
eBOOK

 How to  
 Enhance  
 Privacy in  
 Data Science
2019



Executive Summary 3

Introduction 4

The utility-privacy tradeoff 4

The role of the organization in preserving privacy 5

What can the data scientist do? 7

De-identification	 8

Mechanism 9

Weaknesses 11

Conclusions 12

k-Anonymization 13

Mechanism 13

Weaknesses 15

Conclusions 18

Differential Privacy 19

Motivation 19

Mechanisms 22

Weaknesses 23

Conclusions 24

Local Differential Privacy 25

Motivation 25

Mechanisms 27

Conclusion 30

Preserving privacy in practice 31

Table of Contents

Note: The information contained in this presentation is not intended to be and should not be construed to be legal advice. Organizations 

should not rely on the information herein, and they should obtain legal advice from their own legal counsel or other professional legal 

services provider.



3eBOOK: How to Enhance Privacy in Data Science

Executive Summary
In the last two decades, the ability to collect personal information on individuals has opened up a 

new frontier, fueling innovation and enabling companies and organizations to deliver better, more 

personalized services at scale. But innovation carries risks and this new frontier is rife with them, 

often calling for vast amounts of personal information to be digested into rich analytical products: 

reports, data sets, machine learning models. These data products — which provide decision support, 

power applications, enrich Application Program Interfaces (APIs), and pave the way to new kinds 

of services — require a wealth of personal data. The use of personal data leads to increased risk of 

data leakage, misappropriation, and loss of trust. Organizations must proactively develop controls 

and processes to guard personal data in order to have sustained success in a data-driven world.

It is simply no longer enough to safeguard access to raw inputs. While this remains absolutely 

essential, questions such as: “What information can be inferred about an individual from the 

behavior of this model, or from the output of our API?,” and “What are the risks posed by publication 

of this data-set?” are relevant and equally troubling to privacy-conscious individuals — who wish to 

keep their secrets — and for the organizations who may bear ultimate responsibility in the event of 

a breach.  

This document examines methods for transforming data in a manner that protects the privacy of 

individuals while preserving utility — some realizable benefit of data. These kinds of transformations 

enable organizations to release data to either internal or external consumers who, in turn, are free 

to examine and further analyze the data with lessened ability to attack the privacy of individuals.  

Specifically, we highlight the following anonymization techniques:

• De-identification: A process of replacing 

individual identifiers and, more generally, 

sensitive attributes with less meaningful, 

non-sensitive, placeholder values. 

• k-Anonymization: A constraint on a 

dataset that ensures that no individual 

can be singled out from k-1 others given 

knowledge of quasi-identifying attributes 

such as zip-code, birth date, or biological 

sex. We also discuss two refinements 

of k-anonymization, l-diversity, and 

t-closeness.

• Differential Privacy: An advanced family 

of techniques that mathematically 

limit the ability of an outsider to make 

confident inferences about analysis input 

from analysis output. Analytical products 

produced via differential privacy enable 

participating individuals to credibly deny 

their participation in the input.

• Local Differential Privacy: An advanced 

family of techniques enabling participating 

individuals to credibly deny the contents of 

their records.

For each of the techniques, we detail its privacy-enhancing objectives, methods of implementation, 

and the circumstances in which it can be undermined. Examples illustrate how each transformation 

impacts the semantic and statistical value of the data and how the technique might be used in practice.

Our hope is that this document will provide you, the reader, with an overview of the challenges and 

opportunities of privacy-aware analytics.  Further, this document can help equip data analysts and 

scientists with a framework for understanding how to implement anonymization techniques within 

their data projects.
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INTRODUCTION

The utility-privacy tradeoff

1 https://www.jstor.org/stable/pdf/2265075.pdf

2 https://iapp.org/about/what-is-privacy/

In the last decade, a great emphasis has been 

placed on extracting value from data. In the 

retail, travel, healthcare, finance, entertainment, 

and insurance industries, value is realized by 

collecting and leveraging data to enhance 

a consumer’s experience. Personalization 

efforts such as these often require predicting 

preferences and behavior which, in turn, 

requires collecting and leveraging personal data. 

As an organization’s knowledge of its customers 

becomes more detailed and intimate, the 

greater the utility — the realizable benefit — of 

its data.

While organizations and individuals are often 

adept at recognizing utility, the concept of 

privacy is a bit nebulous. In her 1975 article, 

“The Right to Privacy,” Judith Jarvis Thompson 

noted:

Perhaps the most striking thing about 
the right to privacy is that nobody seems 
to have a very clear idea what it is.1

In business usage, the term privacy is 

often limited to matters related to privacy-

centric legislation and/or compliance. While 

governance remains critical to the continued 

functioning of many organizations, casting 

privacy as something achieved solely through 

strict adherence to policy often proves short-

sighted. Recent events have demonstrated 

that organizations wishing to act ethically and 

maintain the trust of their customers would be 

wise to serve as responsible data stewards. 

But what is privacy in essence? One answer 

may be found in the definition provided 

by the International Association of Privacy 

Professionals (IAPP), which defines information 

privacy as “the right to have some control over 

how your personal information is collected and 

used.”2 It follows immediately that organizations 

wishing to respect individual privacy must cede 

some control to those individuals.

Efforts to collect and 

extract value from 

personal data place utility 

in opposition to privacy. 

Maximizing utility requires 

extracting all potential value 

from data — and the higher 

the fidelity, the better.  This 

data could be seemingly 

banal, such as someone’s preferred brand of 

cottage cheese, or highly sensitive, such as 

which drugs someone has been prescribed.  

Both bits of data have value to both benign 

and malicious observers.  Achieving a balance 

between these oppositional forces may seem 

insurmountable, but new techniques enable 

organizations to trade privacy for utility and 

vice-versa. For instance, intentionally injecting 

a small amount of noise into a data set may 

only marginally affect model performance, but 

substantially lower the risk that the model leaks 

some of the personal information on which it 

was trained.

The goal of this document is to provide 

an introduction for understanding how 

organizations can begin to balance the utility 

of personal data with privacy protections. We 

describe techniques which enhance privacy and 

detail some of their tradeoffs. Along the way, 

we will highlight some of the ethical and legal 

responsibilities of data-driven organizations.

Data is the pollution problem of the  
information age, and protecting privacy  
is the environmental challenge.

— Bruce Schneier, Cyber Security Expert 
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The role of the organization  
in preserving privacy
Privacy-conscientious organizations need to consider the myriad of ways their actions may impact 

the privacy of their data subjects — the individuals whose data they possess. Well-meaning 

organizations may diligently hide obvious personally identifiable information (PII) such as names, 

addresses, medical conditions, and the like, but still leak information that can compromise the 

privacy of customers. At first glance, it may seem like an organization that does not maintain any 

sensitive information has met its obligations — and indeed it may satisfy regulatory requirements. 

However, this is not sufficient when an organization values the ability of an individual to, say, 

keep secrets, since the revelation of any personal information could be combined with outside 

information to enable a third party to infer something private.

3 https://www.hipaajournal.com/when-was-hipaa-enacted/

HIPAA
Early legislative attempts at privacy enhancement 

focused on the data itself, specifically on 

requirements surrounding access and control 

and on the visibility of PII. The Health Insurance 

Portability and Accountability Act (HIPAA) Privacy 

Rule3, first proposed in 1999, restricted the purposes 

under which PII could be used. If used for research, 

for example, a so-called limited dataset is required 

for most purposes. HIPAA supports two routes to 

produce limited datasets: Safe Harbor and Expert 

Determination. Safe Harbor requires the redaction 

or obfuscation of identifying attributes, including 

18 categories of PII. While this provided some 

basis for protecting privacy, the protections often 

prove fragile in practice, particularly when paired 

with external data. The second approach is Expert 

Determination. Under this approach, an individual 

trained in statistical methodology determines that 

the risk of reidentification of individuals is low — 

although there are no standard prescriptions on 

how this might be done or scored. 

GDPR
The European Union’s General Data Protection 

Regulation (GDPR) advances a broader-reaching 

conception of privacy. Under the GDPR,  rights flow 

from a framework where subjects are conceived 

to be owners of their data and, as such, retain 

rights over that data even in the hands of a third 

party. The rights afforded to individuals include: 

the right to erasure, the right to be informed, and 

the right to restrict processing (among others). 

Further, prescriptive measures are not sufficient 

and the companies employing specific techniques 

are not assured safe harbor. As a consequence, 

companies are forced to ensure the maintenance 

of these rights, have magnified responsibility to 

make sure data remains difficult to re-identify, and 

have more liability in the event of a breach.

https://www.hipaajournal.com/when-was-hipaa-enacted/
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These regulations are both meant to increase the level of protection and control that individuals 

have over their personal metadata and to reduce the risk of violation of their personal privacy. 

Getting ahead of the trajectory of legislation requires that organizations think about privacy in an 

adversarial context. It is not enough to follow a recipe and, instead, organizations must consider how 

their actions may erode privacy. This is a strange position. For instance, organizations are generally 

not privy to their users' secrets. Yet, organizations that are called upon to protect privacy in effect 

are asked to safeguard access to information that they do not directly possess.  For example, when 

experts determine re-identification risk under HIPAA, they are asked to consider what demographic 

information can be used to link a privatized record with an individual.4 

This situation presents several unique considerations, including:

• What general policies should an organization adopt  

to protect the privacy of its data subjects?

• Is it possible to estimate potential impacts to the data  

subject upon release of personal information?

• Can we limit the advantage conferred to an untrusted outsider  

observing actions that we take that are informed by personal data?

4 https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html

https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
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What can the data scientist do?
What is the data scientist’s role in all of this? What actions can a data scientist take to enhance 

privacy while still realizing utility? While the organization may put in place practices, policies, and 

decision-making processes governing data, individual data scientists can often exert control over 

the preparation and analysis of data, and the publication of subsequent data products. Before 

releasing data, then, data scientists need to assess the potential negative impact of their work on 

the privacy of those who contributed the data.

A useful rubric for evaluating privacy impact is the “motivated intruder test.”5 The test goes like this: 

imagine there is someone who wants to get your data, and they have significant time, energy, and 

resources. How hard would it be for them to get the data? If they were successful, what would they 

have? Ultimately, every data scientist should be able to answer the question, “If an outsider gained 

access to your database, what have I done to protect the personal information of my data subjects?”

A key tool for the data scientist, then, are anonymization techniques.6 Although a variety of 

techniques exist, each of which deserve thorough treatment, the ones that we address in this 

document can be immediately useful to any practicing data scientist. Specifically, these are 

operations that alter private data or its analysis in such a way as to safeguard analytical products for 

release into untrusted settings where attackers may attempt to compromise the privacy of those 

individuals. We discuss the motivations, mechanisms, and weaknesses of three of these techniques:

5 https://ico.org.uk/media/1061/anonymisation-code.pdf

6 These techniques are a subset of privacy-enhancing technologies, also known as PETs. The techniques discussed herein pertain to 

transformations of data in such a way as to mitigate the ability of an attacker to deanonymize input data, whereas PETs are more gener-

al and include things like fully-homomorphic encryption which would not protect the publication of results.

• De-identification: A process of replacing 

individual identifiers and, more generally, 

sensitive attributes with less meaningful, 

non-sensitive, placeholder values. 

• k-Anonymization: A constraint on a 

data-set that ensures that no individual 

can be singled out from k-1 others given 

knowledge of quasi-identifying attributes 

such as zip-code, birth date, or biological 

sex. This document will discuss two 

refinements of  k-Anonymization: l-Diversity 

and t-Closeness: l-diversity requires that 

each distinct cohort also contain at least 

l distinct sensitive attributes. t-Closeness 

requires that the underlying distributions 

of sensitive attributes must be statistically 

similar to the overall distribution of  

the dataset.

• Differential Privacy: An advanced family 

of techniques that mathematically 

limit the ability of an outsider to make 

confident inferences about analysis input 

from analysis output. Analytical products 

produced via differential privacy afford 

participating individuals credible deniability 

regarding their participation in the input.

• Local Differential Privacy: An advanced 

family of techniques enabling participating 

individuals to credibly deny the contents of 

their records.

We conclude the document by briefly discussing 

privacy-enhancing technologies and practices, 

as well as other decisions a data science team 

might make when enhancing the privacy of  

their data workflow.
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De-identification
De-identification is the process of removing or obscuring 

personally identifying information (PII) within a dataset.  

PII attributes are defined by the National Institute for  

Standards and Testing (NIST) as: 

Any information about an individual maintained by an agency, including (1) any 
information that can be used to distinguish or trace an individual's identity, such 
as name, social security number, date and place of birth, mother's maiden name, 
or biometric records; and (2) any other information that is linked or linkable to an 
individual, such as medical, educational, financial, and employment information.7

7 https://www.nist.gov/publications/guide-protecting-confidentiality-personally-identifiable-information-pii

8 https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html#standard

9 Zhang, Jiexin, Alastair R. Beresford, and Ian Sheret. “SENSORID: Sensor Calibration Fingerprinting for Smartphones.”

The definition separates PII attributes into two 

categories: Identifiers and Quasi-identifiers. 

Identifiers are defined as attributes that 

identify an individual with high specificity. 

These can include name, social security 

number, driver’s license number, passport 

ID, and many others. Quasi-identifiers do 

not provide the same level of specificity but, 

when combined with other attributes, quasi-

identifiers may still be used to identify an 

individual with high specificity.

HIPAA’s Safe Harbor approach to de-identifying 

a dataset enumerates 18 attributes of PII which 

must be obscured for a data set to be reduced.8 

The list includes both Identifiers, such as name 

and passport numbers or email addresses, 

as well as quasi-identifiers like birth dates, 

admission dates, or IP addresses. While these 

represent a solid foundation, the list of potential 

quasi-identifiers has only increased since HIPAA 

was enacted: even seemingly innocuous data 

such as calibration statistics on a phone may be 

used to identify a specific device.9

Glossary of terms
• Dataset: A collection of records and attributes. Often represented  

as tables, where rows are records and columns are attributes.

• Record: A collection of attributes of some common object.  

This object could be a book, car, person, event, etc. 

• Attribute: A specific feature of an object. For example the author  

of a book, the model of a car, the age of a person, or the time of an event. 

• Identifier: Attributes that, by themselves, identify an individual with high  

specificity, such as name, social security number, or insurance policy number.

• Quasi-identifier: Attributes that, when combined with others, can identify  

an individual with high specificity, such as birth date, zip code, and gender.

8
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De-identification through masking entails altering the attributes of a table so that individual records 

can’t be easily traced back to the original individual. Data can be made less sensitive by replacing 

the true value with a masked value. A simple example is replacing someone’s true name with an 

alias, such as Jane Doe. The motivation to mask PII is to obscure the true value while still preserving 

structure within the data. For example, if a single individual’s name was always replaced with the 

same unique alias, records could still be grouped together and relationships preserved, even though 

the true value would be hidden.

Mechanism
Numerous masking mechanisms can be used to obscure the data, and the choice of which masking 

rules to use must balance between privacy and utility. Some common ones include:

• Substitution: Substitution simply substitutes one value for another, typically using a codebook. 

This process is straightforward to implement but can be difficult to maintain as new values are 

observed, and is quickly compromised if an attacker can associate a small group of original 

values with the substituted value. 

• Regular Expression: Regular Expression replaces a portion of an input string. Examples of this 

rule include removing all but the last digits of a social security number, keeping the first six 

digits of a credit card number, or, as shown below, revealing only the first name of an individual. 

A regular expression rule has some attractive features in that it can preserve some analytically 

useful information. For example, a rule could remove the house number from an address, 

preserving the street name. This would provide a small degree of anonymity to the data, while 

preserving some location information. However regular expression rules tend to preserve some 

real data in a string, increasing the risk of re-identification. 

• Pseudo-random tokenization: Pseudo-random tokenization replaces the original value by a 

token which appears to be unrelated to the input string. Such a process makes it difficult for an 

attacker to guess the original value if they only have observed the masked value.

Figure 1 shows examples of masking data under each of these mechanisms.

Original Value

Lionel Karr

Ryan Swanson

Allie Loyd

Regular Expression

LK

RS

AL

Substitution

Person A

Person B

Person C

Pseudo-random tokenization

TGVzbGII...

Um9ulFN...

QXByaW...

Figure 1. Examples of masking processes: Substitution, in which each value is recoded to a monotonically 

increasing value; Regular Expression, in which only the first and last letters of a name are used; and Pseudo-random 

tokenization, in which a hash function is used to generate a hashed string value.

9eBOOK: How to Enhance Privacy in Data Science



10eBOOK: How to Enhance Privacy in Data Science

How to choose a masking function
When there is some analytic value within semantics of an input value, regular expressions may 

be appropriate. But often this is not the case. Using the example shown in Figure 1, the statistical 

utility of the label “Lionel Karr” is that it can be used to associate a series of observations about 

an actual person, not that its representation is “Lionel Karr.” In those circumstances, another non-

sensitive label, which preserves the necessary associations, is appropriate. In these circumstances, 

a pseudo-random tokenization provides a good process to mask data.

Masking can be implemented with functional transformation.   
A few properties of a good masking functions are: 

• Hard to invert: It should be computationally difficult for an attacker to figure out how to reverse 

the tokenization function. This property reduces the risk for revealing the true value given the 

masked value. 

• Preserves some useful structure: Masking functions 

should approximately or exactly preserve some useful 

structure of the input. For example, masking should 

preserve counting statistics in a dataset, so that all records 

for an individual can still be grouped together, even 

when the individual’s PII is obscured. Another example 

is random projection, where points in high dimensional 

space are projected randomly onto a lower dimensional 

subspace, approximately preserving interpoint distances.

• One input produces one output: Each true value should 

produce a distinct masked value. Randomly salted, 

collision-resistant hash functions are a quick and easy 

way to obtain such functions with high probability.

Figure 2 shows examples of these properties.

HARD TO INVERT

PRESERVES SOME 
USFEUL STRUCTURE

4bdaa83ad51d
33b43e12efc5

e1cb4357

This string will 
be masked

Figure 2. (Left) An example of a difficult to invert mask. Given the observed mask “4bdaa83…,” an observer will have a 

difficult time deducing the input “This string will be masked.” (Right) Here individual shapes have been “masked” as triangles, 

but they still have a correspondent. Their color is still there, and they still have the same number of counts in the data set.

The process of salting — 

appending or prepending 

the value with a secret 

randomized string — is 

essential when using 

a cryptographic hash 

function for tokenization.
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Cryptographic hashing is the 

recommended method for tokenizing 

data. Cryptographic hash functions 

are deterministic functions that 

produce a uniform output over a fixed 

domain given some input domain of 

arbitrary size. Cryptographic hashing 

functions are extremely difficult to 

invert, i.e. pre-image resistant. 

The process of salting — appending 

or prepending the value with a secret 

randomized string — is essential when 

using a cryptographic hash function 

for tokenization. The necessity of 

salting becomes clear in the context 

of so-called dictionary attacks: if both 

the hash function and set of possible 

true values are known in advance, an 

attacker may choose to build a lookup 

table that converts hash values back into 

their true values. Salting the original value 

prevents the attacker from being able to 

build this lookup table, since they would have to 

guess the value of the salt as well.

Weaknesses

10 https://fpf.org/wp-content/uploads/The-Re-identification-of-Governor-Welds-Medical-Information-Daniel-Barth-Jones.pdf

De-identification through masking comes with a downside: it is vulnerable to link attacks, or the 

ability to connect a de-identified dataset to an identifiable dataset using seemingly innocuous 

quasi-identifier values. Generally, a dataset’s vulnerability to link attacks increases as more public 

data is available.

A famous link attack was the re-identification of former Massachusetts governor Bill Weld’s 

medical records. In 1997, Massachusetts General Hospital released about 15,000 de-identified 

medical records in which names and patient IDs had been stripped from the database. Despite 

the precautions, Harvard researcher, Latanya Sweeney was able to link publicly available voter 

information to these anonymized medical records.10 Medical records were re-identified by linking 

zip code, birth date, and sex, present in both voter rolls and anonmyized medical records, as shown 

in Figure 3.

11eBOOK: How to Enhance Privacy in Data Science

of the population is uniquely 
identifiable by Zip Code, 
Birth Date and Sex!

87%
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Even though the publicly released, anonymized medical records had no “name” column in  

them, the records did have patient’s zip codes, birthdays, and genders, which the openly available 

voter ID list had as well. By linking the two datasets, Sweeney et al. were able to narrow down the 

possible records related to the governor to only a handful. In fact, it turns out that 87% of the 

population is uniquely identifiable by zip code, birthday, and sex. This attack was a major factor in the 

de-identification provisions of HIPAA’s privacy rule, first published in 2000 and modified in 2002.11
of the population is 
uniquely identifiable by Zip 
Code, Birth Date and Sex!

O
penly A

vail able Voter List

Name

Address

Date Registered

Pary Affiliation

Date Last Voted

Publicl

y Rel
ea

se
d 

“A
no

ny
m

iz
ed

” 
M

ed
ica

l R
eco

rds

Zip Code

Birth Date

Sex

Ethnicity

Visit Date

Diagnosis

Procedure

Meditation

Charges

11 https://www.hhs.gov/hipaa/for-professionals/index.html

12 https://epic.org/privacy/reidentification/Sweeney_Article.pdf

Figure 3. Common attributes between the de-identified medical records and public voter roles used to re-identify 

records from Massachusetts General Hospital.12 

Conclusions
De-identification using masking should be a first line of defense in most data projects. It can be 

safely used in many cases without making statistical sacrifices, since the underlying distributions for 

categorical values will be unchanged. There are many strong and lightweight cryptographic hashing 

functions available, with implementations across databases and programming languages — making 

it a low-cost operation to execute.

However, data scientists should be careful to remember that masking provides fragile privacy 

protections to underlying data. While guidelines such as HIPAA’s Safe Harbor regulations provide a 

good starting place, the data landscape has changed immensely in the intervening years, meaning 

seemingly benign codes and values (for example, phone calibration statistics) may actually be as 

identifying as a person’s name and address.
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k-Anonymization
In response to the Massachusetts General Hospital link attack, 

Sweeney et al. developed the concept of “k-anonymization.”13 

k-anonymization requires the quasi-identifiers of every record 

be identical to at least k other records. 

13 https://dataprivacylab.org/dataprivacy/projects/kanonymity/paper3.pdf

Each set of records with identical quasi-

identifiers can be considered a cohort. The 

motivating notion of privacy in this technique is 

“safety in groups:” if no individual record can be 

unambiguously linked to a specific individual, 

but it is part of a group of other records that 

look similar, then the individual can be said to 

be afforded privacy. Figure 4 shows the concept 

of k-anonymization. In this example, there is a 

population of 10 distinct individuals, shown 

with 10 distinct hues. The k-anonymization 

technique groups similar individuals into three 

equivalence classes, depicted on the right 

with three distinct hues (blue, red, and green).  

The k-anonymization concept constrains 

each equivalence class to have at least k 

individuals. Figure 4 is therefore an example of 

2-anonymization.

3 distinct hues10 distinct hues

Figure 4. Notional 2-anonymization

Mechanism
k-anonymity can be achieved by the 

application of two techniques: generalization 

and suppression. Generalization is the idea 

that a specific value is substituted for a more 

general one. For example, rolling up zip code to 

municipality or replacing someone’s specific 

age with an age bracket. Suppression is the 

process of removing an attribute’s value 

entirely from a cohort. An example of this would 

be simply removing gender distinctions from a 

dataset.
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Generalizing numeric data often involves 

partitioning the numeric domain into discrete, 

non-overlapping regions. Consider the domain 

of possible ages, notionally from 0 to greater 

than 120 years. A generalization scheme 

would be to partition the domain of ages into 

brackets [0, 15) years, [15, 24) years, [24, 35) 

years, [35, 45) years, [45, 55) years, [55, 70) 

years, and [70, 1) years. In this example, age 

resolution is compromised in order to gain 

greater anonymity. One of the benefits of such 

a process is its elasticity.  In high density areas, 

such as between 15 and 55, the domain can be 

carved up into fine partitions. At the tails of a 

distribution, where there are a smaller number 

of observations, the partitioning can become 

coarser. 

Generalizing strings or categorical entities can 

be achieved through the use of a generalization 

hierarchy.14 A generalization hierarchy associates 

entities with some common characteristic. As 

entities lower on the hierarchy are replaced 

with parent values, the disclosed attribute is 

semantically consistent, but less specific. Figure 

5 shows an example of using generalization 

hierarchy in a medical context. Treatment strings 

from a set of five medical records are shown. 

It could be the case that hospitals use certain 

types of strings more often than other hospitals, 

so there could be correlations by doctors about 

which doctors are using which strings. As you 

move up the chain, you lose specificity about 

14 https://www.sciencedirect.com/topics/computer-science/generalization-hierarchy

the treatment, but you reduce the likelihood that 

a single attribute can lead to its original record. 

For example, by removing dosing or replacing the 

specific brand of drug with its generic treatment 

name, each record will have less specificity.

Generalizing date and time data can involve a 

mixture of both of these approaches. Date and 

times could be generalized by either reducing 

time resolution to the day, month, year, decade, 

etc. Alternatively, the time of the day, day of the 

week, season of the year could be extracted.

When taken to its extreme, generalization 

becomes a technique known as “suppression,” 

in which all records have the same value for a 

given attribute, thus suppressing all differences 

between records. This is a common technique 

for dealing with high-cardinality columns, such 

as indexes or unique identifiers.

Implementing a k-anonymization scheme 

in situations where a static dataset will be 

released, such as when publishing a dataset, 

is tractable. For practical purposes, consider 

taxi pickup locations within New York City. A 

simple k-anonymization scheme would be to 

truncate the coordinates (measured in latitude 

and longitude) to a fixed precision, anywhere 

from a few meters to several kilometers. After 

truncation, delete any records from regions 

that have fewer than k rides. 

TREATMENT CLASS

GENERIC TREATMENT NAME

TREATMENT STRING

Generalization
Reduce specificity by grouping 
similar values together. Drug

HydrocodoneIbuprofen

Hydrocodone Bitartrate05730029030Ibuprofen 50mg 
chewable tablet

Vicodin Tuss Oral 
Liquid Product

Advil PM Liqui-Gels

Figure 5. Hierarchical generalization
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Figure 6 compares examples of k-anonymization. 

The map on the left shows the density of rides 

with a resolution of 0.8 m2. The figure on the right 

shows this same data bucketed with a precision 

of 32.5 m2. In both k is set to 10. Applying this 

condition means that several regions with fewer 

than 10 pickups have been deleted from the 

data. These rides from the low density regions 

are salvaged in the lower resolution map on the 

left, at the cost of reducing the resolution. While 

there is macroscopically little impact on the 

underlying distribution, analysts must decide the 

required resolution for the end analysis.

In nearly all cases, both generalization and 

suppression remove information from data by 

reducing the granularity of the attribute. As 

15 http://www.aladdin.cs.cmu.edu/papers/pdfs/y2004/kanonim.pdf

such, how data is generalized should be tailored 

to each analytic project. For example, imagine 

other methods for k-anonymizing the previously 

mentioned taxi trip dataset. Two reasonable 

mechanisms might be:

• Extracting only the dates of trips,  

removing times. 

• Extracting the hour of trips, removing  

any date information 

If an analyst is attempting to forecast hourly 

demand, they would be well served to extract 

out hour of day. In contrast if they wanted to 

estimate seasonal variations, only the date is 

needed, not the time.

Figure 6. Contrast k-anonymization schemes. (Left) High resolution map while suppressing low density regions.  

(Right) Lower resolution with less suppression of low density regions.

Weaknesses
k-anonymization has two central weaknesses. 

First, it is difficult to attain on high dimensional 

data or in the presence of outliers, since finding 

an optimal k-anonymization scheme, when 

k is greater than 2, is an NP-hard15 problem. 

Second, and more crucially, the privacy 

protections are not robust when combined 

with external information.

For data sources with a large number of PII 

attributes, each new attribute can erode 

anonymity. If each attribute is roughly 

orthogonal, individual records can quickly 

become unique. This can be seen with the 

example of birth date, gender, and zip code. 

Gender will divide the population to equally-

sized cohorts, and zip codes will contain on 
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average roughly 8,000 individuals. The addition 

of birth date breaks nearly all anonymity 

afforded to individuals. As such, whenever a new 

attribute is added to a dataset, k-anonymity 

must be re-evaluated.

While k-anonymization provides greater 

protection against record linkability than the 

de-identification-through-masking approach, 

the notion of “safety in numbers” may not 

protect against the leakage of sensitive 

information. To illustrate, consider the following 

example: a researcher at Big State University 

is developing a new neuro-prosthetic device 

and recruits mobility-restricted patients for 

her clinical trial. These patients use the device 

to complete a series of mobility-related tests, 

and undergo a battery of cognitive tests, such 

as IQ and cognitive flexibility. The scientist 

would like to publish the dataset along with a 

research paper, and proceeds to k-anonymize 

the reduced dataset, such that each individual 

record has at least two other records with 

identical quasi-identifiers.

Figure 7 shows a portion of a fictional dataset. 

It contains information about the participants' 

age (rounded to decade), number of limbs, IQ 

bucket, and mobility score. In this context, age 

and number of limbs are considered quasi-

identifiers. Despite not being able to trace 

a specific record back to the individual, the 

researcher has leaked some private information 

about her participants: if an attacker learns 

that a person in their 50s with three limbs 

participated in the study, they know with 

certainty that he/she had a low IQ score!

Age Limbs IQ Mobility

... ... ... ...

• 50 • 3 Low 52

• 50 • 3 Low 34

• 50 • 3 Low 41

• 40 • 4 High 23

• 40 • 4 Medium 46

... ... ... ...

Figure 7. Despite the dataset being 3-anonymous, the 

authors have leaked that any individual in their 50’s with 

3 limbs has a Low IQ score. 

This type of attack is known as an “inference 

attack.” By bringing some background 

information to the table, an attacker can 

pinpoint information about an individual, 

despite not knowing exactly which record it 

corresponds to. 

To address inference attacks, additional 

constraints can be placed on the dataset before 

publication. l-diversity is one such constraint. 

l-diversity requires that for each sensitive 

attribute we publish, each cohort must have at 

least l instances of that attribute, where l ≥ 2. In 

our example, IQ would be considered sensitive. 

To attain l-diversity and provide deniability about 

the “low” IQ in the group, we could require the 

presence of at least 1 “medium” IQ and 1 “high” 

IQ in the group  – making the dataset 3-diverse.  

To do this we can combine the two cohorts, 

shown in Figure 7, into one cohort of individuals 

ages [40, 50] and with [3, 4] limbs. The impact of 

this approach is shown in Figure 8.
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Age Limbs IQ Mobility

... ... ... ...

• [40, 50] • [3, 4] Low 5

• [40, 50] • [3, 4] Low 34

• [40, 50] • [3, 4] Low 41

• [40, 50] • [3, 4] High 23

• [40, 50] • [3, 4] Medium 46

... ... ... ...

Figure 8. l-diverse dataset refined from the 

k-anonymous dataset shown in Figure 7.

Caveats remain, however. If we investigate 

the mobility attribute, we find that nearly all (5 

out of 6) of the individuals in this group have 

a “mobility” score of less than 45, meaning the 

attacker can probabilistically infer that the 

individual performed poorly on the task.

This, too, can be addressed. By restricting the 

attribute values within a group to be close to 

a certain value — say, the global mean — the 

researcher could effectively prevent the quasi-

identifying information from being skewed 

towards a particular group. When combined 

with k-anonymization and l-diversity, this 

t-closeness constraint can provide powerful 

privacy protections, but it comes at a strict 

cost: we have eliminated or generalized many 

of the differences between the subgroups 

of the data – something that is likely of chief 

interest to the data scientist. 

Another vulnerability of k-anonymization can 

occur when releasing two datasets anonymized 

under different schemes. This can be seen in 

the example presented in Figure 6. Records 

from low-density regions have been deleted 

from the figure on the left, while these records 

— initially deleted — are simply regrouped with 

larger regions on the right. If both datasets 

were to be released, an attacker could simply 

compare which records were disclosed by the 

low resolution map and not disclosed by the 

high resolution map, and have some confidence 

where the pickup occurred. 

A simple example of this vulnerability is shown 

using the contrived dataset shown in Figure 

9. The dataset contains Body Mass Index 

(BMI) measurements of different individuals. 

An analyst prepares a k-anonymized dataset 

using anonymization scheme, k1, specifically 

averaging the lower four BMIs of the dataset 

and the highest three BMIs of the dataset. 

Sometime later a second analyst prepares a 

k-anonymized dataset but uses a different 

scheme, k2. In this case the analyst averages 

the four largest and the three smallest BMIs, 

respectively. As a result Doug Fulton — one of 

the participants — switched cohorts. Now a 

savvy attacker, observing the second release, 

can use some simple algebra to deduce Doug’s 

BMI exactly as 43.
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Name BMI k1(BMI) k2(BMI) Inferred BMI

Bob Smith 24 35.75 33.33 33.33

Kate Jones 35 35.75 33.33 33.33

Jane Armstrong 41 35.75 33.33 33.33

Doug Fulton 43 35.75 46.25 43.00

Louis Fisher 44 47.33 46.25 47.33

John Hopkins 48 47.33 46.25 47.33

Susane Lippencott 50 47.33 46.25 47.33

Figure 9. Example of dataset 3-anonymized on BMI using two different schemes. Using the combination of the two 

schemes, an attacker can estimate the exact BMI of Doug Fulton.

This demonstrates a second vulnerability of k-anonymization, specifically that, under certain 

circumstances, changing the scheme or even adding data can compromise privacy.  

Conclusions
k-anonymization, and its associated 

constraints l-diversity and t-closeness, are 

holistic approaches to anonymizing datasets, 

addressing privacy over the totality of the 

datasource. The notion that data scientists 

should suppress high-cardinality columns 

and generalize quasi-identifiers to the point 

where few unique records exist is highly 

useful and can serve as an excellent test of 

your “privacy risk.” Their benefits come with 

a few costs, however: there is not a common 

method for implementing the approach, they 

can be difficult to attain over high-dimensional 

data, the privacy protections are not robust to 

linkage attacked, and all can be broken with 

the addition of new records -- requiring that 

anonymity must be reassessed with each new 

record set. Further, when attempting to block 

inference attacks, the statistical differences 

between groups may become washed out.

There are computational challenges to finding 

an optimal k-anonymization scheme. These 

challenges become significantly greater as the  

number of quasi-identifiers expands beyond 

five or six attributes. In these scenarios, it is a 

good practice to reduce the dimensionality of 

the dataset by combining attributes that are 

strongly correlated.

There are some applications, however, where 

k-anonymization may be a very useful approach. 

Consider the situation where a data broker wants 

to create a high-level, searchable dataset to 

display what records are available to a potential 

customer. In this case, the generalization 

process may reduce the traceability of an 

uncommon attribute, and the requirement that 

there be at least k instances of a record to be 

included in the database will not be an issue. 

After purchase, the broker could provide access 

to the high-resolution dataset. The anonymized 

dataset, then, serves as a low-resolution 

intermediary for publicly-revealing information 

about what is contained in the actual dataset.
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Differential Privacy
All anonymization techniques alter data and therefore  

diminish utility in some way. We give up utility in exchange  

for privacy. But how much privacy is gained in exchange  

for the loss of utility? 

Unfortunately, most methods come without 

formal mathematical bounds. For instance, de-

identification requires that certain attributes 

be obfuscated or redacted, but there are 

no assurances that these modifications are 

sufficient to prevent an outsider from being 

able to infer the participation of a certain 

individual from examining other record 

attributes or derived statistics. Similar issues 

exist for k-anonymization, which attempts to 

mitigate singling out individual records, but is 

not robust when the attacker has access to 

external information.

Differential Privacy (DP), on the other hand, 

begins from a formalization of privacy. 

Specifically, DP can guarantee that an attacker 

is limited in their ability to make inferences 

about individual records in a data set, even with 

access to ample external data. This is done by 

injecting a tunable amount of noise into the 

analysis, sabotaging the attacker’s ability to 

make probabilistic inferences with confidence.

Motivation
Consider a game in which an outside attacker 

wishes to learn some private facts regarding 

an individual. We want to ensure that the utility 

of the published analysis remains marginal 

when combined with outside information. To 

do this, we will take an extreme position. We 

will assume that the outsider has access to 

two versions of the database: one containing 

the record for the individual in question and 

one without it. Now imagine a scenario where 

a hypothetical analyst picks one of the two 

databases uniformly at random, performs 

differentially-private analysis, and gives the 

result to the attacker along with both versions 

of the database. The analyst is careful not to 

specify which version of the database was 

used as input to the analysis. The attacker 

is now asked to guess which version of the 

database was used to produce the analysis 

results. The attacker wins the round if they 

are able to guess which database was used as 

input to the analysis. Otherwise, they lose.

At first glance this may seem silly. Why give 

the attacker a version of the database that 

contains the exact record contents that we 

are trying to prevent them from knowing in 

the first place? The answer is that, in practice, 

no one would ever do such a thing. However, 

this is beside the point: Imagine that even 

when given this information the attacker is still 

unable to confidently guess whether or not the 

analysis was performed over the version of the 

database that contained the individual’s data. It 

must follow that the analysis results carry very 

little information regarding the contents of the 

individual’s record.
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This kind of difficulty is guaranteed under differential privacy. The results of a differentially-private 

analysis are insufficient to confidently infer the participation of an individual in a database. Better 

still, no amount of external information could possibly help with this task — an attacker who already 

knows enough external information to be able to infer every other record in the database has only 

a negligible advantage!

Defining Differential Privacy
A privacy mechanism for an analysis is a randomized algorithm that takes as input a database 

— which is generally understood to contain private information regarding some individuals — and 

outputs some result that is expected to reasonably approximate the analysis. Differential privacy 

is a property of privacy mechanisms which demands that the mechanism give the same answers 

with similar probabilities over any pair of databases that differ by a single row. This way, an individual 

may claim that the output of the mechanism, came from a database that did not include their data.

Formally, a privacy mechanism, A, is called (", δ)-differentially-private, if for any pair of databases D1, 

D2 which differ from each other by the insertion (or deletion) of a single record, and any S ✓ Range(A),  

then it holds that:

Pr[A(D1) 2 S]  e" Pr[A(D2) 2 S] + .

In this expression " and 1  are parameters chosen to limit the attacker’s confidence. Roughly, 

when "  is small, and  = 0, this condition ensures that there exists no set of inputs to A that 

provide a significant advantage in helping an attacker determine whether the privacy mechanism 

was evaluated over D1 or D2.  As ", the overlap between the distributions of Pr[A(D1) 2 S] and 

Pr[A(D2) 2 S] is reduced, it's easier to distinguish between the two databases.

We can quantify the advantage conferred to an adversary hoping to discriminate D1 from D2 as 

follows: Let S ✓ Range(A). We think of S as an event which is observed by the attacker whenever A 

returns an element of S. The privacy-loss of observing the event S under the privacy mechanism A is:

LA(S,D1, D2) := ln

✓
Pr[A(D1) 2 S]

Pr[A(D2) 2 S]

◆
.

Thus, when A is (", δ)-differentially-private, it holds that for any pair of databases differing by a 

single record, the privacy loss is no larger than with probability at least 1 .
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Sensitivity

16 Assuming that the table must be non-empty.

17 Adjacent databases are pairs of databases which differ by the insertion (or deletion) of a single record. The maximization is carried 

out over the space of all possible databases over a fixed schema.

The goal of differential privacy is to protect how much an adversary can learn about the underlying 

data from analysis results. This leads to the following concern: if an analysis can be heavily influenced 

by the presence of certain items, it may be possible to draw conclusions about the participation of 

those by observing the output.

We now present a pair of rather extreme examples that nicely capture the intuition.  

Consider the following table:

name title salary

Shelly McGuire CEO $689,000.00

Cedric Rogers Data Scientist I $104,450.00

Joel Glover Data Scientist I $107,759.00

Jaime Holland Data Scientist II $125,630.00

Melanie Day Data Scientist II $121,480.00

Chris Wheeler Data Scientist II $129,000.00

Figure 10. Example salary table.

Suppose an analyst wishes to publish statistics by role and runs the following query:

SELECT MAX(salary) FROM salaries.

The above query is thought of as sensitive since, assuming no repeated entries, it is entirely 

determined by a single row in the table. On the other hand, a query such as

SELECT 3 FROM salaries GROUP BY true,

always returns the same result,16 3. Since the latter query is entirely independent of the data, it 

can be thought of as insensitive, and the analyst need not worry about revealing it as it leaks no 

information about the contents of the database.

How can we quantify sensitivity? To help formalize, first view a quantitative analysis as a mathematical 

function, f , returning k numerical values. That is, a vector-valued function over databases D1 and D2. 

One common measure is the `1-sensitivity. This is formulated as the sum of deviations in each 

component maximized over all pairs of adjacent17 databases:

(f) = max
D1,D2

kX

i=1

|f(D1)i  f(D2)i|.

As an example, let’s assume that f simply counts the number of records in the database. In this 

case, since any pair of adjacent databases D1, D2, differ by the presence of exactly 1 record,  

|f(D1) f(D2)| = 1, and thus it immediately follows that the `1 -sensitivity of the count function is 1.
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Mechanisms

18 https://www.microsoft.com/en-us/research/publication/differential-privacy/

There are numerous algorithmic mechanisms that attain differential privacy. This section quickly 

summarizes some of the mechanisms.

Laplace Mechanism
The Laplace Mechanism protects function input by adding noise directly to the analysis results. At 

first glance it may not be clear under what circumstances adding noise to the output is sufficient 

to protect the input, if at all. It turns out that doing so is sufficient precisely when the `1-sensitivity 

of the analysis is bounded.

The 0-centered Laplace distribution with scale parameter b, denoted Lap(b), is given by a probability 

density function ⇢(x|b) = 1

2b
exp (|x|b1).

Figure 12. Plot of probability density function of the 0-centered Laplace distribution, ⇢(x|b),  
for b in {0.1, 0.2, 0.4, 0.8, 1.6}. 

Theorem.18 Let " > 0, and let f be a k-dimensional vector with real-valued entries and (finite) 

sensitivity , then the mechanism returning f(x) + (⌘1, ⌘2, . . . , ⌘k) is (", 0)-differentially-private, 

provided that ⌘1, ⌘2, . . . , ⌘k are independently sampled from Lap(/").
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Sample and Aggregate

19 http://people.csail.mit.edu/asmith/PS/stoc321-nissim.pdf

Sample and Aggregate provides a method for 

differentially-private evaluation of sensitive 

functions.19 The idea is to randomly partition the 

data and then evaluate f over each partition. 

The evaluations are aggregated together 

into the final analysis via a differentially-

private aggregation. Provided that f is stable 

under subsampling, this strategy provides a 

differentially-private estimate for the evaluation 

f over the database, even when f is sensitive.

Random 
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Random 
Partition

Random 
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Figure 13. Schematic diagram of Sample and Aggregate

Composition of Mechanisms
It is natural to wonder what level of privacy 

protection is afforded to individual rows in 

the database when multiple independent 

evaluations of differentially-private privacy 

mechanisms are available to an outsider. 

Effectively, neither the net privacy losses 

(epsilons) nor the combined tolerances of 

failure (deltas) can exceed their respective 

individual sums across all releases. 

As a special case, when the database is 

partitioned into disjoint subsets, application of 

privacy mechanisms over separate partitions 

compose in a parallel manner. In other 

words, since the partitions do not overlap, 

neither privacy-losses nor failure tolerances 

accumulate, and the net privacy loss and 

failure tolerance are those given by the worst 

case values over any partition element.

Weaknesses
Differential privacy has several barriers to being implemented in practice:

1. Differential privacy is a definition, not a 

specific process or algorithm. Though 

differentially-private algorithms exist for 

all kinds of applications — everything from 

machine learning models to minimum 

spanning trees — there is no universally 

defined process to achieve differential 

privacy. Even when algorithms are known, 

it can be difficult to find a readily-available 

implementation.

2. Differential privacy is only practical for 

aggregate analysis. This follows essentially 

immediately from the definition, which 

requires that any differentially-private 

process be insensitive to the presence  

of a single row.
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3. Privacy erodes over time. Sequential private 

releases referencing the same source 

data can often be combined in such a 

way to increase the attacker’s confidence. 

For example, in the case of the Laplace 

mechanism, simple averaging of privatized 

releases has noise-cancelling effects.

4. While differentially-private techniques 

enjoy formal bounds on the relative 

likelihood that a mechanism produces  

20 https://www.immuta.com/

21 https://github.com/tensorflow/privacy

22 https://github.com/ektelo/ektelo

the same value over a pair of databases, it 

can be difficult to translate these bounds 

into statements that have practical value. 

For instance: given a differentially-private 

release with certain values of " and 1 , 

how likely is it that a motivated attacker 

will successfully learn, with at least some 

specified confidence, the participation 

of any single individual in the database? 

This question seems difficult — or even 

impossible — to address.

While differential privacy is difficult to implement, there are some software packages available. 

Immuta20 offers automatic application of differential privacy to aggregate SQL queries. TensorFlow 

Privacy provides TensorFlow optimizers for learning differentially-private models.21 Ektelo22 

implements an operator-based execution engine for differentially-private evaluation.

Conclusions
Differential privacy can be employed to guarantee that data subjects achieve plausible deniability. 

Some mechanisms do this by adding a significant amount of noise. In many cases, you may also 

be required to constrain your process a bit — imagine trying to adapt a modern machine-learning 

framework, which is designed to be trained on example records and ask aggregate-only questions.  

Differential privacy may be worth the effort when your data is extremely sensitive.
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Local Differential Privacy
Local differential privacy (LDP) can be thought of as a 

formalization of a technique known as randomized response. 

Randomized response is a technique enabling survey 

participants to confidentially answer sensitive or  

embarrassing questions.23 

23 https://www.jstor.org/stable/2283137

24 This example assumes that the data is not anonymous, something which is not typically the case. As our goal is to demonstrate 

a certain failing of local differential privacy, we ignore legal issues and constrain ourselves only by what is permissible within the LDP 

Randomized response works by randomly 

instructing participants when not to answer 

truthfully, without revealing this fact to the 

interviewer. For example, one implementation 

places cards labeled “Answer yes,” “Answer 

no,” and “Answer truthfully” in each of three 

envelopes. The participant is instructed to 

select one at random. Since false “yes” and 

“no” answers occur at the same rate, they are 

expected to cancel. Note that two-thirds of the 

participants contribute nothing to the survey 

and yet one may estimate the true proportion 

from the disparity between yes and no answers.

Local differential privacy places formal 

constraints on the randomized substitutions. 

In particular, it requires that any chosen 

substitution be nearly (but not necessarily 

exactly) as likely to arise from any given input. 

This is a very useful property, as it ensures that 

all potential inputs look plausible to an attacker 

wishing to undo the randomized substitution.

Motivation
Like differential privacy, local differential 

privacy employs randomization to enhance 

privacy. However, unlike differential privacy, 

randomization is applied prior to submission. 

Since the anonymization technique is applied 

prior to the data leaving the device, data 

subjects are assured protection from the 

moment of submission. This protection 

remains privatized — even in the case of 

subsequent breach. One key difference from 

differential privacy is that data release is viewed 

to happen at the time of collection. Thus, 

under this view, data subjects are not afforded 

plausible deniability about their participation 

in the data but, rather, plausible deniability 

about the contents of their submission.

Viewed from the point of view of an attacker 

looking to make inferences about participants, 

local differential privacy is strictly weaker than 

that of differential privacy. To see that this is 

the case, consider the following example: A 

medical study that is assembled to investigate 

the efficacy of some drug for patients showing 

certain anomalous blood-enzyme readings. 

During the study, members of the anonymous 

population are given devices that continuously 

monitor their blood-enzyme levels. The study 

ends with inconclusive results, and the LDP 

device data is made publicly available.24 Later, 
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it is learned that the only possible thing that could ever cause these kinds of blood-enzyme readings 

is illegal drug use. As a result, the world now knows with certainty that the study participants have 

abused illicit substances. Such a scenario is impossible under differential privacy, since participation 

remains deniable.

Still, when participation can be hidden — or is of a nature such that each individual’s participation 

would not reveal anything private about that individual25 — then the guarantees are very similar to 

those provided by differential privacy. Namely, each individual user may credibly deny the contents 

of their record, as a significant fraction of the participants will have mis-reported.

We now formally describe these notions.

Definition (Substitution Mechanism). A substitution mechanism r  from X to Y , (denoted r : X ! Y ), 

is a randomized algorithm that takes some input value x 2 X and (randomly) outputs a substitute 

value y 2 Y . We use the notation r(x) to denote the evaluation of the substitution mechanism on an 

x 2 X. Further, for any x 2 X, and y 2 Y , we denote the probability that y = r(x), as r(y|x).

Definition (Local Differential Privacy). Let " be a non-negative real number. A substitution 

mechanism, r : X ! Y , is "-locally differentially-private ("-LDP) if, for any possible output y 2 Y , 

and any pair of possible inputs x1, x2 2 X, it holds that r(y|x1)  e" · r(y|x2).

Note that when " = 0, the probability that the substitution mechanism outputs any given value must 

be independent of the input. To see this, fix a y 2 Y , along with an arbitrary pair of inputs x1, x2 2 X 

and note that r(y|x1)  e0 · r(y|x2) = r(y|x2). Likewise, r(y|x2)  r(y|x1) since the definition still must 

hold if the inputs are interchanged. Combining these results show that r(y|x1)  r(y|x2)  r(y|x1). 

Thus, r(y|x1) = r(y|x2). Since the chosen pair of inputs are arbitrary we conclude that they all must 

result in y with the same probability, p. Last, it follows that p = 1/|X| since,

 
1 =

X

x2X

r(y|x) =
X

x2X

p = |X| · p.

model.

25 For example: Assume that all mobile phones reported usage statistics with LDP, and that all users in the world carried exactly one 

mobile phone, then an attacker equipped with a crystal ball capable of providing “Yes”/”No” answers to questions of the form: “Did use X 

participate in the protocol” would find it useless — they are able to make all of the same inferences without it.
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Mechanisms
For our purposes, we may think of an individual as submitting a structured record consisting of 0 

or more attributes. In this picture, an individual may choose to apply a substitution mechanism to 

certain attributes within their record. We now outline two common methods achieving "-LDP.

Numerical Randomized Response
One method of randomizing numerical data is similar to the Laplace mechanism outlined in the 

section on Differential Privacy.

m x2x1 M

Figure 14. Schematic diagram of numerical randomized response. Numeric values x1, x2 come from the interval 

[m,M ]. Plots of r(x|x1), r(x|x2) are shown. Note that it is possible to receive substitution values  outside of the 

interval [m,M ]. If this is not desired, it is easily fixed by replacing outlying values with the nearer of [m,M ], or [m,M ].

We now formally describe the substitution mechanism r  which takes input in some bounded subset 

of the real numbers, M = supB, and outputs a real number. Let m = inf B, M = supB, in other words, each 

valid numerical value xi satisfies m  xi  M . Now let  = M m, and consider adding to xi a value 

sampled from Lap(/"). The probability of observing y as the substitution output is 

r(y|xi) =
"

2
e

⇣

"|yxi|


⌘

,

Thus, for any pair of valid numerical values, x1, x2, it follows by the triangle inequality, and the fact 

that  |x1 − x2|  , that,

r(y|x1)/r(y|x2) =
exp(−"|x− x1|/)

exp(−"|x− x2|/)
 exp(−"|x1 − x2|/)  exp(").

 

That is, for any pair of valid inputs, x1, x2, it holds that r(y|x1)  exp(") · r(y|x2), and thus this 

mechanism is "-LDP.
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Categorical Randomized Response

26 Intuitively, if every attribute must contain the same content then there is no risk to privacy to reveal the true value.

Applying randomized response to categorical data requires a different approach. In this case, what is 

desired is a tunable substitution mechanism to blur the true value. The definition of "-LDP constrains 

the behavior of the mechanism for small values of " : whatever value that it outputs must be almost 

equally likely under all possible inputs. Thus, if we would like the mechanism to sometimes output 

the true value, it must not be substantially more likely to do so then when given any other value as 

input. This hints at a scheme that, for any possible input, returns any valid categorical value nearly 

uniformly at random and that biases toward the input categorical value at large values of ".

25.3%

24.9% 24.9%24.9%

⇢(x|b) = 1

2b
exp (|x|b1)

A

C D

⇢(x|b) = 1

2b
exp (|x|b1)

B D

Figure 15. Example application of the mechanism for categorical data, for a set of possible values {A,B,C,D}, 

applied to an input A. The probability that rr(A) returns A is only slightly more likely than 1/|C|, and the probability of 

any alternative is nearly equally likely.

Definition (Mechanism for Categorical Data). Let C denote a set of possible labels. The substitution 

mechanism, rr : C ! C which given any input, c 2 C, returns c 2 C with probability e"/(e" + |C| 1), and 

returns any other y 2 C, y 6= c, with probability 1/(e" + |C| 1), satisfies "-LDP.

Notice that the definition ensures that the relative probability of releasing the true value is at most 

e", which is about 1 + " for small ". Thus, when " is small, an attacker only has a slight advantage by 

guessing that the true value is the value returned by the mechanism.

We now formally show that this mechanism is "-LDP.  Fix a non-negative , and a substitution result y. 

Let x1, x2 2 C denote an arbitrary pair of possible categorical values for input.  First note that when 

|C| = 1, this mechanism is trivially26 "-LDP, since x1 = x2 = y, and r(y|y)/r(y|y) = 1  exp("). When 

|C| > 1, let x 2 C , x 6= y, we have:

r(y|x1)/r(y|x2) max
xj2C

r(y|xi)/ min
xj2C

r(y|xj)  r(y|y)/r(y|x)

=
e"

e" + |C|− 1
· (e" + |C|− 1) = e"

where the second inequality follows from the fact that any value other than y minimizes the 

denominator. That is, for any pair of valid inputs, x1, x2, it holds that r(y|x1)  exp(") · r(y|x2), and 

thus this mechanism is "-LDP.

,
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Note that even though the represented frequencies of the categorical values change, they do so 

in a predictable way. As such, it remains possible to estimate the true counts. This can be seen by 

observing that the expected count of any categorical value output by the randomizer is simply the 

sum over each input of the number of occurrences of that input that are expected to flip to that 

output. That is
C 0

i =
X

j

r(i|j)Cj,

where, Ci represents the true counts, C 0
i represents the transformed counts. For this mechanism 

we have

C 0
i =

X

j

r(i|j)Cj = ↵Ci +
1 ↵

|C| 1

X

j 6=i

Cj, 

and where ↵ = e"/(e" + |C| 1) represents the probability that the input value remains unchanged 

by the randomizer. Given the transformed counts, C 0
i, it is possible to solve for the input (true) 

counts Cj, provided that " > 0.

Example
We apply these techniques to an example data set.

Raw LDP

Hashed Name Job Code Salary Job Code Salary

033ecfec16a1a05f444f6ec5f38e30a5 administration $192,302.00 administration $193,221.49

075d0c6741c0ed1d867dfe593da83323 faculty $95,449.00 faculty $114,471.45

34ef6e5315a36264ad7ef797adeb6d89 administration $166,346.15 athletics $190,568.44

69364248bb0948fd952298bb13a80ac6 faculty $80,000.04 staff $73,701.18

6bfba29ea353a43dabcabaf1686f79ab faculty $31,410.28 faculty $202,146.13

7209c9c53029c01ff7df54f2f77d602d athletics $195,000.00 athletics $176,691.23

7fd9a94f143d2bd19e98b3844a45d3ac athletics $220,730.81 athletics $392,619.63

7fe70fef470fcc46826966e201147015 faculty $57,222.00 faculty $29,328.35

816681f7ec9c9061b5c183095aff399e administration $130,946.75 administration $217,460.27

81d6f316d169150d0e8733866c38684d faculty $162,282.16 faculty $137,565.55

8a2f0dd007880178f59f0106c4a6526a faculty $56,000.04 athletics $31,164.60

991bd2094a0c6c395a87b52707e92b60 athletics $189,123.04 staff $238,203.34

b73b52b0fbcabe5ba72cf058b2106e1f faculty $29,324.94 staff $187,559.86

ef783f484f403373464b8b9727913dca staff $29,682.95 staff $84,276.49

ff2e211f8389cd5735ebe2cd867a7808 administration $392,500.04 administration $127,399.12

Figure 16. Example application of locally differentially-private randomized response. This table demonstrates the 

application of the above randomized response mechanisms for numerical and categorical data on the Salary and Job 

Code attributes, respectively. The effect is that infrequently occurring classes, such as Athletics and Administration 

are more populated. In addition, individual salaries are heavily obscured by significant noise. One pronounced example 

can be seen for individual 6bfba..., where their reported salary of $202,146.13 shows more than a six-fold increase from 

their true salary of $31,410.28.

29eBOOK: How to Enhance Privacy in Data Science
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These large swings are somewhat mitigated when the dataset is aggregated together. The table below 

compares the Job Code statistics measured using the raw data and the Local DP protected data.

Raw Local DP

Job Code Counts Counts True Counts (Est)

administration 367 1057 334.77

athletics 97 990 111.80

faculty 2920 1828 2900.58

staff 2085 1594 2121.85

Figure 17. Example aggregation of randomized response data. This table shows the results of aggregating the 

randomized response data. Despite a large change in counts, the true counts can be reasonably estimated by solving 

a system of equations relating the expected counts to true counts.

Conclusion
Like differential privacy, local differential privacy can be employed to guarantee that data subjects 

achieve plausible deniability. Again, some mechanisms do this by adding a significant amount of 

noise and so error rates should be watched closely. Unlike differential privacy, deniability extends 

only to record contents and not to their overall participation in the dataset. So it is better to use this 

in cases where knowledge of participation in the dataset is unlikely to be damaging to an individual. 

One major advantage of local differential privacy is that records are directly readable. This enables a 

straightforward approach to machine learning on private data using standard tools: iteratively apply 

differential privacy on the training data and train a sequence of models using decreasing values of 

epsilon. Among all models with acceptable performance, deploy the one with smallest epsilon.

Local differential privacy maybe worth the effort when your data is extremely sensitive or you are 

looking for a simple way to introduce privacy into existing machine learning pipelines.
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Preserving privacy in practice
While we have covered anonymization techniques, there are 

other means by which to improve the privacy of organizational 

data flow. These include other privacy-enhancing technologies 

(PETs) as well as operational practices. 

Unlike the techniques already discussed, which have mostly focused on already-collected data. 

PETs may decrease the risk of privacy loss by decreasing the amount of sensitive data actually 

collected (e.g. federated learning) or by tightening how data is shared within an organization. 

Technological advances in PETs that may be useful in the data workflow include:

• Federated machine learning  

Federated learning is a process to 

incrementally train a centralized model 

across decentralized devices, alleviating 

the need to directly aggregate private 

data. This allows an organization to 

develop products that iteratively improve 

with additional users, while never directly 

“seeing” the potentially sensitive data.

• Secure multi-party computation  

A protocol enabling parties to jointly 

evaluate some function while keeping  

their own input private.

• Zero-knowledge proofs  

Zero-knowledge proofs are protocols 

that enable one party to demonstrate to 

another party knowledge of certain facts 

without actually revealing the facts.

• Fully homomorphic encryption (FHE) 
Fully homomorphic encryption enables 

an untrusted third party to carry out 

computation over encrypted data without 

having to first decrypt it. This may be 

useful when the data scientist wishes 

to outsource computation, say, to an 

untrusted cloud provider. Note that FHE 

does not constitute an anonymization 

technique as no information — aside from 

perhaps the size of the input — is released 

to the untrusted setting.
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Enhancing the privacy of data product is more than employing a set of PETs.  Creating such a 

data product can be a large effort involving  data collection, storage, sharing, access, analysis, and 

publication. Private data can leak at any point of the workflow; many times the leaked data ends 

up being reused for purposes other than its original intent. So, in addition to transformations and 

technologies, there are a number of practices that decrease the likelihood of a data-loss event. A 

few of these are discussed below:

27 https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/

purpose-limitation/

Define the purpose of using data 

It is vital to define how the data will be used at 

the outset of any project.  Defining this helps 

contextualize the privacy-utility tradeoff and 

is central to gaining consent from individual 

data subjects.  GDPR codifies this demand as 

purpose limitations, specifically requiring that 

organizations: 

• be clear from the outset why they are 

collecting personal data and what you 

intend to do with it; 

• comply with documentation  

obligations to specify their purposes; 

• comply with transparency obligations 

to inform individuals about data use 

purposes; and 

• ensure that if they plan to use or disclose 

personal data for any purpose that is 

additional to or different from the originally 

specified purpose, the new use is fair, 

lawful and transparent.27

Effectively employ  
fine-grained access controls

Often times, in an effort to simplify management, 

access controls are made overly broad. For 

instance, analysts may be given access to an 

entire database or table. This practice is risky 

since the analyst may then have unnecessary 

access to sensitive data, violating the principle 

of least privilege. The end result is an increase in 

attack surface size for access to sensitive data, 

as well as an increase in the overall breach risk.

A related problem occurs when organizations 

instead choose to implement overly narrow 

access controls. This can happen in a 

misguided effort to secure a database, for 

instance, by allowing almost no one to have 

access. While such efforts often succeed in 

the stated goal (securing the database), attack 

surface size and breach risk nevertheless 

increase as demands for data are met with data 

dumps that may be readily duplicated, emailed, 

shared, left unsecured on a network device, 

or copied to removable media. Relatedly, it 

becomes much more difficult to discover 

when such data is being used for unapproved, 

and/or unsuitable purposes.
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Minimize the level of detail 

Data collection efforts can result in massive 

troves of personal data. Minimization policies 

restrict the granularity of this information. While 

this may seem to hold up analytics, in most 

cases it may not. Frequently, data scientists 

and analysts will start with a subset of a dataset 

with which to perform exploratory analysis 

and initial model-building. By minimizing the 

amount of data that a data scientist can pull 

by default, a company can increase privacy 

protections with minimal impact to its process.

Have a data expiration policy

Although storage is cheap, the potential cost 

of a privacy breach increases with size. Data 

expiration policies give companies a chance to 

reduce their data footprint in a principled way, 

as well as keep their focus on the most recent 

collection initiatives.

Preserving privacy across the entire data lifecycle is a major challenge and one that requires 

coordination between engineers, lines of business, IT administration, and legal teams. Although 

challenging, clarity about the expectations at each layer can create a culture where privacy concerns 

go hand-in-hand with other key objectives. One important consideration is how sharing data across 

multiple products or lines of business increases the exposure of data: if one team makes a dataset 

publicly available, then another team’s effort to implement differential privacy may be in vain. It is 

critical for security officers to be able to grasp the centrality and reliance on certain key pieces of 

data at an organizational level in order to make decisions responsibly.

Fundamentally, protecting the privacy of your customers’ data represents a trade-off between 

utility and privacy. While systematic approaches to obfuscating, generalizing, or randomizing 

data can provide set levels of protection, these decisions have to be made within a real business 

context, with company guidelines and regulatory requirements playing a key role in decision-

making. Furthermore, teams must consider the overall governance context within which data is 

being leveraged.

Data scientists play a key role in leading and implementing privacy-enhancing policies; they are 

pioneers on a new digital frontier. As such, they are well-positioned to be leaders for what is and 

is not acceptable to build models off of, to implement new techniques for improving the privacy 

of individuals, and to put in place company practices that minimize the data “pollution” that is the 

natural byproduct of their work. Finding the right balance between utility and privacy will be an 

evolving debate, but fortunately there are many tools and techniques available to reach these goals. 

Data scientists must be committed to the legal and ethical use of data to ensure that the value 

gleaned from this new frontier of data does not come at too high a cost.
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