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Here in Part III, the final document of our white paper 

series, we will cover the processes of identifying, 

ranking and correlating abnormal behavior. Many of 

the aspects we discuss in this document are unique 

to Anodot, such as ranking and scoring outliers and 

correlating metrics together. Most other vendors that 

provide outlier detection solutions for do not include 

these steps in their analysis, and we believe them to be 

a real differentiator and a major reason why Anodot’s 

solution goes beyond merely bringing accurate outliers 

to light with minimum false positives and negatives, but 

puts them into the context of the full story to provide 

actionable information.

There are five steps necessary to learn and  

identify outliers:

1. METRICS COLLECTION –  
UNIVERSAL SCALE TO MILLIONS 

2.  NORMAL BEHAVIOR LEARNING

3. ABNORMAL BEHAVIOR LEARNING

4. BEHAVIORAL TOPOLOGY LEARNING

5. FEEDBACK-BASED LEARNING

Steps 1 and 2 were covered in detail in the previous two 

white papers. This document covers steps 3 and 4. Step 

5 is not in the scope of this white paper series.

INTRODUCTION
Many high-velocity online business systems today 

have reached a point of such complexity that it is 

impossible for humans to pay attention to everything 

happening within the system. There are simply too 

many metrics and too many data points for the 

human brain to discern. Most online companies 

already use data metrics to tell them how the 

business is doing, and detecting outliers in the data 

can lead to saving money or creating new business 

opportunities. Thus, it has become imperative for 

companies to use machine learning in large-scale 

systems to analyze patterns of data streams and look 

for outliers.

 

Consider an airline pricing system that calculates the 

price for each and every seat on all of its routes in 

order to maximize revenue. Seat pricing can change 

multiple times a day based on thousands of factors, 

both internal and external to the company. The 

airline must consider those factors when deciding to 

increase, decrease or hold a fare steady. An outlier in 

any given factor can be an opportunity to raise the 

price of a particular seat to increase revenue, or lower 

the price to ensure the seat gets sold.

Automated outlier detection is a technique of 

machine learning, and it is a complex endeavor. 

Anodot is using this series of white papers to 

help explain and clarify some of the sophisticated 

decisions behind the algorithms that comprise 

an automated outlier detection system for large 

scale analytics.  In Part I of this white paper series, 

we outlined the critical design principles of an 

outlier detection system. In Part II we continued 

the discussion with information about how systems 

can learn what “normal behavior” looks like in order 

to identify abnormal behavior. We recommend 

first reading parts 1 and 2 to gain the foundational 

information necessary to comprehend this document.

https://go.anodot.com/building-large-scale-wp-part-1?utm_source=white_paper_3&utm_campaign=large_scale_3&utm_medium=paper
http://go.anodot.com/building-large-scale-wp-part-2?utm_source=white_paper_3&utm_campaign=large_scale_3&utm_medium=paper
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ABNORMAL 
BEHAVIOR 
LEARNING  
AND SCORING

The objective of any outlier detection system is to, well, 

detect outliers. But not all outliers are equal. Some are 

more significant than others, and the reaction an outlier 

causes might depend upon how significant it is.

In our earlier documents, we used the example of 

the human body as a complex system with many 

metrics and data points for each metric. Body 

temperature is one of those metrics; an individual’s 

body temperature typically changes by about a 

half to one degree between its highest and lowest 

points each day. A slight temperature rise to, say, 

37.8 °C (100.0 °F), would be irregular but not a cause 

for great concern, as taking an aspirin might help 

lower the temperature back to normal. However, an 

anomalous rise to 40 °C (104.0 °F) will certainly warrant 

a trip to the doctor for treatment. These are both 

outliers, but one is more significant than the other in 

terms of what it means within the overall system.  

In a complex business system, how do we understand 

which outlier is more significant than another? Let’s 

consider this at the individual metric level, as shown 

in Figure 1a below. Figure 1a shows a set of outliers 

— some are small, some are big, some last longer, 

some are shorter in duration. Though not shown in 

this illustration, some outliers might have a pattern 

to them, and some patterns could be a square or a 

linear increase or decrease. Looking at the chart with 

the human eye, one could posit what is more or less 

significant based on intuition, and this method can be 

encoded into an algorithm. 

For every outlier found in a metric, there is a notion of 

how far it deviates from normal as well as how long 

the outlier lasts. These notions are called deviation 

and duration, respectively. As for the outliers seen in 

Figure 1a, some of them contain many data points, 

which means that the data series was abnormal for 

quite a while (i.e., had a longer duration), and some 

of them have fewer data points (i.e., the outlier had 

a shorter duration). In some cases, the peak of the 

data points is higher (i.e., a greater deviation from 

normal), and for others, the peak is lower (i.e., less of 

a deviation from normal). There are other conditions 

around both duration and deviation, and they all need 

to be considered in the statistical model. In the case of 

Anodot, the input is a set of statistics related to each 

outlier, and the output is a score (on a scale of 0 to 100) 

of how significant the outlier is. 

For every outlier found in 
a metric, there is a notion 
of how far it deviates 
from normal as well as 
how long the outlier 
lasts. These notions are 
called deviation and 
duration, respectively.
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Note that the significance slider in the Anodot system 

does not adjust the baseline or the normal behavior 

model; it only defines which outliers the user chooses 

to consume. This helps users focus on what is most 

important to them, preventing alert fatigue. If there are 

too many alerts, such as one for every single outlier, the 

alerts eventually become overwhelming and meaningless. 

Scoring occurs through machine learning since the 

scores are relative to past outliers of that metric, not an 

absolute value. 

Consider the outliers shown in Figure 1b. Even without 

looking at the assigned numbers for some of the outliers, 

a person looking at the signal would probably come 

up with similar scores. How? It is not based on each 

outlier’s amount of deviation from normal, rather, it is 

based on the fact that the high peak outliers deviated 

a lot more, and the smaller ones deviated less than the 

bigger ones. Even for human eyes, it is all relative. 

Having such a score provides the ability to filter 

-outliers based on their significance. In some cases, the 

user would want to be alerted only if the score or the 

significance is very high; and in other cases, the user 

would want to see all outliers. For example, if a business 

is looking at a metric that represents the company’s 

revenue, then the user would probably want to see 

outliers pertaining to anything that happens, even if 

they are very small. But if the same business is looking 

at the number of users coming into its application 

from a specific location like Zimbabwe – assuming the 

company doesn’t do a lot of business in Zimbabwe – 

then maybe the user only wants to see the big outliers; 

i.e., highly significant outliers. In the Anodot system, this 

is configured using a simple slider as seen in Figure 2a.

The user needs this input mechanism because all the 

outlier detection is unsupervised, and the system has no 

knowledge of what the user cares about more. 

Figure 1a. A single metric with several instances of abnormal behavior.

Figure 1b. Outliers ranked by significance.
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history of a time series and see the outliers within it, in 

their minds they consider the outliers relative to each 

other as well as relative to normal. Anodot’s algorithms 

now mimic this human thought process using 

probabilistic Bayesian models. 

In the screenshot in Figure 2b, the significance slider is 

set to 70, meaning that only the orange outliers would 

be alerted on, and not the gray ones, which fall below 

that score. 

 

 

Now suppose the big spike – the one labeled “90” – was 

not there. Without a significant outlier to compare to, 

the other outliers would look bigger, more significant. In 

fact, we would probably change the scale of the graph. 

This is an important distinction because there are other 

scoring mechanisms that look at the absolute deviation 

without context of what happened in the past. Anodot 

initially took this approach but we saw quickly, from a 

human perspective, that when people look at a long 

Figure 2a. The significance slider in the Anodot system lets users select the level of outliers to be alerted on.

Figure 2b. With significance set at 70, users would be alerted on the two orange 
alerts that are above 70, but not the smaller gray alerts below 70.

Significance Slider
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BEHAVIORAL 
TOPOLOGY 
LEARNING 
The next step in the overall process of learning and 

identifying outliers in a system is behavioral topology 

learning. In the first document of this white paper 

series, we discussed learning system design principles 

and covered the conciseness of outliers. Conciseness 

refers to idea that the system considers multiple metrics 

simultaneously, to view what is happening holistically. 

If there are many outliers at the single metric level and 

they are not combined into a story that describes the 

whole incident, then it is very hard to understand what 

is going on. However, combining them into a concise 

story requires an understanding of which metrics are 

related, because otherwise the system runs the risk of 

combining things that are completely unrelated. The 

individual metrics could be anomalous at the same 

time just by chance. 

Behavioral topology learning provides the means to 

learn the actual relationships among different metrics. 

This type of learning is not well-known; consequently, 

many solutions do not work this way. Moreover, finding 

these relationships at scale is a real challenge. If there 

are millions of metrics, how can the relationships 

among them be discovered efficiently?

As shown in Figure 3, there are several ways to figure 

out which metrics are related to each other. 

 

Name
Similarity

LSH for
scale

Normal
Behavioral
Similarity

Abnormal
Based

Similarity

TERM BASED SIMILARITY

METRIC RELATIONSHIP GRAPH

ENHANCED LATENT DIRICHLET 
ALLOCATION ALGORITHM

NON LINEAR SIMILARITY 
“COMPRESS” TIMESERIES USING 

STACKED AUTO-ENCODERS
(DEEP NEURAL NETWORKS)

Figure 3. Methods of relating metrics to each other.

http://go.anodot.com/building-large-scale-wp-part-1?utm_source=white_paper_3&utm_campaign=large_scale_3&utm_medium=paper
http://go.anodot.com/building-large-scale-wp-part-1?utm_source=white_paper_3&utm_campaign=large_scale_3&utm_medium=paper


7   ·   Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

ABNORMAL  
BASED SIMILARITY
The first method of relating metrics to each other is 

abnormal based similarity. Intuitively, human beings 

know that when something is abnormal, it will typically 

affect more than one key performance indicator (KPI). In 

the other papers in this series, we have been using the 

example of the human body. When someone has the flu, 

the illness will affect his or her temperature, and possibly 

also heart rate, skin pH, and so on. Many parts of this 

system called a body will be affected in a related way.

When an automatic outlier detection system takes 

in these measurements, it does not know that the 

temperature, heart rate and skin pH are from the same 

person (unless someone tells the system that fact). 

However, if the person gets the flu several times, several 

of his or her vital signs will become irregular at the 

same time, thus there is a high likelihood that some of 

the outliers on their measurements will overlap. 

The chance of two metrics having a single concurrent 

outlier is high if you are measuring many things. If we 

were to simply rely on outliers happening together to 

determine that they are related, it would cause many 

mistakes. But the probability of them being anomalous 

twice at the same time is much lower. Three times, even 

lower. The more often the metrics are anomalous at 

similar times, the more likely it is that they are related.

The metrics don’t always have to be anomalous 

together. A person’s temperature could increase but 

his or her heart rate might not increase at the same 

time, depending on the illness. But we know that many 

illnesses do cause changes to the vital signs together. 

Based on these intuitions, one can design algorithms 

that find the abnormal based similarity between 

metrics. One way to find abnormal based similarity is 

to apply clustering algorithms. One possible input to 

the clustering algorithm would be the representation 

of each metric as anomalous or not over time (vectors 

of 0’s and 1’s); the output is groups of metrics that 

are found to belong to the same cluster.  There are a 

variety of clustering algorithms, including K-means, 

hierarchical clustering and the Latent Dirichlet 

Allocation algorithm (LDA). LDA is one of the more 

advanced algorithms, and Anodot’s abnormal based 

similarity processes have been developed on LDA with 

some additional enhancements.I   

The advantage that LDA has over other algorithms, is 

that most clustering algorithms would allow a data 

point - or a metric in this case - to belong to only one 

group. There could be hundreds of different groups, 

but in the end, a metric will belong to just one. Often, 

it is not that clear-cut. For example, on a mobile app, 

its latency metric could be in a group with the metric 

related to the application’s revenue, but it could also be 

related to the latency of that app on desktops alone. By 

using clustering algorithms that force a choice of just 

one group, the system might miss out on important 

relationships. LDA clusters things in such a way that 

they can belong to more than one group, i.e. “soft” 

clustering, as opposed to “hard” clustering.

The more often metrics 
are anomalous at similar 
times, the more likely it is 
that they are related.
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Another advantage of LDA is that most clustering 

algorithms have some distance function between 

what is being measured that is similar. The LDA 

algorithm allows a metric to be partially similar to the 

other metrics. This comes back to the “softness” of the 

algorithm—it allows partial similarity for a metric to still 

belong to a group. In the context of learning metric 

relationships, this is an important feature because, for 

example, application latency doesn’t always have to 

be anomalous when the revenue is anomalous. It is 

not always the case that latency goes up anomalously 

and revenue goes down, and there can be times when 

the revenue becomes abnormal but the latency does 

not go up or down accordingly. The outlier detection 

system must be able to take that partiality into account.

The primary issue with abnormal based similarity is that 

it does not scale well – we discuss scaling later in the 

paper. In addition, it requires seeing enough historical 

data containing outliers so it can capture these 

relationships. Are there additional types of information 

that can help capture the metric topology with less (or 

no) history? We will discuss two additional methods 

of capturing relationships between metrics next.
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NAME SIMILARITY 
Another method for determining relationships among 

metrics is name similarity. Every metric in a system 

must be given a name that is not just free-form text. In 

the industry of data handling, there are recommended 

naming conventions for metrics, typically comprised 

of key value pairs describing what is being measured 

and its source. For example, say we are measuring 

the revenue of an app for Android in the US. For 

simplicity’s sake, we will call this app XYZ. The key 

value pair describing what we are measuring and 

the source would be XYZ together with US.  Thus, the 

revenue metric might have a name like appName=XYZ.

Country=US.what=revenue. 

This particular app is also available in Germany, so 

the name for the metric that measures revenue 

in there might be something like appName=XYZ.

Country=Germany.what=revenue. By looking at the 

similarity between these two metric names, we have a 

measure of how similar they are. If they are very similar, 

then we say they should be grouped because they 

probably describe the same system. It is reasonable to 

associate metrics using this method; it is essentially 

based on term similarity, by comparing terms to see 

whether they are equal and how much overlap they have.
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NORMAL 
BEHAVIOR 
SIMILARITY
A third method of determining relationships among 

metrics is normal behavior similarity, which looks at 

the metrics under normal circumstances as opposed 

to the abnormal based similarities. This method asks 

questions like, “Do the metrics have the same shape?” 

and “Do they look the same when the signal is normal?” 

What they look like when abnormal does not matter. 

For example, if we look at revenue for the XYZ app on 

different platforms such as Android and iPhone, they 

will probably look quite similar; the signals for these two 

metrics will most likely have the same shape. However, 

if we compare the application latency on Android to the 

app’s revenue on that platform, they won’t be similar.

Normal behavior similarity is the weakest method of the 

three discussed in this document because it is always 

possible to find correlations if one looks hard enough. 

The question is how to do it intelligently without getting 

a lot of false positives.

The most commonly used method of performing 

normal behavior similarity comparisons is with linear 

correlation. Here people use measures such as the 

Pearson correlation coefficient, which is a measure 

of the linear dependence (correlation) between 

two variables (metrics). This method requires some 

caution. For example, it is necessary to de-trend the 

data, meaning that if there is a linear line constantly 

going up or down, it must be subtracted from the 

original time series before computing the Pearson 

correlation. Otherwise, any metric that is trending up 

will be correlated with anything else that is trending up, 

resulting in a lot of false positives.

It is also necessary to remove seasonal patterns from 

the metrics; otherwise anything with a seasonal pattern 

will be correlated with anything else that has the same 

seasonal pattern. If two metrics both have a 24-hour 

seasonal pattern, the result will be a very high similarity 

score regardless of whether they are related or not. In 

fact, many metrics do have the same seasonal patterns 

but they are not related at all. For instance, we could 

have two online apps that are not related, but if we look 

at the number of visitors to both apps throughout the 

day, we will see the same pattern because both apps 

are primarily used in the US and have the same type of 

users. It could be the XYZ app and a totally unrelated 

news application. 

Normal behavior 
similarity looks at the 
metrics under normal 
circumstances as 
opposed to the abnormal 
based similarities.
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One of the most promising algorithms tested at 

Anodot for creating such a dictionary is a Neural-

Network based approach (Deep Learning), namely, 

Stacked Autoencoders. Stacked autoencoders are a 

multi-layer Neural Network designed to discover a 

high-level representation of the input vectors in the 

form activation of the output nodes. Training stacked 

autoencoders is done with a set of segments of the time 

series; the activated nodes at the output of the network 

are the dictionary representing prototypical shapes of 

the input segments. The details of implementing this 

deep learning technique to accomplish this task are out 

of the scope of this white paper.

Unlike abnormal based similarity which creates very few 

false positives but is dependent on outliers happening 

(which occurs rarely), thus more time to pass, normal 

behavior similarity requires much less data in order to 

be computed. However, if not done right – e.g., if the 

data patterns are not de-trended and de-seasonalized – 

this method could create many false positives.

The Pearson correlation is a simple algorithm and 

is quite easy to implement, but there are better 

approaches that are less prone to false positives, such 

as the pattern dictionary based approach. Suppose 

each time series metric can be partitioned into 

segments, where each segment is classified to one of N 

prototypical patterns that are defined in a “dictionary” 

of known patterns like a daily sine wave, a saw tooth, a 

square wave-like pattern, or other classifiable shapes. 

Once the user has a dictionary of typical shapes, he or 

she can describe each metric based on what shapes 

appeared in it at each segment. 

As an example, from 8 AM to 12 PM, the metric had 

shape number 3 from the dictionary of shapes, and 

from 12 PM to 5 PM, it had shape number 10. This 

changes how the time series is represented with a 

more compressed representation, which also describes 

attributes at a high level, rather than just the values. 

From there, it is relatively easy to do clustering or 

any type of similarity grouping based on the new 

representation. It is also easier to discount the weight 

of very common shapes in the dictionary by using 

techniques from document analysis (such as TF-IDF 

weightsII). It is safe to assume that things are correlated 

if at every point in time, they have similar shapes. 

The main challenge in the shape dictionary based 

approach is how to create the dictionary. A variety of 

algorithms can be employed for learning the dictionary, 

but they all follow a similar approach: Given a (large) 

set of time series metric segments, apply a clustering 

technique (or soft clustering technique such as LDA) 

on all the segments, and then use the representations 

of the clusters as the dictionary of shapes. Given a new 

segment of a metric, find the most representative 

cluster in the dictionary and use its index as the new 

representation of the segment.

USER INPUT
There are additional methods of establishing 

relationships among metrics that do not require 

sophisticated algorithms; one is direct user input. If a 

user says that all XYZ app metrics are related, this fact 

can be encoded into the learning model. It is a technical 

process, not an algorithmic one, but this type of direct 

input can be useful if the user can provide it. 

The second method is indirect input, in which the 

user manipulates the metrics to create new metrics 

out of them. If there is revenue of XYZ app in multiple 

countries, the user can now create a new metric 

by calculating the sum of the revenue from all the 

countries. It can be assumed that if it makes sense to 

create a composite metric of multiple metrics, then the 

individual metrics are likely related to each other. 

Anodot uses both methods, depending on what 

information is available.
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A MATTER  
OF SCALE
Of the various methods discussed above, one of the 

major challenges is scale. How can these comparisons 

be applied at very large scale? The algorithm-based 

methods are computationally expensive when there 

are a lot of metrics to work with. It either requires a lot 

of machines or a lot of time to get results. How can it be 

done efficiently on a large scale, such as a billion metrics? 

One method is to group the metrics. We would start with 

one billion metrics sorted into 100 different groups that 

are roughly related to each other. We can go into each 

group and perform the heavy computation because now 

the number of groups is small, and each group has its 

own order. If we have a group of one million metrics, and 

then we separate them into 10 groups, we end up with 

10 groups of 100k metrics each, which is a much smaller, 

more manageable number. A mechanism is needed to 

enable fast and accurate partitioning. 

How can this be done without knowing what things 

are similar? A locality sensitive hashing (LSH) algorithm 

can help here. For every metric a company measures, 

the system computes a hashtag that determines which 

group it belongs to. Then, additional algorithms can 

be run on each group separately. This breaks one big 

problem into a lot of smaller problems that can be 

parsed out to different machines for faster results. This 

methodology does have a certain probability of false 

positives and false negatives; however, the algorithm 

can tune the system, depending on how many false 

positives and false negatives users are willing to tolerate. 

In this case, “false positive” means that two things are 

grouped together, despite not exhibiting characteristics 

that would cause them to be grouped together. “False 

negative” means that two things are put into separate 

groups when they should be in the same group. The 

tuning mechanism allows the user to specify the size 

of the groups based on the total number of metrics, 

as well as the tolerance of false positives and false 

negatives that he or she is willing to accept. One way 

to reduce the number of false negatives is to run the 

groups through the algorithms a few times, changing 

the size of the group each time. If the groups are 

small enough, they can run rapidly while not being 

computationally expensive.
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THE IMPORTANCE 
OF EACH STEP
The real goal of performing outlier detection in a 

business system is not to merely identify unusual things 

that are happening within that system, but to use the 

insights about when and where the outliers happen 

to understand the underlying cause(s) and hopefully 

uncover opportunities to improve the business. A large-

scale business system can have hundreds of thousands 

or even millions of metrics to be measured. A well-

known social network that is used by billions of people 

around the world is estimated to have 10 billion metrics. 

Any large-scale system with a high number of metrics 

will yield many outliers—perhaps too many for the 

business to investigate in a meaningful time frame. This 

is why all of the steps discussed across our series of three 

white papers are important. Each step helps reduce the 

number of outliers to a manageable number of truly 

significant insight. This is illustrated in Figure 4 below.

 

This chart illustrates the importance of all the steps in 

an outlier detection system: normal behavior learning, 

abnormal behavior learning, and behavioral topology 

learning. Consider a company that is tracking 4 million 

metrics. Out of this, we found 158,000 single metric 

outliers in a given week, meaning any outlier on any 

metric. This is the result of using our system to do 

outlier detection only at the single metric level, without 

outlier scoring and without metric grouping. Without 

the means to filter things, the system gives us all the 

outliers, and that is typically a very large number. Even 

though we started with 4 million metrics, 158,000 is still 

a very big number—too big to effectively investigate; 

thus, we need the additional techniques to whittle 

down that number.

Normal Behavior Learning

Abnormal Behavior Learning

Behavioral Topology Learning

4 MILLION
METRICS

158,000
ANOMALIES FOUND

910
ANOMALIES HIGH

SIGNIFICANCE SCORE

147
CORRELATED

INCIDENTS

Figure 4. The importance of all steps in an outlier detection system.
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If we look at only the outliers that have a high 

significance score – in this case a score of 70 or above 

– the number of outliers drops off dramatically by an 

order of magnitude to just over 910. This is the number 

of significant outliers we had for single metrics out of 4 

million metrics for one week — 910 of them. Better, but 

still too many to investigate thoroughly.

The bottom of the funnel shows how many grouped 

outliers with high significance we end up after applying 

behavioral topology learning techniques. This is another 

order of magnitude reduction — from 910 to 147. This 

number of outliers is far more manageable to investigate. 

Any organization with 4 million metrics is large enough 

to have numerous people assigned to dig into the 

distilled number of outliers, typically looking at those 

outliers that are relevant to their areas of responsibility. 

Figure 4 does not necessarily show the accuracy of 

the outliers; rather, it shows why all these steps are 

important; otherwise the number of outliers can be 

overwhelming. Even if they are “good” outliers – they 

found the right things – it would be impossible to 

investigate everything in a timely manner. Users would 

simply stop paying attention because it would take 

them a long time to understand what is happening. 

This demonstrates the importance of grouping — really 

reducing the forest of 158,000 outliers into 147 grouped 

outliers per week. This goes back to the notion of 

conciseness covered in the design principles white paper 

(Part I of this series). Concise outliers help to tell the story 

of what is happening without being overwhelming, 

enabling a human to investigate more quickly. Then 

the business can take advantage of an opportunity that 

might be presented through the outlier, or take care of 

any problem that the outlier has highlighted.

http://go.anodot.com/building-large-scale-wp-part-1
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THE 
ARCHITECTURE 
OF AN OUTLIER 
DETECTION 
SYSTEM
In a generic sense, any large-scale outlier detection 

system should follow the design principles we outlined 

in the first part of this white paper series. In Figure 

5 below, we use Anodot’s system as an example to 

describe the architecture and components of a typical 

system. Where possible, we will point out how the 

Anodot system might differ from others.

The most important requirement of this architecture 

is that it be scalable to a very large number of metrics. 

Anodot achieves this by performing most of the normal 

behavior learning as the data flows into our system. We 

perform machine learning on the data stream itself. This 

is shown in the central part of the illustration, Anodotd, 

labeled “Online Baseline Learning.” 

Offline Learning

Data Sources

Metadata Indexing
& Search

ONLINE BASELINE
LEARNING

REAL-TIME
ANOMALY DETECTION

Real-time Data Store

Grouper

Anomaly
Events
Queue

Metric 
Relationship 

Graph
DWH Hadoop · Spark · Hive

Figure 5. The architecture of Anodot’s large-scale outlier detection system.
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The flow of data comes from Customer Data Sources, 

as shown at the bottom of the illustration, into what 

we call Anodotd, or Anodot Daemon, which does the 

learning. When a data point comes in from a metric, the 

system already has the pre-constructed normal model 

for that metric in its memory. If there is an outlier, it 

scores it using the abnormal model and sends it to the 

“Outlier Events Queue” (we use Kafka) on the left side 

of the illustration. If there is no outlier, Anodotd simply 

updates the model that it has so far and stores that 

model in the database.

Many machine learning systems do not work this way. 

They pull data from a database, do their learning and 

then push the data back to a database. However, if you 

want the system to scale and find outliers on 100% of 

the metrics – because it is unknown which metrics 

are important – then the learning must be done on all 

the samples that come in. If the data has already been 

stored in a database and then must be pulled out in 

order to do the learning, the system will not be able 

to scale up. There is no database system in the world 

that both read efficiently and write rapidly. Enlarging 

the database system is a possibility, but it will increase 

costs significantly. Certainly, to get the system to scale, 

learning must be done on the data stream itself.

The components on the left side of the illustration 

perform the processes of identifying and correlating 

abnormal behavior. Outlier events on single metrics pass 

through the queue to the Grouper component which 

checks whether to group single metric outliers based on 

the information from the metric relationship graph. 

All information about the outliers is passed to the 

Metadata Indexing and Search Engine. Any changes to 

an outlier will be updated in this Engine. Anodot uses 

Elastic Search for this process, which does not affect the 

design of the system. 

5.8 BILLION
DATA POINTS

120 MILLION
UNIQUE METRICS

240 MILLION
MODELS

14 MILLION
SEASONAL MODELS

500 MILLION
CORRELATIONS

30 TYPES
OF LEARNING ALGORITHMS

ANODOT IN 
NUMBERS PER DAY

Figure 6. Anodot in numbers, per day.
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On the right side of Figure 5 is Hadoop/Spark HIVE 

offline learning. There are some processes that Anodot 

runs offline, for example, the behavioral topology 

learning or seasonality detection can be run offline; we 

do not have to run this process on the data stream itself. 

Discovering that one metric is related to another is not 

something that will change from data point to data 

point. Finding that something has a weekly seasonal 

pattern does not have to be detected on every data 

point that comes in for that metric. There is a price to 

pay when processes run on the data stream, often in the 

form of accuracy. With online learning, there is no luxury 

of going back and forth; thus, Anodot performs these 

activities offline. This combination of online and offline 

learning optimizes accuracy and efficiency.

Not all outlier detection systems have all these 

components, but Anodot believes they are all 

important to yield the best results in an efficient and 

timely manner.

Figure 7. A screenshot of the Anodot “Anoboard” Dashboard showin outliers detected in time series data.
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THE HUMAN 
ELEMENT 
This white paper series has focused on the technical 

elements necessary to build an outlier detection 

system, a recipe, as it were. But what about the chef? It 

is not enough to pick up the ingredients at the market; 

someone has still must cook the meal.  This brings us to 

the human factor of an outlier detection system -- the 

team needed to build the system. 

At a minimum, you will need a team of data scientists 

with a specialty in time series data and online machine 

learning. Just as chefs and doctors have their own 

specialties, data scientists do as well. While there is a 

shortage of data scientists in the market in general, the 

scarcity is even more acutely felt when searching for 

particular specialties such as time series, and you may 

find yourself in competition for talent with companies 

such as Google, Facebook and other industry giants.

 

Besides the data scientists, you need a team of 

developers and other experts to build a system around 

the algorithms which is efficient at scalable stream 

processing and developing backend systems and has 

an easy-to-use user interface. At the bare minimum, you 

would need backend developers creating data flows, 

storage, and management of the large scale backend 

system, in addition to UI experts and developers, QA 

and product management.

 

Note that this team not only has to develop and deploy 

the system, but maintain it over time. 

While one might be tempted to skimp on UI for an 

internally-developed solution, this is a mistake. An 

early investment in UI means that the eventual outlier 

detection system will be able to be used widely in the 

organization by multiple teams, with multiple needs. If 

the UI is not simple enough for everyone to learn easily, 

the data science and business intelligence teams will 

forever find themselves as the frustrating bottleneck, 

providing retroactive reports and alerts.

 

Conversely, the more people using the outlier detection 

system within the organization (and the more metrics 

being analyzed), the more powerful the insights it can 

provide. For example, at Anodot, we have customers 

that have hundreds of people on dozens of different 

teams – from sales to executive management to BI to 

monitoring to devops – using the Anodot system to alert 

them to outliers relevant to their areas of responsibility. 

 

Based on our own experience and discussions with our 

customers who have faced the “build or buy” decision, 

we estimate that it would take a minimum of 12 human 

years (a team of data scientists, developers, UI and QA) 

to build even the most rudimentary outlier detection 

system. And this basic system could still encounter 

various technical issues that are far beyond the scope of 

this paper.

The more people using 
an outlier detection 
system within the 
organization (and the 
more metrics being 
analyzed), the more 
powerful the insights it 
can provide.
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SUMMARY
Across this series of three white papers, we have 

covered the critical processes and various types of 

learning of a large-scale outlier detection system. 

• In Part I, we discussed what an outlier is, and why a 

business would want to detect outliers. We outlined 

the five main design considerations when building 

an automated outlier detection system: timeliness, 

scale, rate of change, conciseness, and definition of 

incidents. And finally, we discussed supervised and 

unsupervised machine learning methods.

• In Part II, we detailed the processes of learning the 

normal behavior of time series data. After all, we 

need to know what is normal for a business system 

in order to identify what is not normal—an outlier. 

We talked about creating data models, uncovering 

seasonality, and the importance of online adaptive 

learning models.

• In Part III, this document, we discussed how 

to identify and correlate abnormal behavior to 

determine the significance of outliers. This process 

is critical for distilling the total number of discovered 

outliers into a much smaller number of only the 

most important outliers. Without this distillation 

process, there would be too many alerts to 

investigate in a timely and cost effective manner.

Hopefully these documents have given the reader some 

insight to the complexity of designing and developing 

a large-scale outlier detection system. The Anodot 

system has been carefully designed using sophisticated 

data science principles and algorithms, and as a result, 

we can provide to our customers truly meaningful 

information about the outliers in their business systems.

http://go.anodot.com/building-large-scale-wp-part-1?utm_source=white_paper_3&utm_campaign=large_scale_3&utm_medium=paper
http://go.anodot.com/building-large-scale-wp-part-2?utm_source=white_paper_3&utm_campaign=large_scale_3&utm_medium=paper
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Anodot was founded in 2014, and since its launch in 
January 2016 has been providing valuable business 
insights through outlier detection to its customers 
in financial technology (fin-tech), ad-tech, web apps, 
mobile apps, eCommerce and other data-heavy 
industries. Over 40% of the company’s customers are 
publicly traded companies, including Microsoft, VF 
Corp, Waze (a Google company), and many others. 
Anodot’s real-time business incident detection uses 
patented machine learning algorithms to isolate and 
correlate issues across multiple parameters in real 
time, supporting rapid business decisions.  
Learn more at http://www.anodot.com/.
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I. Anodot uses an enhanced version of the latent Dirichlet allocation (LDA) 
algorithm in a unique way to calculate abnormal based similarity. In natural 
language processing, LDA is a generative statistical model that allows sets of 
observations to be explained by unobserved groups that explain why some parts 
of the data are similar. For example, if observations are words collected into 
documents, it posits that each document is a mixture of a small number of topics 
and that each word’s creation is attributable to one of the document’s topics.

In LDA, each document may be viewed as a mixture of various topics, where each 
document is considered to have a set of topics that are assigned to it via LDA. In 
practice, this results in more reasonable mixtures of topics in a document. 

For example, an LDA model might have topics that can be classified as CAT_
related and DOG_related. A topic has probabilities of generating various words, 
such as “milk,” “meow” and “kitten,” which can be classified and interpreted 
by the viewer as CAT_related. Naturally, the word “cat” itself will have high 
probability given this topic. The DOG_related topic likewise has probabilities of 
generating each word: “puppy,” “bark” and “bone” might have high probability. 
Words without special relevance, such as “the” will have roughly even probability 
between classes (or can be placed into a separate category). A topic is not 
strongly defined, neither semantically nor epistemologically. It is identified on the 
basis of supervised labeling and (manual) pruning on the basis of their likelihood 
of co-occurrence. A lexical word may occur in several topics with a different 
probability, however, with a different typical set of neighboring words in each 
topic. (Wikipedia) 

II. TF-IDF is short for “term frequency–inverse document frequency.” It is a nu-
merical statistic intended to reflect how important a word is to a document in a 
collection or corpus. It is often used as a weighting factor in information retrieval 
and text mining. (Wikipedia)

Looking for another useful read?  
We recommend our ebook “Automated 

Time Series Analysis for Anomaly 
Detection on Amazon Web Services

Download eBook Now

mailto:info.us%40anodot.com?subject=
mailto:info%40anodot.com?subject=
http://www.anodot.com/
https://go.anodot.com/hubfs/aws/anodot_eBook_aws.pdf

