

 Page: 1

© 2020, A FRINX DOCUMENT

FRINX CASE STUDY

Network Service Automation

 Page: 2

Table of Contents

1 EXECUTIVE SUMMARY .. 3

2 WHAT PROBLEM DO WE SOLVE? ... 3

3 INTRODUCTION TO FRINX MACHINE ... 4

3.1 Overview & Architecture .. 4

3.2 FRINX Machine Components .. 5

3.3 FRINX UniFlow .. 5

3.4 FRINX UniResource ... 6

3.5 FRINX UniConfig ... 7

3.5.1 UniConfig key features ... 10

3.5.2 UniConfig Components ... 11

4 USE CASES ... 15

4.1 EVPN Service Automation .. 15

4.1.1 Overview ... 15

4.1.2 Service Models .. 16

4.1.3 Workflows .. 17

4.1.4 Translation Units .. 17

4.1.5 High Availability .. 17

4.2 VPLS, P2P Ethernet & Internet Service Automation ... 19

4.2.1 Example service configuration .. 20

4.2.2 Example device configuration (OpenConfig) .. 22

5 CONTACTS & RESOURCES .. 26

 Page: 3

1 EXECUTIVE SUMMARY
In this document, we introduce the FRINX Machine solution and discuss how it is

used by customers to automate their network services and address their business

needs.

About FRINX

FRINX builds software that enables customers to create automated, repeatable,

digital processes to build, grow and operate their digital communication

infrastructure. Enterprise and service provider customers are choosing FRINX

products and solutions to automate cloud assets, branch offices, core, edge and

access networks. The goal of automation is to provide programmatic interfaces to

customers (internal or external), to save time and resources in deploying

infrastructure changes and to provide a cost-effective basis for adding new

functionality in the infrastructure. FRINX provides software that enables low-code

workflow design and operation, analytics to support machine learning and intent

based infrastructure control to integrate devices and services from many

networking vendors. FRINX solutions are operated and deployed by industry

leaders like Facebook, SoftBank, Vodafone and other Global Fortune 500

companies to support their automation needs. FRINX is a privately held company

with offices in Bratislava, Slovakia and New York, NY.

2 WHAT PROBLEM DO WE SOLVE?
FRINX builds SW products and solutions to deliver real and sustainable productivity

gain by automating processes required to build, operate and grow communication

networks.

Typical examples are the automation of services that span resources in the cloud

and physical assets, the automation of capacity increases in mobile networks, the

activation and change management of L2 and L3VPN services, the management of

Internet and Infrastructure services and the automation of core and access network

functions.

We have created a solution called FRINX Machine with the purpose of automating

network services. FRINX Machine is based on open source components and

consists of the following products: UniConfig for network control, UniFlow for

creating and operating workflows and UniResource for managing an inventory of

physical and logical assets and resources.

 Page: 4

3 INTRODUCTION TO FRINX MACHINE

3.1 Overview & Architecture
FRINX Machine enables customers to create automated, repeatable, digital

processes to build, grow and operate their digital communication infrastructure.

FRINX Machine is based on open source components and enables infrastructure

and network engineers to manage service intent, implement configuration changes

and obtain operational data from their heterogeneous networks and clouds.

FRINX Machine includes UniFlow, a workflow automation engine, a GUI-based

workflow builder for low-code or no-code workflow design and operation, a

microservice layer that comes pre-loaded with key automation functions in Python

and that is extensible in any programming language. In addition, FRINX Machine

includes the UniConfig network control layer that uses an open-source device

library to connect to network elements via NETCONF, CLI and gRPC. FRINX

Machine further includes UniResource an inventory management tool for physical

and logical assets and resources. In support of these functions, FRINX Machine

includes a persistence layer including REDIS, Elasticsearch,

PostrgreSQL/CockroachDB and GraphQL/MySQL.

FIGURE 1: FRINX ARCHITECTURE

 Page: 5

3.2 FRINX Machine Components
FRINX Machine consists of multiple open source-based components that are

packaged in containers. The following components are included in FRINX Machine:

• FRINX UniConfig
o Connects to the devices in network
o Retrieves and stores configuration from devices
o Pushes configuration data to devices
o Builds diffs between actual and intended config to execute atomic

configuration changes
o Retrieves operational data from devices
o Manages transactions across one or multiple devices
o Translates between CLI and private model and standard data models

(OpenConfig) via open source device library
o Reads and stores private data models from network devices (any

YANG model)
o Provides high availability
o Provides parallel command execution on devices
o UniConfig UI to interact with the network controller

• FRINX UniFlow
o Chains atomic tasks into complex workflows
o Defines, executes and monitors workflows (via REST or UI)
o Sources: https://github.com/Netflix/conductor
o Docs: https://netflix.github.io/conductor
o Enables users to create, edit and run workflows and monitor tasks
o Enables users to mount and view device status and configuration.

Provides access to UniConfig operations like read, edit, commit
configurations and sync it from network.

o View inventory, workflow execution, metadata and UniConfig log files

• FRINX UniResource
o Provides inventory functions for physical and logical assets
o Stores device and service inventory data
o Provides a resource manager function for infrastructure consumables

(IP addresses, RTs, RDs,
o Persistence layer with support for GraphQL, MySQL, PostgreSQL,

CockroachDB, Elasticsearch, MongoDB

3.3 FRINX UniFlow
UniFlow is based on the conductor workflow engine developed and open-sourced

by NETFLIX. We chose Conductor because it is used in a high scale, high visibility

production environment and has performed demonstrably well. Conductor has

proven to be a scalable open-source technology and it integrates seamlessly with

other components in FRINX Machine.

In addition to the workflow engine, FRINX has built a workflow builder frontend

that allows users to create workflows with low or no code. The workflow builder UI

 Page: 6

allows the design, test, scheduling and execution of workflows via a single interface.

All workflows that are created in the workflow builder can be accessed via REST

API with role-based access control.

FIGURE 2: UNIFLOW - WORKFLOW BUILDER UI

3.4 FRINX UniResource
FRINX UniResource was developed for network operators and infrastructure

engineers to manage their physical and logical assets and resources. Examples for

assets are locations, equipment, ports and services. Examples for resources are IP

addresses, VLAN IDs and other consumables required for operating data services.

UniResource was developed specifically to address the needs of network and

infrastructure engineers working with communication networks.

FRINX UniResource provides GUI and a GraphQL based API with a Python client

library to create, read, update and delete assets.

 Page: 7

FIGURE 3: FRINX UNIRESOURCE - INVENTORY MANAGER

3.5 FRINX UniConfig
The purpose of UniConfig is to manage the intent (desired state) of physical and

virtual networking devices through a single network API. In addition, UniConfig

enables device and network wide transactions, so that the network will always

remain in a well-defined state without leftovers from failed configuration attempts.

UniConfig can be run as an application on bare metal in a VM or in a container.

UniConfig has a built-in data store that can be run in memory or with persistence

on disk and to external database.

UniConfig enables users to communicate with their network infrastructure via four

options:

1) Execute & Read API - Unstructured data via SSH and Telnet
2) OpenConfig API – Translation provided by our open source device

library
3) UniConfig native API – Direct access to vendor YANG models native

to the connected devices plus UniConfig functions like diff, commit
and snapshots

4) UniConfig native CLI API – Programmatic access to CLI without the
need for translation units

Option 1) gives users similar capabilities like access through Ansible, TCL scripts or

similar tools and allows to pass strings to the device and receive strings from the

device via REST in a programmatic way. UniConfig provides the mechanism to

authenticate and provide a channel to send and receive data but does not interpret

the data.

 Page: 8

Option 2) provides users with an OpenConfig API that is translated into device

specific CLI or YANG models. This requires “translation units” to be installed for the

devices under control. FRINX provides an open source device library that includes

many devices from widely deployed network vendors. Anyone can contribute and

consume content of this library providing an ever-growing list of supported

devices.

Option 3) “UniConfig native” provides the ability to configure devices with any

YANG model that is supported by the device. After mounting a device, UniConfig

native maps the vendor models into its UniConfig data store and provides stateful

configuration capabilities to applications and users.

Option 4) “UniConfig native CLI” provides the ability to interact with device CLI in

a programmatic way. No translation units are required, only a schema file has to be

provided. This option provides programmatic access to devices without the need

for writing translation units.

FIGURE 4: UNICONFIG APIS

UniConfig consists of three layers that can be accessed individually or via the

UniConfig node manager API.

 Page: 9

FIGURE 5: UNICONFIG LAYERS

The lowest layer (Southbound layer) provides connectivity to the network devices

through NETCONF and CLI via Telnet and SSH. It provides transparent access to

CLI devices and It includes translation units that map data in OpenConfig format to

vendor specific CLI implementations and vice versa. This translation unit library is

open source and publicly available on GitHub (https://github.com/FRINXio/cli-

units).

The middle layer (Unified layer) combines devices mounted under various

protocols (e.g. NETCONF and CLI) and makes them accessible under a unified

mount point to higher layers. This provides a layer of abstraction between the

southbound protocols and the user intent that is to be applied to the network. The

unified layer also provides native YANG models as well as OpenConfig YANG to

vendor specific YANG translation capabilities. This translation unit library is open

source and publicly available on GitHub (https://github.com/FRINXio/unitopo-

units)

The top layer (UniConfig layer) provides the ability to read and write YANG based

configurations to and from devices. It also adds the capability to create

configuration snapshots that can be committed and can be rolled back by the

system if they have failed. The UniConfig layer also adds the capabilities to compare

network intent (located in the configuration data store), analyze the diffs between

intended state and actual state (located in the operational data store) and finally

apply the new state to the devices connected through lower layers via atomic

operations (commit). This means that only configuration elements that were

changed in the most recent operation need to be sent to the devices and not the

complete configuration, saving resources and allowing for higher transaction

throughput. The UniConfig layer also adds capabilities to build snapshots of all or a

subset of devices and move from the current configuration to any snapshot in one

single transaction. Finally, the UniConfig layer includes the “Dry-Run manager” that

allows testing of NETCONF and CLI configuration changes before they are applied

to the network.

 Page: 10

The functionality of the UniConfig layer is accessible via a REST interface and

documented via Swagger API documentation. In addition, we provide Java, Python

and GO client libraries. Those client libraries make the UniConfig API available

through popular programming languages and allow users to build applications

using the UniConfig functionality without having to interact with the REST API

directly.

3.5.1 UniConfig key features

Reconciliation

We built a system that reconciles the configuration on each connected device.

UniConfig reads and translates vendor specific device configurations and

represents them internally via native YANG, OpenConfig or native CLI YANG data

models. This functionality allows users to sync device configurations with the data

store in UniConfig, compare and create diffs between intended and actual state and

between platforms.

Open Source device libraries

Customers and integration partners can freely contribute, modify and create

additional device models that work with UniConfig. If they wish, they can contribute

the translation code and schemas, so they become available for all other users of

UniConfig. The UniConfig device library includes 280 person months of coding

effort from FRINX customers, partners and employees and provides support for 25

vendor platforms as of today (Q2CY20).

Network transactions

UniConfig offers the ability to perform transactions on a single or across multiple

network devices. This provides the benefit for users that the network devices can

be rolled back to the state before the configuration attempt should one device

within the transaction fail.

Native YANG & OpenConfig

UniConfig supports OpenConfig YANG data models, vendor specific YANG data

models and native CLI YANG data models. Using OpenConfig simplifies the

configuration portability between network devices and simplifies the development

of applications that configure heterogeneous networks.

Sync-from-network, commit, transaction, rollback and snapshots

UniConfig provides the necessary RPCs (Remote Procedure Calls) to implement the

following basic functions to automate the configuration of network devices: Sync-

from-network reads configuration from network devices to the controller. Commit

writes atomic configuration data to network devices. Transactions and rollback

 Page: 11

enable to configure one or multiple devices at the same time with the ability to

revert back to the state before the configuration attempt if the transaction fails.

Snapshots capture the configuration state of network devices at a point in time.

REST API & Client libraries (Java, Go, Python)

UniConfig offers a REST API and client libraries implemented in Java, Python and

Go. The UniConfig API is documented in Swagger and Postman.

3.5.2 UniConfig Components

UniConfig components use a layered design where the functionality of the upper

layers depends on the functionality of the layer underneath. Each layer thus

provides a higher level of abstraction from the network elements.

FIGURE 6: UNICONFIG ARCHITECTURE

 Page: 12

Applications can utilize any of the layers in the system. There are 3 main layers

represented by these components (from top to bottom):

• UniConfig layer (UniConfig Node Manager with data store)
• Unified layer (Unified mount point with translation units)
• Southbound layer (NETCONF mount point, CLI mount point with translation

units)

The data store is a component in UniConfig which stores structured data described

by YANG models. There are two separate data stores:

• Config data store (CONF DS) - contains intended state (intended device
configuration). This data store is persistent and external (outside ODL)
applications have read/write access.

• Operational data store (OPER DS) - contains actual state (actual device
configuration). OPER DS is not persistent and external applications have
read only access.

Mount points in UniConfig represent a communication interface with an external

system. Mount points are usually registered under a node in a topology.

3.5.2.1 CLI Mount Point
The CLI mount point provides a management API for a network device over the

CLI. OpenConfig models are used for structured data describing the device

configuration and state. The CLI mountpoint uses CLI translation units for

translation between OpenConfig data and CLI data. The CLI mount point API

supports device transactions and automatic rollback functionality (in case an error

occurs during device configuration). CLI mount point is registered under a node in

CLI topology. Each CLI mount point always includes a generic CLI translation unit

which provides an RPC for sending raw CLI commands and returning raw CLI

output.

3.5.2.2 CLI Translation Units
A CLI translation unit defines the mapping between YANG models and the CLI for

a specific device type and software version. It is used by the FRINX ODL controller

to perform translations between device specific CLI data and standardized

structured (OpenConfig YANG) data. The translation unit can read and write

configuration or read the state of a device. It uses the CLI over SSH or telnet for

communication with the CLI device. The CLI translation unit is usually created for a

combination of device type and OpenConfig main section (folder) e.g. ios-local-

routing, ios-ospf, etc.

3.5.2.3 CLI Dry-run Mount Point
The CLI dry-run mount point mocks the management API for a network device over

CLI. It uses the CLI dry-run journal for storing to-be-executed CLI commands

 Page: 13

instead of configuring the network device directly. Just as with a regular CLI mount

point, it uses the same set of CLI translation units and the same set of OpenConfig

YANG models.

3.5.2.4 NETCONF Mount Point
The NETCONF mount point provides a management API for the network device

over a NETCONF session. Data are usually described by a set of vendor specific

YANG models. The NETCONF mount point provides device transactions and

rollback (if supported by the device). The NETCONF mount point is registered

under a node in topology-netconf topology.

3.5.2.5 Unified Mount Point
The Unified mount point unifies the API for various southbound protocols like

NETCONF and CLI. The API is described using OpenConfig YANG models and uses

translation units to translate between OpenConfig data and southbound mount

point data. The Unified mount point is registered under a node in unified topology

and is created automatically.

3.5.2.6 Direct Translation Unit
This unit simply passes OpenConfig data to any mount point with OpenConfig

available capabilities. This is possible because northbound data and southbound

data are described by the same OpenConfig YANG model.

3.5.2.7 UniConfig Native
UniConfig native allows to communicate with network devices using their native

YANG data models (e.g.: Cisco YANG models, JunOS Yang models, CableLabs

YANG models, …). UniConfig native allows you to use the same features with native

YANG models as with regular UniConfig OpenConfig models (e.g. sync-from-

network, commit, checked-commit, calculate-diff, replace-config-with-operational,

snapshots). UniConfig native works alongside CLI and NETCONF UniConfig

translation units. This means users can mount some devices as UniConfig native

using their vendor specific YANG models while they mount other devices on the

same server as UniConfig devices using translation units. UniConfig native is

available starting with FRINX ODL release 4.2.0.

3.5.2.8 NETCONF Translation Unit
The NETCONF translation unit translates OpenConfig data to data described by

device specific YANG models. It uses the NETCONF mount point for

communication with a NETCONF device, and implements device transaction with

automatic rollback if not provided by the device itself.

The JunOS NETCONF translation unit is a simplified example. The NETCONF

translation unit is usually created for a combination of device type and OpenConfig

 Page: 14

main module (e.g. ospf, bgp, network-instance, rib, acl, qos, …). An example is xr-6-

network-instance, xr-6-ospf, etc.

3.5.2.9 UniConfig Node Manager
The responsibility of this component is to provide a well-defined network API to

the applications north of FRINX ODL and to maintain the configuration on devices

based on intended configuration and operational data.

The UniConfig config data store provides a non-blocking high performance API that

supports CRUD operations. Applications write their updates into the UniConfig

config data store and call commit on one, multiple or all devices. The commit

operation is scheduled in parallel across non-overlapping sets of devices. The

application does not have to deal with device irregularities and receives feedback

about the success of the commit operation.

Each device and its configuration is represented as a node in the UniConfig

topology and the configuration of this node is stored based on YANG models

(OpenConfig and native YANG models). The Northbound API of the UniConfig

Node Manager is RPC (Remote Procedure Call) driven and provides functionality

for commit with automatic rollback, manual rollback and synchronization of

configuration from the network.

When a commit is called, the UniConfig Node Manager creates a diff based on

intended state from the UniConfig CONFIG data store and actual state from the

OPER data store. This diff is used as the basis for device configuration. The

UniConfig Node Manager prepares a transaction on one or on multiple devices and

uses the unified mount points to communicate with different types of devices.

In the case where the configuration attempt on one device fails, the UniConfig Node

Manager executes automatic rollback across all devices involved in that transaction:

The previous configuration is restored on all modified devices. Manual rollback

enables simple reconfiguration of the entire network using one of the previous

states saved in the UniConfig Node Manager. Synchronization from the network

reads configuration from devices and stores it as an actual state to the OPER DS.

3.5.2.10 Dry-run Manager
The dry-run manager provides functionality for mock configuration of CLI and

NETCONF devices where CLI or NETCONF commands are sent to the dry-run

journal instead of the device.

The dry-run manager uses UniConfig Node Manager for getting the diff of the

intended configuration and uses the dry-run mount points for sending CLI or

NETCONF commands to the dry-run journal.

 Page: 15

4 USE CASES

4.1 EVPN Service Automation

4.1.1 Overview

The EVPN use case implements reconciliation (reading of existing EVPN

configuration from devices and parsing it to service data) and provisioning of the

EVPN service (translating service data to device specific EVPN configuration). The

EVPN service is deployed on PE devices (vendor x, vendor y), on layer 2 devices

(vendor z) in multiple access rings and on CPEs (vendor x, vendor z). All devices

have to be provisioned correctly for the service to be functional.

The EVPN service is deployed on an existing brownfield network and automation

was added after customers have already been in service. Reconciliation had to be

deployed as a first step to provide visibility into existing service configurations.

Once reconciliation was tested and implemented successfully, provisioning of new

services was automated.

Regions (West/East) includes PE routers (PE1, PE2), the main ring (Core SW1, Core

SW2), multiple subrings (SW1-2, SW1-1, SW1-3; SW2-1, SW2-2), and multiple CPEs

(L2 CPE) connected to subring switches. The core of the network is implemented

with Provider Backbone Bridge technology (PBB).

Automation was implemented on PEs, core switches, ring switches, and CPEs. The

PBB layer between PEs is not part of the automation solution in this implementation

phase since it is statically configured, and it is changed infrequently.

Reconciliation

Reconciliation capability is critical in this case, because the solution runs on a brown

field network (devices are already configured and provide services to CPE

customers). That means the implementation has to read the configuration from all

 Page: 16

device types, recognize EVPN services and finally store that information as service

data to the inventory database.

Provisioning

The main goal of EVPN provisioning is to attach or delete customers on a CPE port

or change existing customer configurations. The demarcation point between a

customer’s and the operator’s network is a physical interface on the CPE. CPE tags

traffic from the customer with a VLAN ID that is specific to the customer in a region.

That means VLANs are region specific. A single customer can have connections in

different regions and VLANs can be different in each region for that customer.

Attaching a new customer requires the configuration of the CPE, ring-switches

composing a ring where the CPE is attached, core-switches where the ring is

terminated and PE routers where core-switches are connected. In the case where

an existing customer, that already has a connection in the region and ring, connects

an additional CPE in that ring, only the CPE needs to be configured.

4.1.2 Service Models

The service model represents the EVPN service instances configured on devices in

the regions.

The service model has been implemented in the FRINX Machine inventory. The

inventory was designed to store the information about EVPNs, devices where the

service is configured, and information about the connections between devices.

Each network element (PE, core-switch, ring-switch, CPE) is represented as a

device. Physical and aggregated interfaces are stored in interface table. The

connection table contains point to point connections between these interfaces and

 Page: 17

references multiple logical L2 connections. QoS profile and L2VPN tables contain

information about customer specific settings of EVPN.

4.1.3 Workflows

Workflows are used as northbound REST API towards the operator’s IT systems.

Workflows provide the business logic that is required for execution of the

reconciliation and the provisioning tasks. Reconciliation uses workflows that are

specific to the device type (PE, core-switch, ring-switch, CPE). Before the

reconciliation starts, devices need to be registered in the inventory. Reconciliation

can be scheduled to run periodically for all devices, or per device type, or per region

where the devices are located. The capacity to perform reconciliation can be scaled

up with additional workers.

Provisioning workflows allow the operator to create a new EVPN service for a new

or an existing customer by defining the interface of the CPE that the customer is

connected to and the service attributes that are part of the contract.

4.1.4 Translation Units

Devices used as CPEs, ring-switches, and core-switches do not support the

NETCONF management interface or the implementation of the NETCONF server is

not working reliably on those devices. Therefore, CLI translation units have been

developed for reconciliation and provisioning of EPVN via UniConfig. PE devices

have full support of NETCONF protocol so the UniConfig native API was used.

4.1.5 High Availability

FRINX Machine is deployed together with two HAProxy servers. Keepalived runs

on the HAProxy servers and is used to coordinate which HAProxy server should be

the MASTER and which the BACKUP. The MASTER uses a floating IP, that is defined

in the Keepalived config file. Keepalived uses the VRRP protocol. In case the

MASTER node becomes unavailable, the BACKUP node assigns the floating IP

address to itself and sends a gratuitous ARP reply.

FIGURE 7: FRINX MACHINE HIGH AVAILABILITY

 Page: 18

HAProxy forwards the requests to the UniConfig-UI component of FRINX-machine.

Since there are two FRINX-machine instances running, it is set up in such a way,

that all services running on the first instance have to be available in order the

requests to be forwarded here. If any of the services become unavailable, requests

are going to be forwarded to second FM instance.

An auto-heal service was implemented to automatically restart containers that have

become unresponsive. Each container, that is being health-checked, runs a

command that determines if the service that it is running is in a healthy state. In

case it isn't, the auto-heal service will restart it.

FIGURE 8: FRINX MACHINE DATA REPLICATION

GlusterFS is used to replicate the file system in use by PostgreSQL. We use the

clustering technology built-in to Elasticsearch and Dynomite/REDIS to replicate

data between the two instances. The remaining services are state-less.

 Page: 19

4.2 VPLS, P2P Ethernet & Internet Service Automation
In this use case, the operator has deployed a Metro Ethernet network of IP/MPLS

based Ethernet switches. The operator offers VLL (Virtual Leased Line - a point to

point Ethernet service), VPLS (Virtual Private LAN services - a multi-point Ethernet

service) and Business Internet on their infrastructure to business customers. The

automation architecture implemented with FRINX UniConfig is shown in the

following diagram:

FIGURE 9: OPERATOR AUTOMATION SOLUTION STACK

Starting from the bottom of the stack, we have the network infrastructure,

consisting of at least two different models of switches with minor variations in

command set. FRINX has created a translation unit for this vendor and hence

provides translations from and to OpenConfig to the device specific CLI. UniConfig

is capable of reading the device configuration when it connects to the device for

the first time and whenever the “sync-from-network” API endpoint is called. This

provides the operator with network-wide device configuration state in a common

data model (OpenConfig) in one place (the UniConfig data store). When the

operator upgrades to or adds a new vendor for their network infrastructure, only a

new translation unit has to be added. The rest of the provisioning stack will not be

impacted.

 Page: 20

The UniConfig layer manages all device configuration changes with transactions

and has the ability to perform rollback whenever configurations across one or

multiple devices have not completed successfully.

The next higher layer implements a set of micro services in Python, that present a

service API to the operator IT systems. The service API has been crafted based on

the requirements of the operator and only contains necessary data elements

required for the services (VLL, VPLS, BI). The micro service layer is simple to

understand and simple to modify by the operator or by FRINX.

The micro service layer can be accessed directly via the operator IT system stack

and via the FRINX Machine workflow engine. The latter provides the ability to

assemble workflows with the help of a UI and to interact with the micro services as

horizontally scalable worker tasks. FRINX Machine also adds persistence for

workflow definitions, executions and logs and for inventory and services.

4.2.1 Example service configuration

4.2.1.1 Example VLL service configuration
The following API request body is sent from the operator’s IT system to the FRINX

micro services. The micro services are state-less and can be horizontally scaled. The

micro services transform the request below in a sequence of atomic configurations

(configure policies, configure interface and sub-interface, VLANs and P2P

connection settings via MPLS). The complexity of applying and maintaining these

steps is handled by the FRINX micro services and UniConfig. The operator system

only needs to implement a high-level abstraction of the service based on its

requirements.

{

"service":

{

 "id": "abcd",

 "vccid": 1234,

 "mtu": 1500,

 "devices": [

 {

 "id": "B21",

 "interface": "ethernet 3/4",

 "remote_ip": "100.10.10.100"

 },

 {

 "id": "B28",

 "interface": "ethernet 1/3",

 Page: 21

 "remote_ip": "100.10.10.101"

 }

]}

}

4.2.1.2 Example service API – Read VLL all
The following service API reads all device configurations from UniConfig and

reconciles the VLL services that it found in the device configurations. This service

API can be executed on all devices or by scoping it with a service ID, only on the

devices that include that service ID.

PUT

https://<microservice-host-ip>:6454/VLL_service_read_all

{

 "datastore": "actual",

 "reconciliation": "name"

}

Output example:

{

 "logs": [

 "VLL instances found successfully: 12"

],

 "output": {

 "services": [

 {

 "devices": [

 {

 "id": "B21",

 "interface": "ethernet 3/3"

 },

 {

 "id": "B21",

 "interface": "ethernet 3/4",

 "vlan": 51

 }

],

 "id": "testL2P2P-local"

 },

 Page: 22

[truncated]

 {

 "devices": [

 {

 "id": "B21",

 "interface": "ethernet 3/3",

 "remote_ip": "14.14.14.14",

 "vlan": 59

 },

 {

 "id": "B28",

 "interface": "ethernet 1/22",

 "remote_ip": "14.14.14.15",

 "vlan": 59

 }

],

 "id": "testL2P2P-remote-tag",

 "mtu": 1500,

 "vccid": 1000002021

 }

]

 },

 "status": "COMPLETED"

}

The implementation of the VLL described above as well as VPLS and BI micro

services can be found here:

https://github.com/FRINXio/FRINX-
machine/tree/master/microservices/netinfra_utils/workers

4.2.2 Example device configuration (OpenConfig)

By using an OpenConfig device API, customers can use a common data model to
configure different device types or operating systems. UniConfig implements the
translation from OpenConfig to CLI including vendor specific augmentations and
extensions.

4.2.2.1 Example device interface configuration
{

 "frinx-openconfig-interfaces:interface": [

 {

 "name": "ethernet 3/4",

 "config": {

 Page: 23

 "type": "iana-if-type:ethernetCsmacd",

 "enabled": true,

 "description": "FRINX-TEST l2p2p",

 "frinx-brocade-if-extension:priority": 3,

 "frinx-brocade-if-extension:priority-force": true,

 "frinx-openconfig-vlan:tpid": "frinx-openconfig-vlan-types:TPID_0X8A88",

 "name": "ethernet 3/4"

 }

 }

]

}

4.2.2.2 Example device P2P configuration
The following device configuration template needs to be applied on two ends of

the VLL connection within the scope of one network wide transaction.

{

 "network-instance": [

 {

 "name": "testL2P2P-remote",

 "interfaces": {

 "interface": [

 {

 "id": "ethernet 3/4",

 "frinx-openconfig-network-instance:config": {

 "id": "ethernet 3/4"

 }

 }

]

 },

 "connection-points": {

 "connection-point": [

 {

 "connection-point-id": "1",

 "config": {

 "connection-point-id": "1"

 },

 "endpoints": {

 "endpoint": [

 {

 "endpoint-id": "default",

 Page: 24

 "config": {

 "endpoint-id": "default",

 "precedence": 0,

 "type": "frinx-openconfig-network-instance-
types:LOCAL"

 },

 "local": {

 "config": {

 "interface": "ethernet 3/4"

 }

 }

 }

]

 }

 },

 {

 "connection-point-id": "2",

 "config": {

 "connection-point-id": "2"

 },

 "endpoints": {

 "endpoint": [

 {

 "endpoint-id": "default",

 "config": {

 "endpoint-id": "default",

 "precedence": 0,

 "type": "frinx-openconfig-network-instance-
types:REMOTE"

 },

 "remote": {

 "config": {

 "remote-system": "14.14.14.15",

 "virtual-circuit-identifier": 1000002020

 }

 }

 }

]

 }

 }

]

 },

 Page: 25

 "config": {

 "name": "testL2P2P-remote",

 "type": "frinx-openconfig-network-instance-types:L2P2P",

 "mtu": 1500

 }

 }

]

}

UniConfig translates the OpenConfig configuration data into CLI commands with
the correct syntax and sequence required for the vendor, platform and software
version.

The implementation of the UniConfig translation units can be found here:

https://github.com/FRINXio/cli-units

 Page: 26

5 CONTACTS & RESOURCES

Send us an email at: info@frinx.io

Visit us at the following locations:

https://frinx.io/

https://frinxio.blogspot.com/

https://github.com/FRINXio/

https://frinx.io/contact

https://www.youtube.com/channel/UCeRL-J2ppxdBRs8tdWQz2jA/videos

follow us on Twitter:

@Frinxio

@G_wieser

or call us at: +421 2 209 101 41

Download the FRINX Machine including UniConfig here:

https://github.com/FRINXio/FRINX-machine

FRINX Documentation

https://docs.frinx.io/

List of supported networking devices:

https://docs.frinx.io/frinx-odl-distribution/supported-devices.html

