

A better way forward

TECH GUIDE

Event-Driven
Architectures

http://www.temporal.io

2Event-Driven Architectures: A better way forwardTEMPORAL.IO

Event-driven architecture (EDA),

which aims to communicate

changes in state among

components in a distributed

application, has become a popular

approach to application design in

recent years.

Event-driven systems offer some

benefits over more traditional

monolithic applications, such as

separation of concerns and ease in

refactoring components. However,

these benefits come at a non-trivial

cost.

Many developers who have followed

this approach report that it made

their applications more complex,

harder to debug, and more difficult

to evolve.

Temporal (originally named Cadence) is an open source
project originally created at Uber to solve many of the pain
points developers encounter when working on event-driven
systems.

This guide will discuss some of the pros and cons of the event-
driven approach, and how to mitigate some key pain points.

https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

3Event-Driven Architectures: A better way forwardTEMPORAL.IO

In event-driven architectures, an event

generally corresponds to a meaningful

change to state, and components

can generally react independently

after receiving an incoming event

notification. If you purchase a one-of-

a-kind teacup from an online shop,

the state of the teacup changes from

“available” to “sold.”

The Pros and Cons
of Event-Driven
Architectures

In turn, this event–the sale of the

teacup–would likely trigger a series of

downstream reactions from different

components: your credit card is

charged, an email appears confirming

your purchase, the warehouse

receives instructions to pack the

teacup and ship to your chosen

address.

https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

4Event-Driven Architectures: A better way forwardTEMPORAL.IO

In a traditional monolithic architecture,

all of those downstream reactions

would be handled in the same code

base: the email messages, the

credit card, the warehouse process.

Although that kind of architecture is

intuitive, and often faster, it becomes

brittle over time. If there’s an error

in the credit card processing code,

you might only notice the issue

because of some odd behavior in the

warehouse code, which makes the

error tricky to track down.

It also lacks flexibility–if you want to

change your warehouse’s inventory

system, or accept a new kind of

payment (say, electronic funds

transfer or cryptocurrency), you’d have

to make major changes to your large

code base.

By comparison, event-driven

architecture distributes the complexity

of an application, making it more

straightforward to add features, but

more challenging to test all possible

states or edge cases.

Event-driven application architectures

allow for a highly distributed and

resilient application. Teacup inventory

records can be replicated across

multiple data centers, with updates

propagating each time a new order

is received. If teacups suddenly surge

in popularity as a consumer product,

it’s relatively trivial to add capacity by

creating a new copy of application

state and firing incoming events at it.

A example of an event-driven architecture for an e-commerce shop selling tea cups.

https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

5Event-Driven Architectures: A better way forwardTEMPORAL.IO

Distributing state across services

is the core essential compromise

of event-driven architectures. This

compromise requires the addition of

significant complexity and overhead

to deal with error conditions and their

resolutions. Because of this, individual

services start to function like ad hoc

state machines, storing state in a

local database as they consume and

produce messages.

With the state distributed across

services, you have limited visibility

into system operations, which

makes it harder to diagnose and

resolve issues. Further, events aren’t

coordinated between services, nor

are they transactional. In other kinds

of systems, transactions ensure

that all parts of a process either

complete successfully or fail together.

In contrast, services in event-driven

architectures operate independently,

becoming difficult to maintain over

time.

In a perfect world, development

teams eliminate these obstacles,

allowing developers to represent

their application’s business logic

directly as code. Or they could find

ready-to-use solutions that create

logical transactions while retaining

the strengths of event-driven design.

That’s where Temporal comes in.

That’s where
Temporal comes in.

Logic is no longer centralized in one

place, but scattered across all the

different services, making it harder to

track down and resolve the source

of issues. A change to one service–

say, accepting a new currency or

changing dateTime from US-Pacific

to UTC–might have no impact at all,

or it might bring business operations

to a halt. In the latter case, the change

could be rolled back as a solution,

but only after that change has been

identified as the root cause.

In practice, however, event-driven architectures are far from perfect.

https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

6Event-Driven Architectures: A better way forwardTEMPORAL.IO

Temporal abstracts away the

complexity of building scalable

distributed systems by centralizing

business logic into a series of steps

we call a Workflow.

A Temporal Workflow could involve

moving money between bank

accounts, processing online orders,

deploying cloud infrastructure, or

something else entirely. Because

the running state of a Workflow is

always durable and fault-tolerant,

any execution of the Workflow can

be paused, restarted, recovered, or

replayed from any point.

Activities–the individual units of work

in a Temporal Workflow–interact with

other external and internal services

to execute tasks such as writing to a

database, calling an API, or making

network requests. The Workflow

state is automatically captured

and recorded as each Activity

completes. Preserving code execution

state is what allows Workflows to

automatically resume operations at

the correct point following an outage

or other incident.

Evolve Your Way of Thinking

TEMPORAL TERMS

Conceptually, a Workflow is a sequence
of steps written in a general-purpose
programming language. The series of steps
defined by written code are known as a
Workflow Definition. When these steps are
carried out by running the code, the result
is a Workflow Execution.

In our teacup e-commerce example, the
checkout process might be structured as a
single Workflow Definition, while a single
customer completing a purchase successfully
would constitute a Workflow Execution.

https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

7Event-Driven Architectures: A better way forwardTEMPORAL.IO

Recall our earlier example of a would-

be teacup buyer. Imagine some part of

the order flow encounters an obstacle–

anything from a rate limit error on

your payments endpoint (these are

unusually popular teacups, after all) to

a system-wide failure or datacenter

outage. In an event-driven architecture,

developers would have to add handling

for all of these potential failures or

collisions to any place in the code base

where teacup order state is tracked, to

avoid making teacup-related promises

that cannot be fulfilled.

Depending on how this failure and retry

logic has been implemented, orders

that are actively being processed

might be lost entirely, or might be

inconsistently executed. A teacup

might be removed from inventory but

no corresponding shipment order

reaches the warehouse, or a buyer

might be charged twice for the same

purchase.

Temporal’s durable execution

approach allows developers to write

remote calls that can seamlessly

resume execution upon system

recovery, reconstructing your

application state as needed. Temporal

also facilitates infinite retries (or a

different custom retry behavior of

your choice) and offers various other

utilities for mitigation, compensation,

and recovery.

No system is failure-proof, and while

outages are (ideally) rare, they’re

also a fact of life. Adopting Temporal

simply ensures that applications

can gracefully recover when these

issues do–inevitably–happen, allowing

developers to resume incomplete

operations when the impacted

services are back online.

https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

8Event-Driven Architectures: A better way forwardTEMPORAL.IO

Despite their shortcomings, event-

driven architectures excel in certain

areas, such as ease of extensibility

and scalability. That is why Temporal

retains the benefits of event-driven

architecture. It helps you build

decoupled services as Activities while

abstracting out the most difficult and

problematic aspects of state tracking

and error handling.

Best of all, you can implement

Temporal in your preferred language

or languages – pick the right tool for

each job in your system – while using

your favorite libraries, IDEs, and other

tools. Incorporating durable execution

into event-driven architecture means

Temporal significantly enhances your

developer experience.

You can use Temporal for time-based

actions or for tracking sequential

steps in EDAs, or even in monolithic

architectures. Temporal is also

suitable for synchronous services,

ensuring consistency and reliability in

actions such as scanning QR codes.

It can serve as the communication

medium between services, enabling

seamless integration.

Temporal implementation doesn’t

demand an all-or-nothing approach.

It supports incremental adoption,

so that you can tailor your adoption

to your unique needs and team

dynamics.

A Better Developer Experience

https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

9Event-Driven Architectures: A better way forwardTEMPORAL.IO

In Conclusion
Temporal offers a paradigm shift in building applications,

providing developers with a powerful toolset to navigate

the complexities of event-driven architectures.

By adopting Temporal, your organization can enhance

reliability, maintainability, and scalability while delivering a

better experience for your developers.

Get started with Temporal
SET UP YOUR LOCAL ENVIRONMENT NOW

See how it works in your language
WITH EXAMPLE APPLICATIONS

https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda
https://temporal.io/setup/install-temporal-cli?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda
https://temporal.io/setup/install-temporal-cli
https://learn.temporal.io/examples/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

