, other than for a small portion of
vulnerabilities in open source components,
are blind to any in-house applications.

The Business Value of Secure Software

PARASOFT.COM

7

ADVANTAGES OF
SAST VS. DAST
While each testing methodology has
strengths, many organizations overly focus
on DAST and penetration testing. However,
there are several advantages to using SAST
over other testing techniques.

 » Code Coverage – The amount of code that
is tested is a critical metric for software
security; vulnerabilities can be present in
any section of the codebase, and untested
portions can leave an application exposed
to attacks. SAST tools, particularly those
using pattern analysis rules, can provide
much higher code coverage than DAST or
manual processes, as they have access to
the application source code and application
inputs, including hidden ones that are not
exposed in the user interface.

 » Root Cause Analysis – SAST tools
also promote efficient remediation of
vulnerabilities. Unlike DAST, SAST easily
identifies the precise line of code in which
the error is introduced. Integrations
with developers’ IDE can also accelerate
remediating errors found by SAST tools.

 » Skills Improvement – The recent SANS
Institute report, “Secure DevOps: Fact or
Fiction?” shows ‘Shortage of application
security personnel/skills’ is the #1 barrier in
implementing secure DevOps and, as shown
in Figure 3, NIST estimates “the ratio of
existing cybersecurity workers to the number
of cybersecurity job openings is 2-to-3”.
When using SAST from the IDE, developers
receive immediate feedback on their code,
reinforcing and educating them on secure
coding practices.

 » Operational Efficiency – Unlike DAST,
static analysis can be used very early in the
development lifecycle, including on a single file
directly from a developer’s IDE. Finding errors
early in the SDLC greatly reduces the cost
of remediation because you are essentially
preventing the bug, not finding then fixing it.

Figure 3

Figure 4

https://www.nist.gov/news-events/news/2018/11/new-data-show-demand-cybersecurity-professionals-accelerating

The Business Value of Secure Software

PARASOFT.COM

8

MISTAKES AND
MISCONCEPTIONS
WHEN DEPLOYING SAST
While SAST is the most comprehensive of
the testing methodologies it can also present
challenges to security teams.

 » Delaying Deployment of SAST – While
SAST tools can be used very early in the
SDLC, some organizations elect to delay
analysis until the testing phase of the
lifecycle. While analyzing a more complete
application allows for interprocedural data
flow analysis, “shifting left” with SAST and
analyzing code directly from the IDE can
identify vulnerabilities such as input validation
errors, and allow developers to make simple
corrections before submitting code for builds.

 » Deferring Use in Agile Environments – SAST
analysis has a reputation for taking longer
than DAST because of its comprehensive
approach to code coverage and the need to
build a model of the application. This can lead
organizations to believe SAST is incompatible
with rapid development methodologies.
Instead, smart teams use SAST from within
the IDE, providing immediate feedback to
developers and ensuring that vulnerabilities
are avoided, and perform incremental analysis
to view results only from the code that has
changed between two different builds.

 » Noisy Results – Older SAST tools often
included many “informational” results;
low severity issues around proper coding
standards. Modern tools, like those provide
by Parasoft, allow users to select which rules
are used and filter results by the severity of
the error, hiding those that do not warrant
investigation. Findings can be further filtered
based on other contextual information such
as metadata on the project, the age of the
code, and the developer or team responsible
for the code.

The Business Value of Secure Software

PARASOFT.COM

9

SELECTING AND USING
SAST EFFECTIVELY
The first step in evaluating any tool is to
understand your internal environment. This
includes existing tools, skill sets, and workflows.

ON PREMISE OR IN THE CLOUD
Most software includes intellectual property
valuable to the organization. If that source code
were leaked or if vulnerabilities in proprietary
software were publicly known, serious harm
could come to the organization. For that reason,
most organizations look for a solution that can
be deployed within their own environment.

AGILE, CI/CD, OR WATERFALL
An organization’s development methodology
can influence which solutions they deploy. In a
rapid development and deployment model, it
is critical that analysis and feedback cycles are
quick. In these cases, look for solutions that offer
incremental analysis to provide quick feedback
identifying vulnerabilities in newly modified code
without having to rescan the entire codebase.

FOCUS ON DEVELOPERS
Successful deployments most often are
developer-focused; providing them with the
tools and guidance needed to build security into
the software. This is particularly important in
Agile and DevOps environments, where rapid
feedback is critical to maintaining velocity.

This typically means a SAST solution that
integrates with the developers’ IDE(s). IDE
integrations allow security testing directly from
the developer’s work environment—at the file
level, project level, or simply to evaluate the code
that has changed.

RULE CONFIGURATION
When analyzing software for security issues, one
size does not fit all organizations. It is critical that
the rules/checkers are addressing the specific
issues critical to that specific application. For
example, if an application is subject to UL-2900,
you must ensure that the rules used cover the
CWE Top 25 plus On the Cusp weaknesses.
While many SAST tools claim Top 25 support,
that support may be limited to isolated use cases.

Organizations just starting testing for security
may wish to limit rules to the most common
security issues like cross-site scripting and
SQL injection. In addition to standard rules,
organizations using custom frameworks or with
custom coding standards will want to look for
solutions that allow custom rules.

Most solutions classify vulnerabilities by severity
in a fixed way that may not be appropriate
for every application. If an application is not
reachable on the Internet, its attack surface
is greatly reduced and vulnerabilities that
could result in denial of service attacks are
going to be less critical than in an Internet-
facing application. Look for solutions that
allow controlled rule configuration.

REDUCE THE NOISE
In addition to minimizing informational issues,
organizations may elect to downgrade or accept
the risk from some vulnerabilities. In these cases,
users will want to suppress an issue. Make sure
the SAST solution offers this capability, that
the suppressions persist across subsequent
scans, and that all results are documented for
compliance environments like UL-2900.

The Business Value of Secure Software

PARASOFT.COM

10

HOW PARASOFT CAN HELP
Parasoft static analysis helps organizations
reduce the time and effort required to build
and maintain secure software. Unlike other
tools and “SaaS” solutions, Parasoft’s highly
configurable architecture allows organizations to
test for the issues, best practices, and regulatory
requirements most critical to their use cases and
stakeholders. For organizations just starting with
static testing, a smaller set of rules that address
the most common coding errors accelerates
adoption and time-to-value.

As shown, security needs to be addressed
early in the development lifecycle to minimize
costs and rework. Parasoft’s IDE integrations
allow organizations to “shift left”, providing
developers with the tools they need to build
security from the beginning of the development
lifecycle. Unlike competitive solutions, Parasoft
understands that high quality software is more
than just security. Checkers and rules that
test for safe coding constructs don’t allow
vulnerabilities to occur.

Other solutions that claim coverage for industry
standards will include incidental rules without
evidence of what each rule provides for each
risk. Parasoft provides standards-centric
reporting that makes it easy to both scale and
audit security compliance. Parasoft provides
100% coverage of the guidelines that are
statically analyzable for CWE Top 25, CWE On
the Cusp, CERT C, CERT C++, and OWASP Top
10, providing complete and mapped analysis and
near-zero false positive rates.

Finally, Parasoft's on-premise solution provides
organizations with complete control over their
intellectual property. No sending sensitive
source code into “the cloud” for processing. No
off-premise storage of your vulnerability data.

PREVENTION IS BETTER
THAN DETECTION
Building security into an application is much
more effective and efficient than trying to secure
an application by “bolting” security on top of a
finished application at the end of the SDLC. Just
as you cannot test quality into an application, the
same is true for security.

Parasoft enables organizations to embrace
software security from the requirements stage
of the development lifecycle onward and provide
their software engineers with the tools and
guidance needed to build secure software.

