
SSL/TLS Deployment Best Practices
Ivan Ristić

version 1.4 (8 December 2014)

Copyright © 2012-2014 Qualys SSL Labs

Abstract

SSL/TLS is a deceptively simple technology. It is easy to deploy, and it just works… ex-
cept when it does not. The main problem is that encryption is not often easy to deploy
correctly. To ensure that TLS provides the necessary security, system administrators and
developers must put extra effort into properly configuring their servers and developing
their applications.

In 2009, we began our work on SSL Labs because we wanted to understand how TLS
was used and to remedy the lack of easy-to-use TLS tools and documentation. We have
achieved some of our goals through our global surveys of TLS usage, as well as the online
assessment tool, but the lack of documentation is still evident. This document is a step
toward addressing that problem.

Our aim here is to provide clear and concise instructions to help overworked adminis-
trators and programmers spend the minimum time possible to deploy a secure site or
web application. In pursuit of clarity, we sacrifice completeness, foregoing certain ad-
vanced topics. The focus is on advice that is practical and easy to follow. For those who
want more information, Section 6 gives useful pointers.

www.ssllabs.com

https://www.ssllabs.com/
https://www.ssllabs.com
https://www.ssllabs.com


2

1. Private Key and Certificate
The quality of the protection provided by TLS depends entirely on the private key, which
lays down the foundation for the security, and the certificate, which communicates the
identity of the server to its visitors.

1.1. Use 2048-bit Private Keys

Use 2048-bit RSA or 256-bit ECDSA private keys for all your servers. Keys of this strength
are secure and should stay secure for a considerable amount of time. If you have 1024-
bit RSA keys in production, replace them with stronger keys as soon as possible. If you
believe that you need more than 2048 bits of security, consider using ECDSA keys, which
have better performance characteristics. The drawback is that there is a small number of
clients that don’t support ECDSA and that you might need to deploy RSA and ECDSA
keys in parallel to maintain good interoperability.

1.2. Protect Private Keys

Treat your private keys as an important asset, restricting access to the smallest possible
group of employees while still keeping the arrangements practical. Recommended poli-
cies include the following:

• Generate private keys and Certificate Signing Requests (CSRs) on a trusted com-
puter. Some CAs offer to generate keys and CSRs for you, but that’s inappropriate.

• Password-protect keys to prevent compromise when they are stored in backup sys-
tems. Private key passwords don’t help much in production because a knowledge-
able attacker can always retrieve the keys from process memory. There are hard-
ware devices that can protect private keys even in the case of server compromise,
but they are expensive and thus justifiable only by organizations with strict securi-
ty requirements.

• After compromise, revoke old certificates and generate new keys.

• Renew certificates every year, always with new private keys.

1.3. Ensure Sufficient Hostname Coverage

Ensure that your certificates cover all the names you wish to use with a site. For ex-
ample, your main name is www.example.com, but you may also have www.example.net
configured. Your goal is to avoid invalid certificate warnings, which will confuse your
users and weaken their trust.



3

Even when there is only one name configured on your servers, remember that you can-
not control how your users arrive at the site or how others link to it. In most cases,
you should ensure that the certificate works with and without the www prefix (e.g., for
both example.com and www.example.com). The rule of thumb is this: a secure web server
should have a certificate that is valid for every DNS name configured to point to it.

Wildcard certificates have their uses, but should be avoided if using them means exposing
the underlying keys to a larger group of people, and especially if crossing organizational
boundaries. In other words, the fewer people who have access to the private keys, the
better. Further, be aware that certificate sharing creates a bond that can be abused to
transfer vulnerabilities from one web site to all other sites that use the same certificate.

1.4. Obtain Certificates from a Reliable CA

Select a Certification Authority (CA) that is reliable and serious about its certificate busi-
ness and about security. Consider the following criteria when selecting your CA:

Security posture
All CAs undergo regular audits (otherwise they wouldn’t be able to operate as CAs),
but some are more serious about security than others. Figuring out which ones are
better in this respect is not easy, but one option is to examine their security history,
and, more important, how they reacted to compromises and if they learned from
their mistakes.

Substantial market share
A CA that meets this criterion will not likely have all its certificates easily recalled,
which was the case with some smaller ones in the past.

Business focus
CAs whose activities constitute a substantial part of their business have everything
to lose if something goes terribly wrong, and they probably won’t neglect their
certificate division by chasing potentially more lucrative opportunities elsewhere.

Services offered
At minimum, your selected CA should provide support for both Certificate Revoca-
tion List (CRL) and Online Certificate Status Protocol (OCSP) revocation and pro-
vide an OCSP service with good performance. They should offer both domain-val-
idated and Extended Validation (EV) certificates, ideally with your choice of public
key algorithm. (Most web sites use RSA today, but ECDSA may become important
in the future because of its performance advantages.)

Certificate management options
If you need a large number of certificates and operate in a complex environment,
choose a CA that will give you good tools to manage them.



4

Support
Choose a CA that will give you good support if and when you need it.

1.5. Use Strong Certificate Signature Algorithms
Certificate signature security depends on the strength of the signing private key and the
strength of the used hashing function. Today, most certificates use the SHA1 hashing
function, which is considered weak and borderline insecure. The industry is currently
moving away from SHA1, which a process that must be completed by the end of 2016.
After that SHA1 certificates won’t be accepted any more.1

However, because Google Chrome warns about SHA1 certificates that expire even before
the ultimate deadline,2 you should immediately replace all your SHA1 certificates if they
expire after 2015. Alternatively, you could move straight away to certificates that rely on
the SHA2 algorithm family. But, before you do that, check that enough of your user base
supports SHA2. Some older clients, for example IE6 running on Windows XP Service
Pack 2 (still heavily used in some countries and organizations) don’t.

2. Configuration
With correct TLS server configuration, you ensure that your credentials are properly
presented to the site’s visitors, that only secure cryptographic primitives are used, and
that all known weaknesses are mitigated.

2.1. Deploy with Valid Certificate Chains

In most deployments, the server certificate alone is insufficient; two or more certificates
are needed to establish a complete chain of trust. A common problem is configuring the
server certificate correctly but forgetting to include other required certificates. Further,
although these other certificates are typically valid for longer periods of time, they too
expire, and when they do, they invalidate the entire chain. Your CA should be able to
provide you with all the additional certificates required.

An invalid certificate chain renders the actual server certificate invalid and results in
browser warnings. In practice, this problem is sometimes difficult to diagnose because
some browsers can deal with these problems and reconstruct a complete correct chain,
and some can’t.

1SHA1 Deprecation Policy (Windows PKI blog, 12 November 2013)
2Gradually Sunsetting SHA-1 (The Chromium Blog, 5 September 2014)

http://blogs.technet.com/b/pki/archive/2013/11/12/sha1-deprecation-policy.aspx
http://blog.chromium.org/2014/09/gradually-sunsetting-sha-1.html


5

2.2. Use Secure Protocols

There are five protocols in the SSL/TLS family: SSL v2, SSL v3, TLS v1.0, TLS v1.1, and
TLS v1.2. Of these:

• SSL v2 is insecure and must not be used.

• SSL v3 is insecure when used with HTTP and weak when used with other proto-
cols. It’s also obsolete, which is why it shouldn’t be used.

• TLS v1.0 is largely still secure; we do not know of major security flaws when they
are used for protocols other than HTTP. When used with HTTP, it can almost be
made secure with careful configuration.

• TLS v1.1 and v1.2 are without known security issues.

TLS v1.2 should be your main protocol. This version is superior because it offers impor-
tant features that are unavailable in earlier protocol versions. If your server platform (or
any intermediary device) does not support TLS v1.2, make plans to upgrade at an accel-
erated pace. If your service providers do not support TLS v1.2, require that they upgrade.

In order to support older clients, you need to continue to support TLS v1.0 and TLS v1.1
for the time being. With some workarounds (explained in subsequent sections), these
protocols can still be considered secure enough for most web sites.

2.3. Use Secure Cipher Suites

To communicate securely, you must first ascertain that you are communicating directly
with the desired party (and not through someone else who will eavesdrop), as well as
exchanging data securely. In SSL and TLS, cipher suites are used to define how secure
communication takes place. They are composed from varying building blocks with the
idea of achieving security through diversity. If one of the building blocks is found to be
weak or insecure, you should be able to switch to another.

Your goal should be thus to use only suites that provide authentication and encryption
of 128 bits or stronger. Everything else must be avoided:

• Anonymous Diffie-Hellman (ADH) suites do not provide authentication.

• NULL cipher suites provide no encryption.

• Export key exchange suites use authentication that can easily be broken.

• Suites with weak ciphers (typically of 40 and 56 bits) use encryption that can easi-
ly be broken.



6

• RC4 is weaker than previously thought.3 You should remove support for this ci-
pher as soon as possible, but after checking for potential negative interoperability
impact.

• 3DES provides about 112 bits of security. This is below the recommended min-
imum of 128 bits, but it’s still strong enough. A bigger practical problem is that
3DES is much slower than the alternatives. Thus, we don’t recommend it for per-
formance reasons, but it can be kept at the end of the cipher list for interoperabili-
ty with very old clients.

2.4. Control Cipher Suite Selection

In SSL v3 and later protocol versions, clients submit a list of cipher suites that they sup-
port, and servers choose one suite from the list to negotiate a secure communication
channel. Not all servers do this well, however—some will select the first supported suite
from the list. Having servers select the right cipher suite is critical for security (more
about that in Section 2.7).

2.5. Support Forward Secrecy

Forward Secrecy4 is a protocol feature that enables secure conversations that are not de-
pendent on the server’s private key. With cipher suites that do not support Forward Se-
crecy, someone who can recover a server’s private key can decrypt all earlier encrypted
conversations if they have them recorded. You need to support and prefer ECDHE suites
in order to enable Forward Secrecy with modern web browsers. To support a wider range
of clients, you should also use DHE suites as fallback after ECDHE.5

2.6. Disable Client-Initiated Renegotiation

In SSL/TLS, renegotiation allows parties to stop exchanging data in order to renegotiate
how the communication is secured. There are some cases in which renegotiation needs to
be initiated by the server, but there is no known need for clients to do so. Further, client-
initiated renegotiation may make your servers easier to attack using Denial of Service
(DoS) attacks.6

3On the Security of RC4 in TLS and WPA (Kenny Paterson et al.; 13 March 2013)
4Deploying Forward Secrecy (Qualys Security Labs; 25 June 2013)
5Increasing DHE strength on Apache 2.4.x (Ivan Ristić’s blog; 15 August 2013)
6TLS Renegotiation and Denial of Service Attacks (Qualys Security Labs Blog, October 2011)

http://www.isg.rhul.ac.uk/tls/
https://community.qualys.com/blogs/securitylabs/2013/06/25/ssl-labs-deploying-forward-secrecy
http://blog.ivanristic.com/2013/08/increasing-dhe-strength-on-apache.html
https://community.qualys.com/blogs/securitylabs/2011/10/31/tls-renegotiation-and-denial-of-service-attacks


7

2.7. Mitigate Known Problems

Nothing is perfectly secure, and at any given time there may be issues with the security
stack. It is good practice to keep an eye on what happens in the security world and to
adapt to situations as necessary. At the very least, you should apply vendor patches as
soon as they become available.

The following issues require your attention:

Disable insecure renegotiation
In 2009, the renegotiation feature was found to be insecure and the protocols need-
ed to be updated.7 Most vendors have issued patches by now or, at the very least,
provided workarounds for the problem. Insecure renegotiation is dangerous be-
cause it is easy to exploit and has effects similar to Cross-Site Request Forgery (CSRF)
and, in some cases, Cross-Site Scripting (XSS).

Disable TLS compression
In 2012, the CRIME attack8 showed how information leakage introduced by TLS
compression can be used by attackers to uncover parts of sensitive data (e.g., ses-
sion cookies). Very few clients supported TLS compression then (and even fewer
support it now), which means that it is unlikely that you will experience any per-
formance issues by disabling TLS compression on your servers. Attacks against TLS
compression are of low risk.

Mitigate information leakage stemming from HTTP compression
Two variations of the CRIME attack were disclosed in 2013. Rather than focus on
TLS compression (which is what CRIME did), TIME and BREACH attacks focus
on secrets in HTTP response bodies compressed using HTTP compression. Given
that HTTP compression is very important to a great many companies, these prob-
lems are more difficult to address. Mitigation might require changes to application
code.9

TIME and BREACH attacks require significant resources to carry out. But, if some-
one is motivated enough to use them, the impact is equivalent to CSRF.

Disable RC4
The RC4 cipher is insecure and should be disabled.10 At the moment, the best at-
tacks we know require millions of requests, a lot of bandwidth and time. Thus, the
risk is still relatively low, but it’s possible that the attacks will improve in the future.
Before removing RC4, check if your existing users will be impacted; in other words,
check if you have clients that support only RC4.

7SSL and TLS Authentication Gap Vulnerability Discovered (Qualys Security Labs Blog; November 2009)
8 CRIME: Information Leakage Attack against SSL/TLS (Qualys Security Labs Blog; September 2012)
9Defending against the BREACH Attack (Qualys Security Labs; 7 August 2013)
10Internet-Draft: Prohibiting RC4 Cipher Suites (A. Popov, 1 October 2014)

https://community.qualys.com/blogs/securitylabs/2009/11/05/ssl-and-tls-authentication-gap-vulnerability-discovered
https://community.qualys.com/blogs/securitylabs/2012/09/14/crime-information-leakage-attack-against-ssltls
https://community.qualys.com/blogs/securitylabs/2013/08/07/defending-against-the-breach-attack
http://datatracker.ietf.org/doc/draft-ietf-tls-prohibiting-rc4/


8

Be aware of the BEAST attack
The 2011 BEAST attack11 targets a 2004 vulnerability in TLS 1.0 and earlier pro-
tocol versions, previously thought to be impractical to exploit. The impact of a
successful BEAST attack is similar to that of session hijacking. For a period of
time, server-side mitigation of the BEAST attack was considered appropriate, even
though the weakness is on the client side. Unfortunately, to mitigate server-side
requires RC4, which can no longer be recommended. Because of that, and because
the BEAST attack is by now largely mitigated client-side, we no longer recommend
server-side mitigation.12 In some situations, when there is a great number of old
clients vulnerable to the BEAST attack, it might be more secure to use RC4 with
TLS 1.0 and earlier protocol versions. A decision to do this should be made care-
fully and only after fully understanding the environment and its threat model.

Disable SSL v3
SSL v3 is vulnerable against the POODLE attack, which was disclosed in October
2014.13 This attack is easy to carry out against HTTP clients, which can be tricked
to execute JavaScript malware. They can also usually be tricked into downgrading
from a better protocol (e.g., TLS 1.2) down to the vulnerable SSL v3. The best way
to mitigate POODLE is to disable SSL v3, which most sites can do safely.

3. Performance
Security is our main focus in this guide, but we must also pay attention to performance; a
secure service that does not satisfy performance criteria will no doubt be dropped. How-
ever, because TLS configuration does not usually have a significant overall performance
impact, we are limiting the discussion in this section to the common configuration prob-
lems that result in serious performance degradation.

3.1. Do Not Use Too Much Security

The cryptographic handshake, which is used to establish secure connections, is an op-
eration whose cost is highly influenced by private key size. Using a key that is too short
is insecure, but using a key that is too long will result in “too much” security and slow
operation. For most web sites, using RSA keys stronger than 2048 bits and ECDSA keys
stronger than 256 bits is a waste of CPU power and might impair user experience. Sim-
ilarly, there is little benefit to increasing the strength of the ephemeral key exchange be-
yond 2048 bits for DHE and 256 bits for ECDHE.

11Mitigating the BEAST attack on TLS (Qualys Security Labs Blog; October 2011)
12Is BEAST Still a Threat? (Qualys Security Labs; 10 September 2013)
13This POODLE bites: exploiting the SSL 3.0 fallback (Google Online Security Blog, 14 October 2014)

https://community.qualys.com/blogs/securitylabs/2011/10/17/mitigating-the-beast-attack-on-tls
https://community.qualys.com/blogs/securitylabs/2013/09/10/is-beast-still-a-threat
http://googleonlinesecurity.blogspot.co.uk/2014/10/this-poodle-bites-exploiting-ssl-30.html


9

3.2. Ensure That Session Resumption Works Correctly

Session resumption is a performance-optimization technique that makes it possible to
save the results of costly cryptographic operations and to reuse them for a period of time.
A disabled or nonfunctional session resumption mechanism may introduce a significant
performance penalty.

3.3. Use Persistent Connections (HTTP)

These days, most of the overhead of TLS comes not from the CPU-hungry cryptographic
operations but from network latency. An TLS handshake is performed after the TCP
handshake completes; it requires a further exchange of packets. To minimize the cost of
latency, you enable HTTP persistence (keep-alives), allowing your users to submit many
HTTP requests over a single TCP connection.

3.4. Enable Caching of Public Resources (HTTP)

When communicating over TLS, browsers assume that all traffic is sensitive. They will
typically use the memory to cache certain resources, but once you close the browser, all
the content may be lost. To get a performance boost and enable long-term caching of
some resources, mark public resources (e.g., images) as public by attaching the Cache-
Control: public response header to them.

3.5. Use OCSP Stapling
OCSP Stapling is a modification of the OCSP protocol that allows revocation informa-
tion to be delivered as part of the TLS handshake, directly from the server to the browser.
As a result, the browser does not need to contact OCSP servers for out-of-band valida-
tion and the connection time is significantly reduced.

4. Application Design (HTTP)
The HTTP protocol and the surrounding platform for web application delivery contin-
ued to evolve rapidly after SSL was born. As a result of that evolution, the platform now
contains features that can be used to defeat encryption. In this section, we list those fea-
tures, as well as ways to use them securely.

4.1. Encrypt 100% of Your Web Site

The fact that encryption is optional is probably one of the biggest security problems
today. We see the following problems:



10

• No TLS on sites that need it

• Sites that have TLS but that do not enforce it

• Sites that mix TLS and non-TLS content, sometimes even within the same page

• Sites with programming errors that subvert TLS

Although many of these problems can be mitigated if you know exactly what you’re
doing, the only way to reliably protect web site communication is to enforce encryption
throughout—without exception.

4.2. Avoid Mixed Content

Mixed-content pages are those that are transmitted over TLS but include resources (e.g.,
JavaScript files, images, CSS files) that are not transmitted over TLS. Such pages are not
secure. An active man-in-the-middle (MITM) attacker can piggyback on a single unpro-
tected JavaScript resource, for example, and hijack the entire user session. Even if you
follow the advice from the previous section and encrypt your entire web site, you might
still end up retrieving some resources unencrypted from third-party web sites.

4.3. Understand and Acknowledge Third-Party Trust

Web sites often use third-party services activated via JavaScript code downloaded from
another server. A good example of such a service is Google Analytics, which is used on
large parts of the Web. Such inclusion of third-party code creates an implicit trust con-
nection that effectively gives the other party full control over your web site. The third
party may not be malicious, but large providers of such services are increasingly seen
as targets. The reasoning is simple: if a large provider is compromised, the attacker is
automatically given access to all the sites that depend on the service.

If you follow the advice from Section 4.2, at least your third-party links will be encrypted
and thus safe from MITM attacks. However, you should go a step further than that: learn
what services your sites use, and either remove them, replace them with safer alternatives,
or accept the risk of their continued use.

4.4. Secure Cookies

To be properly secure, a web site requires TLS, but also that all its cookies are marked
as secure. Failure to secure the cookies makes it possible for an active MITM attacker
to tease some information out through clever tricks, even on web sites that are 100%
encrypted.



11

4.5. Deploy HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is a safety net for TLS: it was designed to ensure
that security remains intact even in the case of configuration problems and implemen-
tation errors. To activate HSTS protection, you set a single response header in your web
sites. After that, browsers that support HSTS (at this time, Chrome, Firefox, Safari and
Opera; IE soon) will enforce it.

The goal of HSTS is simple: after activation, it does not allow any insecure communi-
cation with the web site that uses it. It achieves this goal by automatically converting
all plaintext links to secure ones. As a bonus, it also disables click-through certificate
warnings. (Certificate warnings are an indicator of an active MITM attack. Studies have
shown that most users click through these warnings, so it is in your best interest to never
allow them.)

Adding support for HSTS is the single most important improvement you can make for
the TLS security of your web sites. New sites should always be designed with HSTS in
mind and the old sites converted to support it wherever possible.

4.6. Disable Caching of Sensitive Content

The goal of this recommendation is to ensure that sensitive content is communicated to
only the intended parties and that it is treated as sensitive. Although proxies do not see
encrypted traffic and cannot share content among users, the use of cloud-based appli-
cation delivery platforms is increasing, which is why you need to be very careful when
specifying what is public and what is not.

4.7. Ensure That There are No Other Vulnerabilities

This item is a reminder that TLS does not equal security. TLS is designed to address only
one aspect of security – confidentiality and integrity of the communication between you
and your users—but there are many other threats that you need to deal with. In most
cases, that means ensuring that your web site does not have other weaknesses.

5. Validation
With many configuration parameters available for tweaking, it is difficult to know in
advance what impact certain changes will have. Further, changes are sometimes made
accidentally; software upgrades can introduce changes silently. For that reason, we ad-
vise that you use a comprehensive SSL/TLS assessment tool initially to verify your
configuration to ensure that you start out secure, and then periodically to ensure that
you stay secure. For public web sites, we recommend our free online assessment tool on

https://www.ssllabs.com/ssltest/


12

the SSL Labs web site. The Handshake Simulation feature, in particular, is very useful,
because it shows exactly what security parameters would be used by a variety of com-
monly used TLS clients.

6. Advanced Topics
The following advanced topics are outside the scope of our guide. They require a deeper
understanding of SSL/TLS and Public Key Infrastructure (PKI), and they are still being
debated by experts.

Extended Validation certificates
EV certificates are high-assurance certificates issued only after thorough offline
checks.14 Their purpose is to provide a strong connection between an organization
and its online identity. EV certificates are more difficult to forge, provide slightly
better security, and are better treated when browsers present them to end users.

Public Key Pinning
Public Key Pinning is designed to give web site operators the means to restrict which
CAs can issue certificates for their web sites. This feature has been deployed by
Google for some time now (hardcoded into their browser, Chrome) and has proven
to be very useful in preventing attacks and making the public aware of them. In
2014, Firefox also added support for hardcoded pinning. A standard called Pub-
lic Key Pinning Extension for HTTP has been in development for a long time, but
will be published soon. We expect that it will be supported by at least some major
browsers in the near future.

ECDSA private keys
Today, most web sites rely on RSA private keys. This algorithm is thus the key to the
security of the Web, which is why attacks against it continue to improve. Where-
as before most sites used to use 1024-bit RSA keys, virtually everyone moved to
2048 bits. There are some concerns, however, that further RSA key length increases
might lead to performance issues. Elliptic Curve cryptography uses different math
and provides strong security assurances at smaller key lengths. RSA keys can be
replaced with ECDSA. They are currently supported by only a small number of
CAs, but we expect that most will offer them in the future. When migrating to
ECDSA, one concern is that not all clients support this algorithm. If you’re con-
sidering ECDSA, check whether the move will impact the ability of your users to
connect to your servers. Some platforms support dual-key deployments, enabling
you to use RSA and ECDSA keys in parallel, satisfying all clients.

14About EV SSL Certificates (CA/B Forum web site)

https://www.ssllabs.com/ssltest/
https://datatracker.ietf.org/doc/draft-ietf-websec-key-pinning/
https://datatracker.ietf.org/doc/draft-ietf-websec-key-pinning/
https://www.cabforum.org/certificates.html


13

Changes
The first release of this guide was on 24 February 2012. This section tracks the document
changes over time, starting with version 1.3.

Version 1.3 (17 September 2013)

The following changes were made in this version:

• Recommend replacing 1024-bit certificates straight away.

• Recommend against supporting SSL v3.

• Remove the recommendation to use RC4 to mitigate the BEAST attack serv-
er-side.

• Recommend that RC4 is disabled.

• Recommend that 3DES is disabled in the near future.

• Warn about the CRIME attack variations (TIME and BREACH).

• Recommend supporting Forward Secrecy.

• Add discussion of ECDSA certificates.

Version 1.4 (8 December 2014)
The following changes were made in this version:

• Discuss SHA1 deprecation and recommend migrating to the SHA2 family.

• Recommend that SSL v3 is disabled and mention the POODLE attack.

• Expand Section 3.1 to cover the strength of the DHE and ECDHE key exchanges.

• Recommend OCSP Stapling as a performance-improvement measure, promoting
it to Section 3.5.

Acknowledgments
Special thanks to Marsh Ray, Nasko Oskov, Adrian F. Dimcev, and Ryan Hurst for their
valuable feedback and help in crafting the initial version of this document. Also thanks
to many others who generously share their knowledge of security and cryptography with
the world. The guidelines presented here draw on the work of the entire security com-
munity.



14

About SSL Labs
SSL Labs is Qualys’s research effort to understand SSL/TLS and PKI as well as to provide
tools and documentation to assist with assessment and configuration. Since 2009, when
SSL Labs was launched, hundreds of thousands of assessments have been performed us-
ing the free online assessment tool. Other projects run by SSL Labs include periodic In-
ternet-wide surveys of TLS configuration and SSL Pulse, a monthly scan of about 150,000
most popular TLS-enabled web sites in the world.

About Qualys
Qualys, Inc. (NASDAQ: QLYS), is a pioneer and leading provider of cloud security and
compliance solutions with over 6,700 customers in more than 100 countries, including
a majority of each of the Forbes Global 100 and Fortune 100. The QualysGuard Cloud
Platform and integrated suite of solutions help organizations simplify security opera-
tions and lower the cost of compliance by delivering critical security intelligence on de-
mand and automating the full spectrum of auditing, compliance, and protection for IT
systems and web applications. Founded in 1999, Qualys has established strategic part-
nerships with leading managed service providers and consulting organizations, includ-
ing BT, Dell SecureWorks, Fujitsu, IBM, NTT, Symantec, Verizon, and Wipro. The com-
pany is also a founding member of the Council on CyberSecurity and the Cloud Security
Alliance (CSA).

Qualys, the Qualys logo and QualysGuard are proprietary trademarks of Qualys, Inc. All
other products or names may be trademarks of their respective companies.

https://www.ssllabs.com
https://www.trustworthyinternet.org/ssl-pulse/
http://www.qualys.com
http://www.counciloncybersecurity.org/
http://www.cloudsecurityalliance.org
http://www.cloudsecurityalliance.org

	SSL/TLS Deployment Best Practices
	1. Private Key and Certiﬁcate
	1.1. Use 2048-bit Private Keys
	1.2. Protect Private Keys
	1.3. Ensure Sufﬁcient Hostname Coverage
	1.4. Obtain Certiﬁcates from a Reliable CA
	1.5. Use Strong Certiﬁcate Signature Algorithms

	2. Conﬁguration
	2.1. Deploy with Valid Certiﬁcate Chains
	2.2. Use Secure Protocols
	2.3. Use Secure Cipher Suites
	2.4. Control Cipher Suite Selection
	2.5. Support Forward Secrecy
	2.6. Disable Client-Initiated Renegotiation
	2.7. Mitigate Known Problems

	3. Performance
	3.1. Do Not Use Too Much Security
	3.2. Ensure That Session Resumption Works Correctly
	3.3. Use Persistent Connections (HTTP)
	3.4. Enable Caching of Public Resources (HTTP)
	3.5. Use OCSP Stapling

	4. Application Design (HTTP)
	4.1. Encrypt 100% of Your Web Site
	4.2. Avoid Mixed Content
	4.3. Understand and Acknowledge Third-Party Trust
	4.4. Secure Cookies
	4.5. Deploy HTTP Strict Transport Security
	4.6. Disable Caching of Sensitive Content
	4.7. Ensure That There are No Other Vulnerabilities

	5. Validation
	6. Advanced Topics
	Changes
	Version 1.3 (17 September 2013)
	Version 1.4 (8 December 2014)

	Acknowledgments
	About SSL Labs
	About Qualys

