EEEEEEEEE

cvent-Driven s

Arcnitectures
A obetter way torward

<6> Tempora


http://www.temporal.io

| Event-driven architecture (EDA), separation of concerns and ease in
.‘ which aims to communicate refactoring components. However,
changes in state among these benefits come at a non-trivial
. components in a distributed cost.
e application, has become a popular
approach to application design in Many developers who have followed
recent years. this approach report that it made

their applications more complex,

Event-driven systems offer some harder to debug, and more difficult

benefits over more traditional to evolve.

monolithic applications, such as

it T
B e

Event-Driven Architectures: A better way forward 2



https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

Ihe Pros and Cons
of event-Driven
Archnitectures

In event-driven architectures, an event
generally corresponds to a meaningful
change to state, and components
can generally react independently
after receiving an incoming event
notification. If you purchase a one-of-
a-kind teacup from an online shop,
the state of the teacup changes from

“available” to “sold”

IN turn, this event-the sale of the
teacup—would likely trigger a series of
downstream reactions from different
components: your credit card is
charged, an email appears confirming
your purchase, the warehouse
receives instructions to pack the
teacup and ship to your chosen
address.

Event-Driven Architectures: A better way forward 3


https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

»

Checkout
Initiated

0

»

Fulfil
Orxder

TRANSMISSION TIMEOUT

Auth SN Order
Payment Created
Capture Confirm
Payments — Order

Save Orderx

Order
Shipped

A example of an event-driven architecture for an e-commerce shop selling tea cups.

Order Close
Delivered 2 Oxder

Clear
Cart

@ AUTO-CLOSE

In a traditional monolithic architecture,
all of those downstream reactions
would be handled in the same code
base: the email messages, the

credit card, the warehouse process.
Although that kind of architecture is
INntuitive, and often faster, it becomes
orittle over time. If there's an error

In the credit card processing code,
you might only notice the issue
because of some odd behavior in the
warehouse code, which makes the

error tricky to track down.

't also lacks flexibility—if you want to
change your warehouse’s inventory
system, or accept a new kind of
payment (say, electronic funds

transfer or cryptocurrency), youd have

to make major changes to your large

code base.

By comparison, event-driven
architecture distributes the complexity
of an application, making it more
straightforward to add features, but
more challenging to test all possible

states or edge cases.

Event-driven application architectures
allow for a highly distributed and
resilient application. Teacup inventory
records can be replicated across
multiple data centers, with updates
propagating each time a new order
Is received. If teacups suddenly surge
iN popularity as a consumer product,
it's relatively trivial to add capacity by
creating a new copy of application
state and firing incoming events at it.

Event-Driven Architectures: A better way forward 4


https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

In practice, however, event-driven architectures are far from perfect.

Logic is no longer centralized in one
place, but scattered across all the
different services, making it harder to
track down and resolve the source
of issues. A change to one service—
say, accepting a new currency or
changing dateTime from US-Pacific
to UTC-might have no impact at all,
or it might bring business operations
to a halt. In the latter case, the change
could be rolled back as a solution,
but only after that change has been
identified as the root cause.

> @ ¢ —

> (D

Distributing state across services

Is the core essential compromise

of event-driven architectures. This
compromise requires the addition of
significant complexity and overhead
to deal with error conditions and their
resolutions. Because of this, individual
services start to function like ad hoc
state machines, storing state in a
local database as they consume and

produce messages.

With the state distributed across
services, you have limited visibility
INto system operations, which
makes it harder to diagnose and
resolve issues. Further, events aren’t
coordinated between services, nor
are they transactional. In other kinds
of systems, transactions ensure

that all parts of a process either
complete successfully or fail together.
In contrast, services in event-driven
architectures operate independently,
becoming difficult to maintain over

time.

[hat's where
femporal comes In.

In a perfect world, development
teams eliminate these obstacles,
allowing developers to represent
their application’s business logic
directly as code. Or they could find
ready-to-use solutions that create
logical transactions while retaining

the strengths of event-driven design.

That’s where Temporal comes in.

Event-Driven Architectures: A better way forward

5


https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

-Vvolve Your Way of [nin

—————————————————————————————————————————————

YOUR APPLICATION

1L

Worker 1 —E—

&3

Worker 2

Temporal CLI

!

Worker N :

> o 7
M[]]»

Queues

Temporal WebUI

Temporal Service

Temporal abstracts away the
complexity of building scalable
distributed systems by centralizing
business logic into a series of steps
we call a Workflow.

A Temporal Workflow could involve
Moving money between bank
accounts, processing online orders,
deploying cloud infrastructure, or
something else entirely. Because
the running state of a Workflow is
always durable and fault-tolerant,
any execution of the Workflow can
be paused, restarted, recovered, or
replayed from any point.

Activities—the individual units of work
in a Temporal Workflow—-interact with

other external and internal services

to execute tasks such as writing to a

KINQ

database, calling an API, or making
network requests. The Workflow

state is automatically captured

and recorded as each Activity
completes. Preserving code execution
state is what allows Workflows to
automatically resume operations at
the correct point following an outage
or other incident.

TEMPORAL TERMS

Event-Driven Architectures: A better way forward 6


https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

Recall our earlier example of a would-
be teacup buyer. Imagine some part of
the order flow encounters an obstacle-
anything from a rate limit error on

your payments endpoint (these are
unusually popular teacups, after all) to
a system-wide failure or datacenter
outage. In an event-driven architecture,
developers would have to add handling
for all of these potential failures or
collisions to any place in the code base
where teacup order state is tracked, to
avoid making teacup-related promises
that cannot be fulfilled.

Depending on how this failure and retry
logic has been implemented, orders
that are actively being processed
might be lost entirely, or might be
inconsistently executed. A teacup
might be removed from inventory but
NO corresponding shipment order
reaches the warehouse, or a buyer
might be charged twice for the same

purchase.

Temporal's durable execution
approach allows developers to write
remote calls that can seamlessly
resume execution upon system
recovery, reconstructing your
application state as needed. Temporal
also facilitates infinite retries (or a
different custom retry behavior of
your choice) and offers various other
utilities for mitigation, compensation,

and recovery.

No system is failure-proof, and while
outages are (ideally) rare, they're

also a fact of life. Adopting Temporal
simply ensures that applications

can gracefully recover when these
Issues do—-inevitably—happen, allowing
developers to resume incomplete
operations when the impacted

services are back online.

Event-Driven Architectures: A better way forward 7


https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

A Better Developer experience

Despite their shortcomings, event-
driven architectures excel in certain
areas, such as ease of extensibility
and scalability. That is why Temporal
retains the benefits of event-driven
architecture. It helps you build
decoupled services as Activities while
albstracting out the most difficult and
problematic aspects of state tracking
and error handling.

Best of all, you can implement
Temporal in your preferred language
or languages — pick the right tool for
each job in your system — while using
your favorite libraries, IDEs, and other
tools. Incorporating durable execution
into event-driven architecture means
Temporal significantly enhances your

developer experience.

<6> TEMPORAL . I0

You can use Temporal for time-based
actions or for tracking sequential
steps in EDAs, or even in monolithic
architectures. Temporal is also
suitable for synchronous services,
ensuring consistency and reliability in
actions such as scanning QR codes.
It can serve as the communication
Mmedium between services, enabling

seamless integration.

Temporal implementation doesn't
demand an all-or-nothing approach.
It supports incremental adoption,

so that you can tailor your adoption
to your unigue needs and team
dynamics.

Event-Driven Architectures: A better way forward

8


https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

INn Conclusion

Temporal offers a paradigm shift in building applications,
providing developers with a powerful toolset to navigate
the complexities of event-driven architectures.

By adopting Temporal, your organization can enhance
reliability, maintainabllity, and scalabllity while delivering a
petter experience for your developers.

Get started with Temporal

SET UP YOUR LOCAL ENVIRONMENT NOW

See how it works Iin your language

WITH EXAMPLE APPLICATIONS

Event-Driven Architectures: A better way forward

9


https://www.temporal.io/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda
https://temporal.io/setup/install-temporal-cli?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda
https://temporal.io/setup/install-temporal-cli
https://learn.temporal.io/examples/?utm_medium=whitepaper&utm_source=edafwd&utm_campaign=da-eda

