
ULTIMATE GUIDE
TO BUILDING A
MACHINE
LEARNING
OUTLIER
DETECTION
SYSTEM

Part III:
Correlating
Abnormal Behavior

2  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

Here in Part III, the final document of our white paper

series, we will cover the processes of identifying,

ranking and correlating abnormal behavior. Many of

the aspects we discuss in this document are unique

to Anodot, such as ranking and scoring outliers and

correlating metrics together. Most other vendors that

provide outlier detection solutions for do not include

these steps in their analysis, and we believe them to be

a real differentiator and a major reason why Anodot’s

solution goes beyond merely bringing accurate outliers

to light with minimum false positives and negatives, but

puts them into the context of the full story to provide

actionable information.

There are five steps necessary to learn and

identify outliers:

1. METRICS COLLECTION –
UNIVERSAL SCALE TO MILLIONS

2. NORMAL BEHAVIOR LEARNING

3. ABNORMAL BEHAVIOR LEARNING

4. BEHAVIORAL TOPOLOGY LEARNING

5. FEEDBACK-BASED LEARNING

Steps 1 and 2 were covered in detail in the previous two

white papers. This document covers steps 3 and 4. Step

5 is not in the scope of this white paper series.

INTRODUCTION
Many high-velocity online business systems today

have reached a point of such complexity that it is

impossible for humans to pay attention to everything

happening within the system. There are simply too

many metrics and too many data points for the

human brain to discern. Most online companies

already use data metrics to tell them how the

business is doing, and detecting outliers in the data

can lead to saving money or creating new business

opportunities. Thus, it has become imperative for

companies to use machine learning in large-scale

systems to analyze patterns of data streams and look

for outliers.

Consider an airline pricing system that calculates the

price for each and every seat on all of its routes in

order to maximize revenue. Seat pricing can change

multiple times a day based on thousands of factors,

both internal and external to the company. The

airline must consider those factors when deciding to

increase, decrease or hold a fare steady. An outlier in

any given factor can be an opportunity to raise the

price of a particular seat to increase revenue, or lower

the price to ensure the seat gets sold.

Automated outlier detection is a technique of

machine learning, and it is a complex endeavor.

Anodot is using this series of white papers to

help explain and clarify some of the sophisticated

decisions behind the algorithms that comprise

an automated outlier detection system for large

scale analytics. In Part I of this white paper series,

we outlined the critical design principles of an

outlier detection system. In Part II we continued

the discussion with information about how systems

can learn what “normal behavior” looks like in order

to identify abnormal behavior. We recommend

first reading parts 1 and 2 to gain the foundational

information necessary to comprehend this document.

https://go.anodot.com/building-large-scale-wp-part-1?utm_source=white_paper_3&utm_campaign=large_scale_3&utm_medium=paper
http://go.anodot.com/building-large-scale-wp-part-2?utm_source=white_paper_3&utm_campaign=large_scale_3&utm_medium=paper

3  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

ABNORMAL
BEHAVIOR
LEARNING
AND SCORING

The objective of any outlier detection system is to, well,

detect outliers. But not all outliers are equal. Some are

more significant than others, and the reaction an outlier

causes might depend upon how significant it is.

In our earlier documents, we used the example of

the human body as a complex system with many

metrics and data points for each metric. Body

temperature is one of those metrics; an individual’s

body temperature typically changes by about a

half to one degree between its highest and lowest

points each day. A slight temperature rise to, say,

37.8 °C (100.0 °F), would be irregular but not a cause

for great concern, as taking an aspirin might help

lower the temperature back to normal. However, an

anomalous rise to 40 °C (104.0 °F) will certainly warrant

a trip to the doctor for treatment. These are both

outliers, but one is more significant than the other in

terms of what it means within the overall system.

In a complex business system, how do we understand

which outlier is more significant than another? Let’s

consider this at the individual metric level, as shown

in Figure 1a below. Figure 1a shows a set of outliers

— some are small, some are big, some last longer,

some are shorter in duration. Though not shown in

this illustration, some outliers might have a pattern

to them, and some patterns could be a square or a

linear increase or decrease. Looking at the chart with

the human eye, one could posit what is more or less

significant based on intuition, and this method can be

encoded into an algorithm.

For every outlier found in a metric, there is a notion of

how far it deviates from normal as well as how long

the outlier lasts. These notions are called deviation

and duration, respectively. As for the outliers seen in

Figure 1a, some of them contain many data points,

which means that the data series was abnormal for

quite a while (i.e., had a longer duration), and some

of them have fewer data points (i.e., the outlier had

a shorter duration). In some cases, the peak of the

data points is higher (i.e., a greater deviation from

normal), and for others, the peak is lower (i.e., less of

a deviation from normal). There are other conditions

around both duration and deviation, and they all need

to be considered in the statistical model. In the case of

Anodot, the input is a set of statistics related to each

outlier, and the output is a score (on a scale of 0 to 100)

of how significant the outlier is.

For every outlier found in
a metric, there is a notion
of how far it deviates
from normal as well as
how long the outlier
lasts. These notions are
called deviation and
duration, respectively.

4  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

Note that the significance slider in the Anodot system

does not adjust the baseline or the normal behavior

model; it only defines which outliers the user chooses

to consume. This helps users focus on what is most

important to them, preventing alert fatigue. If there are

too many alerts, such as one for every single outlier, the

alerts eventually become overwhelming and meaningless.

Scoring occurs through machine learning since the

scores are relative to past outliers of that metric, not an

absolute value.

Consider the outliers shown in Figure 1b. Even without

looking at the assigned numbers for some of the outliers,

a person looking at the signal would probably come

up with similar scores. How? It is not based on each

outlier’s amount of deviation from normal, rather, it is

based on the fact that the high peak outliers deviated

a lot more, and the smaller ones deviated less than the

bigger ones. Even for human eyes, it is all relative.

Having such a score provides the ability to filter

-outliers based on their significance. In some cases, the

user would want to be alerted only if the score or the

significance is very high; and in other cases, the user

would want to see all outliers. For example, if a business

is looking at a metric that represents the company’s

revenue, then the user would probably want to see

outliers pertaining to anything that happens, even if

they are very small. But if the same business is looking

at the number of users coming into its application

from a specific location like Zimbabwe – assuming the

company doesn’t do a lot of business in Zimbabwe –

then maybe the user only wants to see the big outliers;

i.e., highly significant outliers. In the Anodot system, this

is configured using a simple slider as seen in Figure 2a.

The user needs this input mechanism because all the

outlier detection is unsupervised, and the system has no

knowledge of what the user cares about more.

Figure 1a. A single metric with several instances of abnormal behavior.

Figure 1b. Outliers ranked by significance.

5  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

history of a time series and see the outliers within it, in

their minds they consider the outliers relative to each

other as well as relative to normal. Anodot’s algorithms

now mimic this human thought process using

probabilistic Bayesian models.

In the screenshot in Figure 2b, the significance slider is

set to 70, meaning that only the orange outliers would

be alerted on, and not the gray ones, which fall below

that score.

Now suppose the big spike – the one labeled “90” – was

not there. Without a significant outlier to compare to,

the other outliers would look bigger, more significant. In

fact, we would probably change the scale of the graph.

This is an important distinction because there are other

scoring mechanisms that look at the absolute deviation

without context of what happened in the past. Anodot

initially took this approach but we saw quickly, from a

human perspective, that when people look at a long

Figure 2a. The significance slider in the Anodot system lets users select the level of outliers to be alerted on.

Figure 2b. With significance set at 70, users would be alerted on the two orange
alerts that are above 70, but not the smaller gray alerts below 70.

Significance Slider

6  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

BEHAVIORAL
TOPOLOGY
LEARNING
The next step in the overall process of learning and

identifying outliers in a system is behavioral topology

learning. In the first document of this white paper

series, we discussed learning system design principles

and covered the conciseness of outliers. Conciseness

refers to idea that the system considers multiple metrics

simultaneously, to view what is happening holistically.

If there are many outliers at the single metric level and

they are not combined into a story that describes the

whole incident, then it is very hard to understand what

is going on. However, combining them into a concise

story requires an understanding of which metrics are

related, because otherwise the system runs the risk of

combining things that are completely unrelated. The

individual metrics could be anomalous at the same

time just by chance.

Behavioral topology learning provides the means to

learn the actual relationships among different metrics.

This type of learning is not well-known; consequently,

many solutions do not work this way. Moreover, finding

these relationships at scale is a real challenge. If there

are millions of metrics, how can the relationships

among them be discovered efficiently?

As shown in Figure 3, there are several ways to figure

out which metrics are related to each other.

Name
Similarity

LSH for
scale

Normal
Behavioral
Similarity

Abnormal
Based

Similarity

TERM BASED SIMILARITY

METRIC RELATIONSHIP GRAPH

ENHANCED LATENT DIRICHLET
ALLOCATION ALGORITHM

NON LINEAR SIMILARITY
“COMPRESS” TIMESERIES USING

STACKED AUTO-ENCODERS
(DEEP NEURAL NETWORKS)

Figure 3. Methods of relating metrics to each other.

http://go.anodot.com/building-large-scale-wp-part-1?utm_source=white_paper_3&utm_campaign=large_scale_3&utm_medium=paper
http://go.anodot.com/building-large-scale-wp-part-1?utm_source=white_paper_3&utm_campaign=large_scale_3&utm_medium=paper

7  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

ABNORMAL
BASED SIMILARITY
The first method of relating metrics to each other is

abnormal based similarity. Intuitively, human beings

know that when something is abnormal, it will typically

affect more than one key performance indicator (KPI). In

the other papers in this series, we have been using the

example of the human body. When someone has the flu,

the illness will affect his or her temperature, and possibly

also heart rate, skin pH, and so on. Many parts of this

system called a body will be affected in a related way.

When an automatic outlier detection system takes

in these measurements, it does not know that the

temperature, heart rate and skin pH are from the same

person (unless someone tells the system that fact).

However, if the person gets the flu several times, several

of his or her vital signs will become irregular at the

same time, thus there is a high likelihood that some of

the outliers on their measurements will overlap.

The chance of two metrics having a single concurrent

outlier is high if you are measuring many things. If we

were to simply rely on outliers happening together to

determine that they are related, it would cause many

mistakes. But the probability of them being anomalous

twice at the same time is much lower. Three times, even

lower. The more often the metrics are anomalous at

similar times, the more likely it is that they are related.

The metrics don’t always have to be anomalous

together. A person’s temperature could increase but

his or her heart rate might not increase at the same

time, depending on the illness. But we know that many

illnesses do cause changes to the vital signs together.

Based on these intuitions, one can design algorithms

that find the abnormal based similarity between

metrics. One way to find abnormal based similarity is

to apply clustering algorithms. One possible input to

the clustering algorithm would be the representation

of each metric as anomalous or not over time (vectors

of 0’s and 1’s); the output is groups of metrics that

are found to belong to the same cluster. There are a

variety of clustering algorithms, including K-means,

hierarchical clustering and the Latent Dirichlet

Allocation algorithm (LDA). LDA is one of the more

advanced algorithms, and Anodot’s abnormal based

similarity processes have been developed on LDA with

some additional enhancements.I

The advantage that LDA has over other algorithms, is

that most clustering algorithms would allow a data

point - or a metric in this case - to belong to only one

group. There could be hundreds of different groups,

but in the end, a metric will belong to just one. Often,

it is not that clear-cut. For example, on a mobile app,

its latency metric could be in a group with the metric

related to the application’s revenue, but it could also be

related to the latency of that app on desktops alone. By

using clustering algorithms that force a choice of just

one group, the system might miss out on important

relationships. LDA clusters things in such a way that

they can belong to more than one group, i.e. “soft”

clustering, as opposed to “hard” clustering.

The more often metrics
are anomalous at similar
times, the more likely it is
that they are related.

8  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

Another advantage of LDA is that most clustering

algorithms have some distance function between

what is being measured that is similar. The LDA

algorithm allows a metric to be partially similar to the

other metrics. This comes back to the “softness” of the

algorithm—it allows partial similarity for a metric to still

belong to a group. In the context of learning metric

relationships, this is an important feature because, for

example, application latency doesn’t always have to

be anomalous when the revenue is anomalous. It is

not always the case that latency goes up anomalously

and revenue goes down, and there can be times when

the revenue becomes abnormal but the latency does

not go up or down accordingly. The outlier detection

system must be able to take that partiality into account.

The primary issue with abnormal based similarity is that

it does not scale well – we discuss scaling later in the

paper. In addition, it requires seeing enough historical

data containing outliers so it can capture these

relationships. Are there additional types of information

that can help capture the metric topology with less (or

no) history? We will discuss two additional methods

of capturing relationships between metrics next.

9  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

NAME SIMILARITY
Another method for determining relationships among

metrics is name similarity. Every metric in a system

must be given a name that is not just free-form text. In

the industry of data handling, there are recommended

naming conventions for metrics, typically comprised

of key value pairs describing what is being measured

and its source. For example, say we are measuring

the revenue of an app for Android in the US. For

simplicity’s sake, we will call this app XYZ. The key

value pair describing what we are measuring and

the source would be XYZ together with US. Thus, the

revenue metric might have a name like appName=XYZ.

Country=US.what=revenue.

This particular app is also available in Germany, so

the name for the metric that measures revenue

in there might be something like appName=XYZ.

Country=Germany.what=revenue. By looking at the

similarity between these two metric names, we have a

measure of how similar they are. If they are very similar,

then we say they should be grouped because they

probably describe the same system. It is reasonable to

associate metrics using this method; it is essentially

based on term similarity, by comparing terms to see

whether they are equal and how much overlap they have.

10  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

NORMAL
BEHAVIOR
SIMILARITY
A third method of determining relationships among

metrics is normal behavior similarity, which looks at

the metrics under normal circumstances as opposed

to the abnormal based similarities. This method asks

questions like, “Do the metrics have the same shape?”

and “Do they look the same when the signal is normal?”

What they look like when abnormal does not matter.

For example, if we look at revenue for the XYZ app on

different platforms such as Android and iPhone, they

will probably look quite similar; the signals for these two

metrics will most likely have the same shape. However,

if we compare the application latency on Android to the

app’s revenue on that platform, they won’t be similar.

Normal behavior similarity is the weakest method of the

three discussed in this document because it is always

possible to find correlations if one looks hard enough.

The question is how to do it intelligently without getting

a lot of false positives.

The most commonly used method of performing

normal behavior similarity comparisons is with linear

correlation. Here people use measures such as the

Pearson correlation coefficient, which is a measure

of the linear dependence (correlation) between

two variables (metrics). This method requires some

caution. For example, it is necessary to de-trend the

data, meaning that if there is a linear line constantly

going up or down, it must be subtracted from the

original time series before computing the Pearson

correlation. Otherwise, any metric that is trending up

will be correlated with anything else that is trending up,

resulting in a lot of false positives.

It is also necessary to remove seasonal patterns from

the metrics; otherwise anything with a seasonal pattern

will be correlated with anything else that has the same

seasonal pattern. If two metrics both have a 24-hour

seasonal pattern, the result will be a very high similarity

score regardless of whether they are related or not. In

fact, many metrics do have the same seasonal patterns

but they are not related at all. For instance, we could

have two online apps that are not related, but if we look

at the number of visitors to both apps throughout the

day, we will see the same pattern because both apps

are primarily used in the US and have the same type of

users. It could be the XYZ app and a totally unrelated

news application.

Normal behavior
similarity looks at the
metrics under normal
circumstances as
opposed to the abnormal
based similarities.

11  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

One of the most promising algorithms tested at

Anodot for creating such a dictionary is a Neural-

Network based approach (Deep Learning), namely,

Stacked Autoencoders. Stacked autoencoders are a

multi-layer Neural Network designed to discover a

high-level representation of the input vectors in the

form activation of the output nodes. Training stacked

autoencoders is done with a set of segments of the time

series; the activated nodes at the output of the network

are the dictionary representing prototypical shapes of

the input segments. The details of implementing this

deep learning technique to accomplish this task are out

of the scope of this white paper.

Unlike abnormal based similarity which creates very few

false positives but is dependent on outliers happening

(which occurs rarely), thus more time to pass, normal

behavior similarity requires much less data in order to

be computed. However, if not done right – e.g., if the

data patterns are not de-trended and de-seasonalized –

this method could create many false positives.

The Pearson correlation is a simple algorithm and

is quite easy to implement, but there are better

approaches that are less prone to false positives, such

as the pattern dictionary based approach. Suppose

each time series metric can be partitioned into

segments, where each segment is classified to one of N

prototypical patterns that are defined in a “dictionary”

of known patterns like a daily sine wave, a saw tooth, a

square wave-like pattern, or other classifiable shapes.

Once the user has a dictionary of typical shapes, he or

she can describe each metric based on what shapes

appeared in it at each segment.

As an example, from 8 AM to 12 PM, the metric had

shape number 3 from the dictionary of shapes, and

from 12 PM to 5 PM, it had shape number 10. This

changes how the time series is represented with a

more compressed representation, which also describes

attributes at a high level, rather than just the values.

From there, it is relatively easy to do clustering or

any type of similarity grouping based on the new

representation. It is also easier to discount the weight

of very common shapes in the dictionary by using

techniques from document analysis (such as TF-IDF

weightsII). It is safe to assume that things are correlated

if at every point in time, they have similar shapes.

The main challenge in the shape dictionary based

approach is how to create the dictionary. A variety of

algorithms can be employed for learning the dictionary,

but they all follow a similar approach: Given a (large)

set of time series metric segments, apply a clustering

technique (or soft clustering technique such as LDA)

on all the segments, and then use the representations

of the clusters as the dictionary of shapes. Given a new

segment of a metric, find the most representative

cluster in the dictionary and use its index as the new

representation of the segment.

USER INPUT
There are additional methods of establishing

relationships among metrics that do not require

sophisticated algorithms; one is direct user input. If a

user says that all XYZ app metrics are related, this fact

can be encoded into the learning model. It is a technical

process, not an algorithmic one, but this type of direct

input can be useful if the user can provide it.

The second method is indirect input, in which the

user manipulates the metrics to create new metrics

out of them. If there is revenue of XYZ app in multiple

countries, the user can now create a new metric

by calculating the sum of the revenue from all the

countries. It can be assumed that if it makes sense to

create a composite metric of multiple metrics, then the

individual metrics are likely related to each other.

Anodot uses both methods, depending on what

information is available.

12  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

A MATTER
OF SCALE
Of the various methods discussed above, one of the

major challenges is scale. How can these comparisons

be applied at very large scale? The algorithm-based

methods are computationally expensive when there

are a lot of metrics to work with. It either requires a lot

of machines or a lot of time to get results. How can it be

done efficiently on a large scale, such as a billion metrics?

One method is to group the metrics. We would start with

one billion metrics sorted into 100 different groups that

are roughly related to each other. We can go into each

group and perform the heavy computation because now

the number of groups is small, and each group has its

own order. If we have a group of one million metrics, and

then we separate them into 10 groups, we end up with

10 groups of 100k metrics each, which is a much smaller,

more manageable number. A mechanism is needed to

enable fast and accurate partitioning.

How can this be done without knowing what things

are similar? A locality sensitive hashing (LSH) algorithm

can help here. For every metric a company measures,

the system computes a hashtag that determines which

group it belongs to. Then, additional algorithms can

be run on each group separately. This breaks one big

problem into a lot of smaller problems that can be

parsed out to different machines for faster results. This

methodology does have a certain probability of false

positives and false negatives; however, the algorithm

can tune the system, depending on how many false

positives and false negatives users are willing to tolerate.

In this case, “false positive” means that two things are

grouped together, despite not exhibiting characteristics

that would cause them to be grouped together. “False

negative” means that two things are put into separate

groups when they should be in the same group. The

tuning mechanism allows the user to specify the size

of the groups based on the total number of metrics,

as well as the tolerance of false positives and false

negatives that he or she is willing to accept. One way

to reduce the number of false negatives is to run the

groups through the algorithms a few times, changing

the size of the group each time. If the groups are

small enough, they can run rapidly while not being

computationally expensive.

13  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

THE IMPORTANCE
OF EACH STEP
The real goal of performing outlier detection in a

business system is not to merely identify unusual things

that are happening within that system, but to use the

insights about when and where the outliers happen

to understand the underlying cause(s) and hopefully

uncover opportunities to improve the business. A large-

scale business system can have hundreds of thousands

or even millions of metrics to be measured. A well-

known social network that is used by billions of people

around the world is estimated to have 10 billion metrics.

Any large-scale system with a high number of metrics

will yield many outliers—perhaps too many for the

business to investigate in a meaningful time frame. This

is why all of the steps discussed across our series of three

white papers are important. Each step helps reduce the

number of outliers to a manageable number of truly

significant insight. This is illustrated in Figure 4 below.

This chart illustrates the importance of all the steps in

an outlier detection system: normal behavior learning,

abnormal behavior learning, and behavioral topology

learning. Consider a company that is tracking 4 million

metrics. Out of this, we found 158,000 single metric

outliers in a given week, meaning any outlier on any

metric. This is the result of using our system to do

outlier detection only at the single metric level, without

outlier scoring and without metric grouping. Without

the means to filter things, the system gives us all the

outliers, and that is typically a very large number. Even

though we started with 4 million metrics, 158,000 is still

a very big number—too big to effectively investigate;

thus, we need the additional techniques to whittle

down that number.

Normal Behavior Learning

Abnormal Behavior Learning

Behavioral Topology Learning

4 MILLION
METRICS

158,000
ANOMALIES FOUND

910
ANOMALIES HIGH

SIGNIFICANCE SCORE

147
CORRELATED

INCIDENTS

Figure 4. The importance of all steps in an outlier detection system.

14  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

If we look at only the outliers that have a high

significance score – in this case a score of 70 or above

– the number of outliers drops off dramatically by an

order of magnitude to just over 910. This is the number

of significant outliers we had for single metrics out of 4

million metrics for one week — 910 of them. Better, but

still too many to investigate thoroughly.

The bottom of the funnel shows how many grouped

outliers with high significance we end up after applying

behavioral topology learning techniques. This is another

order of magnitude reduction — from 910 to 147. This

number of outliers is far more manageable to investigate.

Any organization with 4 million metrics is large enough

to have numerous people assigned to dig into the

distilled number of outliers, typically looking at those

outliers that are relevant to their areas of responsibility.

Figure 4 does not necessarily show the accuracy of

the outliers; rather, it shows why all these steps are

important; otherwise the number of outliers can be

overwhelming. Even if they are “good” outliers – they

found the right things – it would be impossible to

investigate everything in a timely manner. Users would

simply stop paying attention because it would take

them a long time to understand what is happening.

This demonstrates the importance of grouping — really

reducing the forest of 158,000 outliers into 147 grouped

outliers per week. This goes back to the notion of

conciseness covered in the design principles white paper

(Part I of this series). Concise outliers help to tell the story

of what is happening without being overwhelming,

enabling a human to investigate more quickly. Then

the business can take advantage of an opportunity that

might be presented through the outlier, or take care of

any problem that the outlier has highlighted.

http://go.anodot.com/building-large-scale-wp-part-1

15  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

THE
ARCHITECTURE
OF AN OUTLIER
DETECTION
SYSTEM
In a generic sense, any large-scale outlier detection

system should follow the design principles we outlined

in the first part of this white paper series. In Figure

5 below, we use Anodot’s system as an example to

describe the architecture and components of a typical

system. Where possible, we will point out how the

Anodot system might differ from others.

The most important requirement of this architecture

is that it be scalable to a very large number of metrics.

Anodot achieves this by performing most of the normal

behavior learning as the data flows into our system. We

perform machine learning on the data stream itself. This

is shown in the central part of the illustration, Anodotd,

labeled “Online Baseline Learning.”

Offline Learning

Data Sources

Metadata Indexing
& Search

ONLINE BASELINE
LEARNING

REAL-TIME
ANOMALY DETECTION

Real-time Data Store

Grouper

Anomaly
Events
Queue

Metric
Relationship

Graph
DWH Hadoop · Spark · Hive

Figure 5. The architecture of Anodot’s large-scale outlier detection system.

16  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

The flow of data comes from Customer Data Sources,

as shown at the bottom of the illustration, into what

we call Anodotd, or Anodot Daemon, which does the

learning. When a data point comes in from a metric, the

system already has the pre-constructed normal model

for that metric in its memory. If there is an outlier, it

scores it using the abnormal model and sends it to the

“Outlier Events Queue” (we use Kafka) on the left side

of the illustration. If there is no outlier, Anodotd simply

updates the model that it has so far and stores that

model in the database.

Many machine learning systems do not work this way.

They pull data from a database, do their learning and

then push the data back to a database. However, if you

want the system to scale and find outliers on 100% of

the metrics – because it is unknown which metrics

are important – then the learning must be done on all

the samples that come in. If the data has already been

stored in a database and then must be pulled out in

order to do the learning, the system will not be able

to scale up. There is no database system in the world

that both read efficiently and write rapidly. Enlarging

the database system is a possibility, but it will increase

costs significantly. Certainly, to get the system to scale,

learning must be done on the data stream itself.

The components on the left side of the illustration

perform the processes of identifying and correlating

abnormal behavior. Outlier events on single metrics pass

through the queue to the Grouper component which

checks whether to group single metric outliers based on

the information from the metric relationship graph.

All information about the outliers is passed to the

Metadata Indexing and Search Engine. Any changes to

an outlier will be updated in this Engine. Anodot uses

Elastic Search for this process, which does not affect the

design of the system.

5.8 BILLION
DATA POINTS

120 MILLION
UNIQUE METRICS

240 MILLION
MODELS

14 MILLION
SEASONAL MODELS

500 MILLION
CORRELATIONS

30 TYPES
OF LEARNING ALGORITHMS

ANODOT IN
NUMBERS PER DAY

Figure 6. Anodot in numbers, per day.

17  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

On the right side of Figure 5 is Hadoop/Spark HIVE

offline learning. There are some processes that Anodot

runs offline, for example, the behavioral topology

learning or seasonality detection can be run offline; we

do not have to run this process on the data stream itself.

Discovering that one metric is related to another is not

something that will change from data point to data

point. Finding that something has a weekly seasonal

pattern does not have to be detected on every data

point that comes in for that metric. There is a price to

pay when processes run on the data stream, often in the

form of accuracy. With online learning, there is no luxury

of going back and forth; thus, Anodot performs these

activities offline. This combination of online and offline

learning optimizes accuracy and efficiency.

Not all outlier detection systems have all these

components, but Anodot believes they are all

important to yield the best results in an efficient and

timely manner.

Figure 7. A screenshot of the Anodot “Anoboard” Dashboard showin outliers detected in time series data.

18  ·  Ultimate guide to building a machine learning outlier detection system. Part III.

Logo Mark

Word Mark

Word Mark (without Tagline)

THE HUMAN
ELEMENT
This white paper series has focused on the technical

elements necessary to build an outlier detection

system, a recipe, as it were. But what about the chef? It

is not enough to pick up the ingredients at the market;

someone has still must cook the meal. This brings us to

the human factor of an outlier detection system -- the

team needed to build the system.

At a minimum, you will need a team of data scientists

with a specialty in time series data and online machine

learning. Just as chefs and doctors have their own

specialties, data scientists do as well. While there is a

shortage of data scientists in the market in general, the

scarcity is even more acutely felt when searching for

particular specialties such as time series, and you may

find yourself in competition for talent with companies

such as Google, Facebook and other industry giants.

Besides the data scientists, you need a team of

developers and other experts to build a system around

the algorithms which is efficient at scalable stream

processing and developing backend systems and has

an easy-to-use user interface. At the bare minimum, you

would need backend developers creating data flows,

storage, and management of the large scale backend

system, in addition to UI experts and developers, QA

and product management.

Note that this team not only has to develop and deploy

the system, but maintain it over time.

While one might be tempted to skimp on UI for an

internally-developed solution, this is a mistake. An

early investment in UI means that the eventual outlier

detection system will be able to be used widely in the

organization by multiple teams, with multiple needs. If

the UI is not simple enough for everyone to learn easily,

the data science and business intelligence teams will

forever find themselves as the frustrating bottleneck,

providing retroactive reports and alerts.

Conversely, the more people using the outlier detection

system within the organization (and the more metrics

being analyzed), the more powerful the insights it can

provide. For example, at Anodot, we have customers

that have hundreds of people on dozens of different

teams – from sales to executive management to BI to

monitoring to devops – using the Anodot system to alert

them to outliers relevant to their areas of responsibility.

Based on our own experience and discussions with our

customers who have faced the “build or buy” decision,

we estimate that it would take a minimum of 12 human

years (a team of data scientists, developers, UI and QA)

to build even the most rudimentary outlier detection

system. And this basic system could still encounter

various technical issues that are far beyond the scope of

this paper.

The more people using
an outlier detection
system within the
organization (and the
more metrics being
analyzed), the more
powerful the insights it
can provide.

Logo Mark

Word Mark

Word Mark (without Tagline)

SUMMARY
Across this series of three white papers, we have

covered the critical processes and various types of

learning of a large-scale outlier detection system.

• In Part I, we discussed what an outlier is, and why a

business would want to detect outliers. We outlined

the five main design considerations when building

an automated outlier detection system: timeliness,

scale, rate of change, conciseness, and definition of

incidents. And finally, we discussed supervised and

unsupervised machine learning methods.

• In Part II, we detailed the processes of learning the

normal behavior of time series data. After all, we

need to know what is normal for a business system

in order to identify what is not normal—an outlier.

We talked about creating data models, uncovering

seasonality, and the importance of online adaptive

learning models.

• In Part III, this document, we discussed how

to identify and correlate abnormal behavior to

determine the significance of outliers. This process

is critical for distilling the total number of discovered

outliers into a much smaller number of only the

most important outliers. Without this distillation

process, there would be too many alerts to

investigate in a timely and cost effective manner.

Hopefully these documents have given the reader some

insight to the complexity of designing and developing

a large-scale outlier detection system. The Anodot

system has been carefully designed using sophisticated

data science principles and algorithms, and as a result,

we can provide to our customers truly meaningful

information about the outliers in their business systems.

http://go.anodot.com/building-large-scale-wp-part-1?utm_source=white_paper_3&utm_campaign=large_scale_3&utm_medium=paper
http://go.anodot.com/building-large-scale-wp-part-2?utm_source=white_paper_3&utm_campaign=large_scale_3&utm_medium=paper

For more information,
please contact Anodot:

North America
669-600-3120
info.us@anodot.com

International
+972-9-7718707
info@anodot.com

Anodot was founded in 2014, and since its launch in
January 2016 has been providing valuable business
insights through outlier detection to its customers
in financial technology (fin-tech), ad-tech, web apps,
mobile apps, eCommerce and other data-heavy
industries. Over 40% of the company’s customers are
publicly traded companies, including Microsoft, VF
Corp, Waze (a Google company), and many others.
Anodot’s real-time business incident detection uses
patented machine learning algorithms to isolate and
correlate issues across multiple parameters in real
time, supporting rapid business decisions.
Learn more at http://www.anodot.com/.

© Copyright 2019, Anodot. All trademarks, service marks and

trade names referenced in this material are the property of

their respective owners.

I. Anodot uses an enhanced version of the latent Dirichlet allocation (LDA)
algorithm in a unique way to calculate abnormal based similarity. In natural
language processing, LDA is a generative statistical model that allows sets of
observations to be explained by unobserved groups that explain why some parts
of the data are similar. For example, if observations are words collected into
documents, it posits that each document is a mixture of a small number of topics
and that each word’s creation is attributable to one of the document’s topics.

In LDA, each document may be viewed as a mixture of various topics, where each
document is considered to have a set of topics that are assigned to it via LDA. In
practice, this results in more reasonable mixtures of topics in a document.

For example, an LDA model might have topics that can be classified as CAT_
related and DOG_related. A topic has probabilities of generating various words,
such as “milk,” “meow” and “kitten,” which can be classified and interpreted
by the viewer as CAT_related. Naturally, the word “cat” itself will have high
probability given this topic. The DOG_related topic likewise has probabilities of
generating each word: “puppy,” “bark” and “bone” might have high probability.
Words without special relevance, such as “the” will have roughly even probability
between classes (or can be placed into a separate category). A topic is not
strongly defined, neither semantically nor epistemologically. It is identified on the
basis of supervised labeling and (manual) pruning on the basis of their likelihood
of co-occurrence. A lexical word may occur in several topics with a different
probability, however, with a different typical set of neighboring words in each
topic. (Wikipedia)

II. TF-IDF is short for “term frequency–inverse document frequency.” It is a nu-
merical statistic intended to reflect how important a word is to a document in a
collection or corpus. It is often used as a weighting factor in information retrieval
and text mining. (Wikipedia)

Looking for another useful read?
We recommend our ebook “Automated

Time Series Analysis for Anomaly
Detection on Amazon Web Services

Download eBook Now

mailto:info.us%40anodot.com?subject=
mailto:info%40anodot.com?subject=
http://www.anodot.com/
https://go.anodot.com/hubfs/aws/anodot_eBook_aws.pdf

