
FEATURE SLICING
RIGHT-SIZING FEATURES FOR SAFE® PROGRAM INCREMENTS

Written by: Ian Spence & Keith de Mendonca

One of the key activities that will
help make your SAFe® program a
success is the careful preparation
of your Features prior to Program
Increment (PI) planning. And one
important part of this preparation
is to slice up any of the targeted
Features that are too large to be
easily delivered within the PI.

In this guide, we would like to share some of our

experiences in slicing Features. And, in tribute to Richard

Lawrence and his popular Story Splitting poster, provide

you with a complementary Feature Slicing poster for

you to use in your SAFe program.

It is very tempting for Product Owners and Product Managers to treat
Features as though they are giant User Stories, and to apply the same
splitting approach to the Features in their program backlog as they
already use for the User Stories in their team backlogs.

Just as we have found that it can cause problems to write Features
using the Story format (see the Features and Capabilities article
provided as part of the interactive Scaled Agile Framework web site
www.scaledagileframework.com for further details) we have also
found it problematic to apply the same splitting rules to Features as
we do to User Stories.

In the Scaled Agile Framework a clear distinction is drawn between
the purpose, structure and content of Features, and that of Stories
(including User Stories and Enabler Stories):

• Features are the visible ‘units’ of business benefit that the customer

recognises and it is at this level of Feature granularity that the customer

will prioritise their needs.

• Features can span multiple user roles, user stories and use cases.

• Multiple teams may work simultaneously on the same Feature. Teams

can swarm together to deliver Features.

• Features may take many Sprints to complete. The Features are

implemented Story-by-Story.

• Features should be easily completed within a Program Increment;

remember Features are to the longer Program Increments as Stories are

to the Sprints.

• Stories are the units of work that each team breaks their Features into

to help them incrementally develop and deliver the Features. They exist

to help the team (and their stakeholders) examine, discuss, agree and

sequence the work they believe is needed to deliver a Feature.

• Stories should be completed within a single two week Sprint.

• Stories can exist without Features, allowing the teams to make changes

without the need for additional Features.

FEATURES - THEY’RE JUST BIG
STORIES AREN’T THEY?

There are a number of sources of rules for Story
splitting, our favourites being those published
by Richard Lawrence (including his popular
Story Splitting poster) and Dean Leffingwell
(see the Story article provided as part of the
interactive Scaled Agile Framework web site
scaledagileframework.com). These rules still apply
when using Features and really help teams in the
identification, separation and sequencing of the
stories they identify to implement the Feature but
they are not as helpful when it comes to slicing up
Features.

For example, we would never recommend deferring the performance
requirements related to a Feature into a later Feature - although we
may only implement these ‘performance Stories’ towards the end
of development of that Feature. The same logic applies to handling
error flows, CRUD and data variations; we may delay Stories which
implement these important software attributes for a Feature towards
the end of its development, but we would not defer this work to a
separate Feature.

When slicing Features it is always important to remember that these
are the true releasable elements of the system and so must always
provide a robust, usable solution to the users. Features will be built
Story by Story, but in themselves must provide a ‘complete’ usable
solution. Note that a complete usable solution means ‘no bits missing’,
rather than that all possible Stories have been implemented.

There is another important difference between splitting Stories and
Slicing Features: when we split a Story we usually split the original
Story into a set of similarly sized new Stories that completely replace
the original Story; when slicing Features, we usually just find the most
important slice and leave the rest to be addressed later.

So let us imagine that a team has just sized a Feature (typically in Story
Points) and has discovered that it is too large to be easily delivered
within the next Program Increment. To slice this Feature they will
need to select a slicing method that lets them de-prioritize or defer
some of the functionality. Once the Feature has been sliced, they will
select those pieces of business value that will deliver customer benefit
quickly.

What Slicing strategies can you use? We have identified the following
10 useful patterns for slicing:

1. KISS – Keep it simple stupid: aim for the simplest implementation
that could be released without compromising the systems performance
etc. This is often the happy path with some basic error handling. Defer
the ‘bells and whistles’ to later features, once the basics are in place
and working at a sufficiently high level of quality.

2. DEFER OPTIONAL BEHAVIOR – Does the Feature include
lots of optional behaviours? Make the optional behaviours separate
Features to be done once the core functionality is delivered.

3. SEPARATE BUSINESS VARIATIONS – Could the Feature
be released incrementally to different areas of the business. Start
with the simplest business variant first to generate fast feedback.
For example could we do a simple solution for retail banking before

fleshing out the solution and offering it to investment banking, trading
and other banking areas? Also consider geographical variations – in
many businesses the business rules vary by geography with different
rules for the US, Europe and Asia. Perhaps we can launch the Feature
in one geography before adding support for the others via additional
Features.

4. SEPARATE DIFFERENT CHANNELS – Could the Feature
be released incrementally to support different channels / routes to
market / the same functionality over different mediums? For example
different operating systems or the different channels used to provide
retail banking to customers including mobile banking, the banking
app, and in-branch banking. It is logically the same feature in all cases
but the delivery of the Feature on each channel could be considered a
different Feature (and in some cases may not be needed at all).

5. ADDRESS DIFFERENT USER GROUPS INDIVIDUALLY
– Do different users want different sets of stories? Understanding
the different user groups’ needs can help you to split the Feature
and better understand the specific benefits to each user group. For
example our new Feature may appeal to different demographics but
each demographic will want to apply the Feature in a different way. In
this case slicing the Feature will allow us to focus on just the sub-set
of the stories each demographic needs and capture the interest of the
more important groups earlier.

SLICING
FEATURES

6. CONSIDER INCREMENTALLY SOURCING DATA -

Is all the data needed before any benefit can be provided? Perhaps
the Data can be consumed incrementally or sourced from existing
secondary sources?

7. ISOLATE SPECIAL VARIATIONS - First focus on the popular
/ high volume cases then add the more specialized corner cases as
additional Features – you may find out that their value is very small
and they are never needed.

8. BREAK OUT COMMON ENABLERS – Business Features
often rely on the same underlying system behaviors, making the first of
the features to be implemented look very large and complex. Breaking
out these common enablers can de-risk, reduce the estimate for, and
simplify the implementation of many business features.

9. FIND A STORY GROUP – Remember 80% of the business
benefit is likely to come from 20% of the stories. Find these stories
and treat them as their own Feature. See Story Mapping for more
information.

10. BREAK OUT A SPIKE – Sometimes you don’t know enough
to even plan something. As a last resort break out a spike.

We have also encountered a number of dangerous anti-patterns
including:

• Deferring non-functional requirements – a common pattern when
splitting user stories that can cause problems when slicing features.
When implementing the Feature we may focus on the non-functional
aspects after we’ve got the initial stories working but we shouldn’t
release the Feature if it is below the acceptable quality and performance
levels. We have seen many teams get into trouble by compromising on

quality in their dash to get more and more Features into the product.

There are circumstances, of course, where a limited release of a
Feature can be done to obtain feedback and that by explicitly limiting
the number of users limit the number of applicable non-functional
requirements that apply. Great care must be taken to ensure that
people don’t think that it can then be opened up to all and sundry
without additional work, and the addition of further Features.

• SLICING TOO EARLY – Only slice a Feature if it is 1) needed in the near
future and 2) too big (at the current time) to effectively flow through
the system. Remember that the estimates to complete Features change
over time - what appears to be too big today may have a much smaller
estimate in the future.

• OVER-SLICING – There is no need to slice a Feature up into lots of
smaller features all in one go. Generally, it is enough to find the first one
or two slices to be implemented and leave the rest of the initial Feature
to be addressed later, after the initial slices have been implemented.

• SLICING BY COMPONENT – We’ve found that technologists often
find it hard to resist slicing things up by architectural component, sub-
system or layer. This is a tactical solution that is often applied at the Story
level, particularly when dealing with component teams or when team
are struggling to fit their stories into two week sprints. This is a bad habit
that should be resisted even more strongly when dealing with larger
items such as Features.

• FORGETTING THE FEATURE TESTING – Features often require
additional testing beyond that needed to complete their Stories. One
slicing anti-pattern is to defer this testing to a later slice of the Feature
rather than including appropriate amounts of testing in each of the new
smaller Features being created.

• SLICING BY OPERATION OR WORK-FLOW STEP – it is often tempting
to split a Feature up into a series of parts around the workflow steps
or operations it involves. For example looking at the input, processing,
and final output of the process as separate Features or, at a simpler level
the creation, access, update, and deletion of items. This is a common
anti-pattern when it comes to splitting Features, as there is little or no
business value in just being able to complete the first step of something.
Focus on identifying the core behavior involved in the Feature and
creating the simplest end-to-end solution. Additional Features can then
add variations, bells or whistles once the basic end-to-end functionality
has been released and is in the hands of the users. This often leads to
the situation where 90% of the Features are complete but the users still
can’t achieve any of their actual goals. They can enter things, find things,
manipulate things but they can’t actually complete the process they are
trying to perform.

BAD SLICING

HOW TO SLICE A FEATURE

ivarjacobson.com

1

2

3

PREPARE THE
INPUT FEATURE

EVALUATE
THE SLICING

APPLY THE
SLICING

PATTERNS

WARNING – Don’t slice Features unless
something is needed in the next PI �
Does the Feature satisfy INVEST*
(Except, perhaps sized appropriately)

YESYES

NO

Is the Feature size less than 1/10th
of your program velocity?**
(or typically medium or smaller).

You’re done
Continue. You
need to split it.

Reformulate the Feature to
clearly communicate the benefit
or slice off one or more smaller
Features which do satisfy
INVEST and carry clear benefit.

BREAK OUT
COMMON
ENABLERS

FIND A STORY
GROUP

KISS
(KEEP IT SIMPLE)

DEFER OPTIONAL
BEHAVIORS

SEPARATE BUSINESS
VARIATIONS

SEPARATE DIFFERENT
CHANNELS

ISOLATE SPECIAL
VARIATIONS

BREAK OUT
A SPIKE

CONSIDER
INCREMENTALLY
SOURCING DATA

ADDRESS DIFFERENT
USER GROUPS
INDIVIDUALLY

Inspired by, and complementary to, “How To Split A Story”, Richard Lawrence, www.agileforall.com

Are the new
Features roughly
equal in size?

YESYES

NO

Do each of the new Features
readily fit into a PI (< 1/10 of
the program velocity)?

Try another pattern on the
original Feature or the new
Features that are too large.

Could you break out the
common enablers into their
own ‘Architectural’ Features?
Delivering the enablers can
significantly de-risk, simplify
and reduce the estimates for
the other, related Features.

Do each of the new
Features satisfy
INVEST?

Is there an obvious Feature to start
with that gets you early benefit,
learning, risk reduction etc?

Try another pattern
to see if you can get this.

You’re done, though
you could try another
pattern to see if it gets
better results.

Could you find the set of
most valuable Stories and
develop and release them
as their own Feature?

Could you focus on the most popular / highest
volume cases first and treat the more specialized
corner cases as separate Features? You may find
that their value / cost ratio is very small and they

are never needed.

Could you slice the Feature to do that
simple core first and build on it later

with further Features?

Does the Feature have a simple
core that provides most of the

benefit and / or learning? This is
often the happy path with some

basic error handling.

Could you make the optional behaviors
separate Features to be done once the core

functionality / most popular option is in
place?

Could you deliver it one business at a
time? Could you start with the simplest
business variant to generate quick wins

and fast feedback?

Does the Feature include lots
of optional behavior (for
example different ways to
achieve the same goal)?

Do the minimum �to answer the
questions and then start again at the

top of this process.

Does the Feature lend itself
to being released

incrementally to different
areas of the business?

Does the Feature need to be
delivered over different channels,

different mediums or different
routes to the customer?

Could you deliver it one technology /
one channel at a time? Could you start
with the channel or most value to the
business and add the other channels
over time?

Could you give each User Group their own
Feature? This can help you to better
understand the benefits to each group.
See also Break Out Common Enablers.

Could you deliver benefit with a
sub-set of the data? Could the

data be consumed
incrementally or sourced from

existing secondary source.

Does the Feature involve
different user groups with

different goals?

Does the Feature involve
different user groups that want

different sets of stories?

Does 80% of the
value come from

20% of the Stories?

Do many Features rely on the
same underlying system

behaviors (often making the
first of them selected to be
very large and complex)? Does the Feature

include Special
Variations?

Does the Feature
involve lots of data
from many sources?

Are you still baffled
about how to slice the

Feature?

Can you define the 1..3
questions most holding

you back?

Write a Spike / Knowledge
Enabler with those questions

in mind.

WARNING DON’T:
• Defer non-functional requirements
• Slice too early
• Over slice
• Slice by component
• Forget the Feature testing

LA
ST RESO

RT* INVEST Features should be:
Independent
Negotiable
Valuable
Estimable
Sized Appropriately
Testable

** Velocity varies between programs but as a
rule of thumb a program should be tackling at
least the ‘Top 10’ Features hence the no greater
than 1/10th of the program velocity guideline.

ABOUT IVAR JACOBSON
INTERNATIONAL

IJI is a global services company providing high quality consulting,
coaching and training solutions for customers seeking the
benefits of enterprise - scale agile software development.

We are passionate about improving the performance of
software development teams, and maximizing the delivery of
business value through technology.

Whether you are looking to transform a single project or
program or your entire organization with lean and agile
practices, we have solutions to suit your needs.

www.ivarjacobson.com

Copyright 2017 Ivar Jacobson International, All Rights Reserved.

EUROPE

SWEDEN
Ivar Jacobson International AB Runbovägen 1B
192 48 Sollentuna
+46 8 515 10 174

NORTH AMERICAN OFFICES

UNITED STATES
211 N. Union Street
Suite 100 PMB 10055
Alexandria, VA
22314
+1-703-434-3344

ASIA PACIFIC OFFICES

CHINA
Room 706,
113 Zhichun Road,
Haidian Dist,
Beijing, China
+86 10 6268 0480

UNITED KINGDOM
Central Point
45 Beech Street
London
EC2Y 8AD
+44 (0)207 953 9784

SINGAPORE
10 Anson Road
International Plaza #31-10
Singapore 079903
+65 9772 3538

