
Six Essential Elements
of Web Application Security

Cost Effective Strategies for Defending Your Business

6

An Introduction to Defending Your
Business Against Today’s Most
Common Cyber Attacks
When web applications are breached, enormous amounts
of sensitive business data can be lost. According to
Verizon’s 2014 Data Breach Investigations Report, web
application attacks more than doubled in 2013 to become
the #1 cause of security incidents.

These types of attacks can occur at organizations
of all sizes and levels of IT sophistication, and can
affect tremendous amounts of data. In the spring and
summer of 2013 alone, there were numerous high-
profile web-related security incidents. Attackers were
able to steal passwords from a site run by NASDAQ,
the second breach at NASDAQ in recent years. Shortly
thereafter, Apple’s developer website was breached,
placing registered developer names and mailing
addresses at risk.

Web applications are popular targets because:

@	They are accessible to almost anybody in the world.

@	They are a conduit to an enormous amount of
valuable data.

@	They are commonly riddled with weaknesses.

If you’re like many organizations, your IT teams and
developers have very little time or resources to devote
to performing security tests (particularly manual ones).
When security testing does get done, it tends to be
focused on the highest-profile web applications, leaving
the security of other apps to chance. Even then, testing
can be sporadic, enabling vulnerabilities to creep in
unnoticed and create opportunities for exploits.

The financial impact of such exploits is substantial:
according to the Ponemon Institute’s 2013 Cost of a
Data Breach Study, U.S. breaches cost $188 per record
stolen, with an average total cost of $5.4 million per
incident.

Fortunately, most web application attacks follow a small
number of patterns.

Figure 1: Verizon 2014 Data Breach Investigation Report

Six Essential Elements of Web Application Security	 2

The most common classes of web application vulnerabilities

Like other application flaws, web application security defects arise during software development. The Open Web
Application Security Project (OWASP) Top 10 provides the de facto standard for categorizing web app vulnerabilities (see
appendix). The most common types include:

Cross-Site Scripting (XSS)
Cross-Site Scripting (XSS) is one of the most widely-found and dangerous vulnerabilities in web apps. XSS can have a big
impact on your organization because it enables attackers to send untrusted code to users’ web browsers under the guise
of your business’s legitimate app. This enables attackers to execute scripts in victims’ browsers to hijack a session or
download malware to take full control of their system. XSS vulnerabilities have been found by researchers to exist in the
websites of security vendors, marketplaces, payments providers, merchants, and social networks.

SQL Injection
Injection attacks come in many different flavors, including: SQL injection, command injection (inserting system commands
into a form field), and many others. SQL injection attacks are among the most widely known. Attackers send malformed
inputs to your application (for example adding extra characters to the ends of a type-in field), which then gets passed to a
database. The maliciously-formatted input tricks the database into returning excess information or performing unwanted
actions. This type of attack has been used to expose hundreds of millions of records containing personally-identifiable
information (PII) and credit card data; it can also be used to modify or delete sensitive data, sometimes without your ever
knowing.

Fortunately, you can combat these and other vulnerabilities by following a few straightforward best practices and
employing new automated technologies.

Figure 2: IBM X-Force 2013 Mid-Year Trend and Risk Report

Six Essential Elements of Web Application Security	 3

All too often, IT teams and
developers are limited in the time
and resources they can devote to

security tests.

Six Essential Elements of Web Application Security	 4

Like all competitive businesses, your application
developers and operation teams are constantly under

pressure to move quickly. Everybody wants their
application security efforts to be effective, but only if
they don’t unduly impede workflow or drive up costs.

To balance these potentially-competing objectives,
industry-leading organizations often use the following

six elements in their approach to web application
security.

Six Essential Elements
of Web Application Security

6

Six Essential Elements of Web Application Security	 5

Essential Element #1
Active Sponsorship
A visible, executive advocate or management sponsor is crucial to the
success of any web application security initiative. Web application security
requires ongoing collaboration among the involved teams: business
leaders, IT leaders, development, operations, and security groups. Having
demonstrable leadership backing makes it easier to put that collaboration
in place and obtain necessary resources.

Essential Element #2
Development Discipline

Application security can’t be bolted on, it has to be baked into the
development process and enforced at key milestones. Security should be
explicitly considered when the technical requirements of the application
are being defined, during coding, in the QA phase, and when applications
are put into production.

Essential Element #3
Developer Training

There’s no way around it: secure coding is a skill unto itself that requires
developer training. When developers, server admins, and others build
and deploy applications, it’s essential that they be aware of where security
flaws can come from. A recent study by the Ponemon Institute found that
more than half of the developers questioned had no formal training in
application security. Making applications resilient to attack is tough if you
don’t know what to look for, even if you’re equipped with the right tools
(which most organizations still are not).

Six Essential Elements of Web Application Security	 6

Essential Element #4
Threat Modeling

Before you can protect your applications, data and other IT assets, you
have to understand the fundamentals behind a potential attack. In
particular, it’s critical think about who might have the motive, opportunity,
and means to attack.

For example, would the data in your
application be of interest to foreign
governments, competitors, or criminals
for financial gain? Will your application be
accessed from public networks or limited to
tightly-controlled corporate environments?
What technologies will be needed (such as

authentication, encryption, data storage,
and integration with other systems) and
how might they be exploited? Threat models
bring this information together so that
developers can think ahead and design the
application from the start to be more secure.

Six Essential Elements of Web Application Security	 7

Essential Element #5
Automated Testing

While a great many problems can be avoided by focusing on security
during development, some vulnerabilities will inevitably sneak in. This is
where having the right application security tools and technology makes a
huge difference.

Finding security problems in today’s web applications requires much more than just doing code
reviews. New generations of manual and automated tools now enable your developers, testers
and operations personnel to make apps more secure than ever before:

Static Application Security Testing (SAST)
tools examine the raw “static” application
code for specific types of programing
errors, such as: logic bombs, SQL injection,
buffer overruns, and other flaws. A
qualified analyst who is familiar with the
code and the business processes being
implemented typically examines the results.
This interactive review works particularly
well during development when analyzing
applications that are written in a support
language and can help pinpoint where
specific problems lie.

Dynamic Application Security Testing
(DAST) technologies analyze the output
of applications “dynamically” as they’re
running, interacting with apps the way an
attacker would. This makes it possible to
test for conditions that are only detectable
during actual use (such as issues resulting
from access control). DAST can be used on
apps written in any language, throughout
the app’s lifecycle: in development, QA and
production. It also enables the infrastructure
underneath the web app to be tested, not
just the portions for which code is available.

Organizations that employ both approaches often use manual SAST tools to spot-check the
logic in their most important apps and automated DAST systems to repeatedly test the behav-
ior. Now, new cloud-based DAST systems enable you to test large numbers of applications in
a short period of time, without the costs or burdens of setting up on-premises software. This
makes it feasible for you to do ongoing testing of all your applications —not just a few—even
in live environments.

Six Essential Elements of Web Application Security	 8

Essential Element #6
Attack Blocking

In the ideal world, applications would always be perfectly secure; realistically,
bugs happen and vulnerabilities inevitably appear. But fixing and deploying
changes to applications takes time—when it can be done at all.

During this time, your business or your
customers are open to attack. This is where
Web Application Firewalls (WAFs) come in:
they can give you time to fix problems by
automatically blocking certain web app
attacks, like Cross-Site Scripting.

WAFs sit in front of your web applications,
examining the HTTP traffic sent between
the user’s browser and your application.
Requests and replies that look inappropriate
are blocked or modified. Unusual patterns,
such as malicious values attached to the end
of input strings, can be stripped out so that
applications only see valid input from the
user. WAFs can also be used to limit access
from undesirable or suspicious networks
and alter the way browsers and apps
communicate (for example, by adding the

Strict-Transport-Security header to instruct
browsers to always connect using encrypted
HTTPS sessions), all without having to make
changes in the application or reconfigure
each web server.

WAFs also can shield your organization
against vulnerabilities found in third-party
applications while vendors are working on
fixes. You can even use WAFs to protect your
business when using shared Software-as-
a-Service (SaaS) applications whose terms
of service prohibit you from performing
vulnerability scans or whose vendors are not
fast enough in applying important security
fixes to their service.

Six Essential Elements of Web Application Security	 9

Conclusion
Planning and cloud-based automation make global web application
security possible.

Just as there is no single “silver bullet” in IT
security, there is no one way to mitigate all
web application vulnerabilities. Fortunately,
the approach used by many successful
organizations can put you on the right track.

Start by laying a foundation of executive
support, instilling security into development
processes, training software writers to avoid
security problems, and identifying where
threats are likely to come from. With this
knowledge, you’ll be able to take advantage
of the new generation of testing and
protection technologies such as SAST, DAST
and WAF tools.

The simplicity and cost-effectiveness of
cloud-based solutions, in particular, make
high-end protection possible where it never
was before. Now, you can use automated
vulnerability assessment and web

application firewalls, accessed and managed
directly from the cloud, to secure all of your
applications – anywhere around the globe.

Together, these essential practices and
technologies can help you and your
business dramatically reduce the risk of web
application breaches.

For more information about Qualys and how
its QualysGuard Cloud Platform integrated
suite of security and compliance solutions
can help your organization secure your web
applications and reduce the risk of breaches,
or to try QualysGuard Web Application
Scanning (WAS) or QualysGuard Web
Application Firewall (WAF) with your own
applications, please visit qualys.com/was or
qualys.com/waf.

6

Six Essential Elements of Web Application Security	 10

A1—Injection

Injection flaws, such as SQL, OS, and
LDAP injection occur when untrusted
data is sent to an interpreter as part
of a command or query. The attacker’s
hostile data can trick the interpreter
into executing unintended commands
or accessing data without proper
authorization.

A2—Broken Authentication
and Session Management

Application functions related
to authentication and session
management are often not
implemented correctly, allowing
attackers to compromise passwords,
keys, or session tokens, or to exploit
other implementation flaws to assume
other users’ identities.

A3—Cross-Site Scripting (XSS)

XSS flaws occur whenever an
application takes untrusted data and
sends it to a web browser without
proper validation or escaping. XSS
allows attackers to execute scripts in
the victim’s browser which can hijack
user sessions, deface websites, or
redirect the user to malicious sites.

A4—Insecure Direct Object
References

A direct object reference occurs when
a developer exposes a reference to
an internal implementation object,
such as a file, directory, or database
key. Without an access control check
or other protection, attackers can
manipulate these references to access
unauthorized data.

A5—Security Misconfiguration

Good security requires having
a secure configuration defined
and deployed for the application,
frameworks, application server, web
server, database server, and platform.
Secure settings should be defined,
implemented, and maintained,
as defaults are often insecure.
Additionally, software should be kept
up to date.

A6—Sensitive Data Exposure

Many web applications do not
properly protect sensitive data,
such as credit cards, tax IDs, and
authentication credentials. Attackers
may steal or modify such weakly
protected data to conduct credit
card fraud, identity theft, or other
crimes. Sensitive data deserves extra
protection such as encryption at
rest or in transit, as well as special
precautions when exchanged with the
browser.

A7—Missing Function
Level Access Control

Most web applications verify function
level access rights before making that
functionality visible in the UI. However,
applications need to perform the
same access control checks on the
server when each function is accessed.
If requests are not verified, attackers
will be able to forge requests in order
to access functionality without proper
authorization.

A8—Cross-Site Request
Forgery (CSRF)

A CSRF attack forces a logged-on
victim’s browser to send a forged HTTP
request, including the victim’s session
cookie and any other automatically
included authentication information,
to a vulnerable web application.
This allows the attacker to force the
victim’s browser to generate requests
the vulnerable application thinks are
legitimate requests from the victim.

A9—Using Components with
Known Vulnerabilities

Components, such as libraries,
frameworks, and other software
modules, almost always run with
full privileges. If a vulnerable
component is exploited, such an
attack can facilitate serious data
loss or server takeover. Applications
using components with known
vulnerabilities may undermine
application defenses and enable a
range of possible attacks and impacts.

A10—Unvalidated Redirects
and Forwards

Web applications frequently redirect
and forward users to other pages
and websites, and use untrusted data
to determine the destination pages.
Without proper validation, attackers
can redirect victims to phishing or
malware sites, or use forwards to
access unauthorized pages.

The OWASP 2013 Top 10
Web Application Vulnerabilities

Appendix

Source: OWASP (www.owasp.org/index.php/Top_10_2013-Top_10)
Six Essential Elements of Web Application Security	 11

