
STATE MACHINES SIMPLIFIED

Reducing the complexity
of state machines with
Temporal

1
St
at
e
ma
ch
in
es
 s
im
pl
if
ie
d

Re
du
ci
ng
 t
he
 c
om
pl
ex
it
y
of
 s
ta
te
 m

ac
hi
ne
s
wi
th
 T
em
po
ra
l

temporal.io

A state machine is a software design pattern used to

modify a system’s behavior in response to changes in its

state. While state machines are widely used in software

development, applying them to complex business

processes can be a difficult undertaking.

The alternative to a state machine is to use an orchestration tool specifically

intended for business workflows. One such tool is Temporal, which is the focus

of this article.

In this article, we’ll present a brief introduction to state machines and show how

the design pattern can be used to implement a business process. Then, we’ll

compare a process implemented as a state machine to a process implemented

using Temporal.

We provide Java code that demonstrates both implementation approaches

described in this article. You’ll find the code in this GitHub repository, which

provides a Maven project for the State Machine for the demonstration process

and another Maven project that implements the same process with Temporal

Java SDK

In order to get full benefit from reading this article, The more you know about

Temporal – from Workflows, and Activities, to the Workers and Clients – the

more you’ll get from this article.

https://github.com/temporalio/temporal-development-patterns-whitepapers/tree/40e9d09ba46b4b2cd2c60b1fbbe56bfa9a5da98c/statemachine-vs-temporal
https://github.com/temporalio/temporal-development-patterns-whitepapers/tree/40e9d09ba46b4b2cd2c60b1fbbe56bfa9a5da98c/statemachine-vs-temporal/statemachine
https://github.com/temporalio/temporal-development-patterns-whitepapers/tree/40e9d09ba46b4b2cd2c60b1fbbe56bfa9a5da98c/statemachine-vs-temporal/temporal
https://docs.temporal.io/workflows
https://docs.temporal.io/activities
https://docs.temporal.io/workers
https://docs.temporal.io/temporal#temporal-client

2
St
at
e
ma
ch
in
es
 s
im
pl
if
ie
d

Re
du
ci
ng
 t
he
 c
om
pl
ex
it
y
of
 s
ta
te
 m

ac
hi
ne
s
wi
th
 T
em
po
ra
l

temporal.io

State machines: an overview
and an example

A state machine is a software design pattern used to build applications that

move between many possible states. The role of a state machine is to manage

state changes and make the current state of the system explicit.

Figure 1 below illustrates a state machine for a system that supports a document

publishing workflow. This use case is implemented in the demonstration code

that accompanies this article. At the conceptual level, the workflow accepts a

document and then copy edits and graphic edits the document simultaneously.

Once copy editing and graphic editing completes, the document is published.

Figure 1: A state machine for a document publishing workflow.

https://github.com/temporalio/temporal-development-patterns-whitepapers/tree/8fdbb7a9d957f42ec87f25211b772bfeb78c1841/statemachine-vs-temporal

3
St
at
e
ma
ch
in
es
 s
im
pl
if
ie
d

Re
du
ci
ng
 t
he
 c
om
pl
ex
it
y
of
 s
ta
te
 m

ac
hi
ne
s
wi
th
 T
em
po
ra
l

temporal.io

When a document is submitted to the workflow, a controller component, which is

responsible for changing the state of the system, triggers an Editable event. How

the event is triggered depends on the nature of the controller. The event could

be triggered manually by a user by clicking a “Submit” button on a web page.

Or the event could be triggered automatically via a message queue working

in conjunction with an application’s controller software. (Using a message

queue is the approach taken in the implementation of the state machine in the

demonstration code).

The controller receives the event and changes the current state of the system.

For example in this article’s demonstration code, when the controller gets an

EVENT_EDITABLE event, it will set the current state to Editable like so…

AbstractState.current = AbstractState.editable;

…then, the code in the class instance assigned to AbstractState.editable

executes the transition rules for that state.

The thing to understand about the state reassignment statement shown above is

that AbstractState is an abstract class that defines a set of public variables that

describe each state possible in the demonstration use case. Each state variable

is of type AbstractState too as shown in Listing 1 below.

package pubstatemachine.state;

import pubstatemachine.message.AbstractMessage;
import pubstatemachine.queue.SimpleMessageQueue;

public abstract class AbstractState {
 // add a constructor
 public AbstractState(SimpleMessageQueue queue) {
 AbstractState.queue = queue;
 }

 static SimpleMessageQueue queue;
 public static AbstractState inactive;
 public static AbstractState editable;
 public static AbstractState graphicEdit;
 public static AbstractState copyEdit;
 public static AbstractState awaitingEdits;
 public static AbstractState awaitingPublish;
 public static AbstractState publish;
 public static AbstractState current;

 public void enter() {}

 public void update(AbstractMessage message) throws InterruptedException {}
}

Listing 1: The abstract class named AbstractState defines the various states of the demonstration use case

4
St
at
e
ma
ch
in
es
 s
im
pl
if
ie
d

Re
du
ci
ng
 t
he
 c
om
pl
ex
it
y
of
 s
ta
te
 m

ac
hi
ne
s
wi
th
 T
em
po
ra
l

temporal.io

Later on logic in the Controller class assigns each of the public variables an

actual implementation of a class that inherits from AbstractState. The example

below shows an excerpt from the Controller code that assigns an instance of

the Editable class to the member variable AbstractState.editable.

AbstractState.editable = new Editable(queue);

As mentioned above, the class named Editable inherits from AbstractState

and provides the required behavior for the enter() and update(AbstractMessage
message) methods as defined in AbstractState. Thus, the statement,

AbstractState.current = AbstractState.editable changes the current state of

the application to the behavior defined by the class named Editable. Logic in the

Controller then calls the enter() and update() methods of that current state.

In the case shown in Figure 1, at the start of the workflow the current state

is transitioned to Editable. Part of the transition behavior in the Editable

state is to issue two commands, EditGraphic and CopyEdit. Eventually, this

puts the system in a current state of AwaitingEdits. As the name implies,

the state of AwaitingEdits, waits to receive two events, WaitforCopyEdit and

WaitForGraphicEdit. These two events indicate that both editing tasks have been

completed. WaitforCopyEdit and WaitForGraphicEdit can occur in any order and

thus represents a rule composed of multiple conditions that must be satisfied in

order for the workflow to progress. (It’s worth noting that the work required to

support this composed rule in this demonstration use case is trivial. However, in

a real-world production scenario, supporting a composed rule can be a daunting

undertaking).

Once the AwaitingEdits state receives WaitforCopyEdit and WaitForGraphicEdit

events, it emits a Publishable command that transitions the system into a current

state of Publish. From there, the command Publish is executed and the process

is complete.

Listing 1 below shows the code excerpt from the Controller class of the

demonstration project. Event emission and command execution are facilitated by

messages received from a message queue. Those messages are processed by a

switch statement in the state machines Controller class as shown in Listing 2:

https://github.com/temporalio/temporal-development-patterns-whitepapers/blob/8fdbb7a9d957f42ec87f25211b772bfeb78c1841/statemachine-vs-temporal/statemachine/src/main/java/pubstatemachine/Controller.java
https://github.com/temporalio/temporal-development-patterns-whitepapers/blob/8fdbb7a9d957f42ec87f25211b772bfeb78c1841/statemachine-vs-temporal/statemachine/src/main/java/pubstatemachine/Controller.java#L23
https://github.com/temporalio/temporal-development-patterns-whitepapers/blob/8fdbb7a9d957f42ec87f25211b772bfeb78c1841/statemachine-vs-temporal/statemachine/src/main/java/pubstatemachine/state/Editable.java
https://github.com/temporalio/temporal-development-patterns-whitepapers/blob/8fdbb7a9d957f42ec87f25211b772bfeb78c1841/statemachine-vs-temporal/statemachine/src/main/java/pubstatemachine/state/AwaitingEdits.java
https://github.com/temporalio/temporal-development-patterns-whitepapers/blob/8fdbb7a9d957f42ec87f25211b772bfeb78c1841/statemachine-vs-temporal/statemachine/src/main/java/pubstatemachine/state/AwaitingEdits.java#L46C7-L46C80
https://github.com/temporalio/temporal-development-patterns-whitepapers/blob/8fdbb7a9d957f42ec87f25211b772bfeb78c1841/statemachine-vs-temporal/statemachine/src/main/java/pubstatemachine/Controller.java#L36

5
St
at
e
ma
ch
in
es
 s
im
pl
if
ie
d

Re
du
ci
ng
 t
he
 c
om
pl
ex
it
y
of
 s
ta
te
 m

ac
hi
ne
s
wi
th
 T
em
po
ra
l

temporal.io

When a message is received, the switch statement invokes a processing

method within the code according to the message. For example, when the

switch statement receives an EVENT_EDITABLE messageType, it invokes the

method processEventEditable(msg) in which the msg parameter has two

properties, msg.messageType and msg.document. The processEventEditable(msg)

code will extract the document from the msg parameter and execute its

processing logic on that document. When a message COMMAND_GRAPHIC_EDIT is

received, the switch statement calls the processCommandGraphicEdit(msg)

method.

while (true) {
 try {
 AbstractMessage msg = queue.getMessage();
 System.out.println(“Controller received message: “ + msg.getMessageType());
 switch (msg.getMessageType()) {
 case EVENT_EDITABLE:
 processEventEditable(msg);
 break;
 case EVENT_AWAIT_GRAPHIC_EDIT:
 case EVENT_AWAIT_COPY_EDIT:
 processEventAwaitEdits(msg);
 break;
 case EVENT_PUBLISHABLE:
 processEventPublishable(msg);
 break;
 case EVENT_PUBLISHED:
 System.out.println(“Document published”);
 break;
 case COMMAND_GRAPHIC_EDIT:
 processCommandGraphicEdit(msg);
 break;
 case COMMAND_COPY_EDIT:
 processCommandCopyEdit(msg);
 break;
 case COMMAND_PUBLISH:
 processCommandPublish(msg);
 break;
 default:
 throw new IllegalStateException(“Unexpected value: “ +
 msg.getMessageType());
 }
 } catch (InterruptedException e) {
 System.err.println(“Polling interrupted: “ + e.getMessage());
 break;
 }
 }
});

Listing 2: The logic in the controller class of the state machine demonstration code that processes messages
from a message queue.

https://github.com/temporalio/temporal-development-patterns-whitepapers/blob/8fdbb7a9d957f42ec87f25211b772bfeb78c1841/statemachine-vs-temporal/statemachine/src/main/java/pubstatemachine/Controller.java#L96

6
St
at
e
ma
ch
in
es
 s
im
pl
if
ie
d

Re
du
ci
ng
 t
he
 c
om
pl
ex
it
y
of
 s
ta
te
 m

ac
hi
ne
s
wi
th
 T
em
po
ra
l

temporal.io

An important point to keep in mind is that the switch statement is only routing

messages to processing methods. It is not managing the sequence in which

state changes occur. State change order is governed by logic distributed among

the various transitions within the state machine. In other words, there is no

central place in the code that says, “go from the Editable state to the CopyEdit

and GraphicEdit states and then onto the Publish state.” Sequence management

is conducted implicitly via message emission dictated by a given transition rule.

For simple event-driven state machines this is manageable, but as you’ll see,

when state machines manage many sequential state changes, their complexity

increases.

The challenges of state machines
A significant concern with state machines is that they are often complex to

program and difficult to maintain, particularly when it comes implementing a

business workflow that has many composable rules. For instance, the AwaitEdits

state in the document publishing use case waits for both WaitforCopyEdit and

WaitForGraphicEdit events in order for the workflow to move forward. This is

an example of a composable rule. Supporting a limited number of composable

rules within a state machine is manageable. However, as more composable

rules are added to a state machine, the complexity of the machine increases, as

does the effort required to maintain and upgrade it. State machines that support

consensus require additional complexity.

Another complex task when building a state machine is maintaining the order

of actions in a sequential business process. In other words, making sure that

Step 1 is followed by Step 2 and then by Step 3, etc. The way the demonstration

application ensures that the order of steps in the document publication process

is to introduce a class named StateMonitor. The StateMonitor class keeps track

of all the state transformations that have occurred in the application, and makes

it so a particular command associated with a particular state executes in the

expected order. Listing 3 below shows an excerpt of the update() method for the

AwaitingEdits class. As the name implies, the AwaitingEdit class represents the

state in which the document publication process is waiting for edits to complete.

The update() method is the associated transition.

https://github.com/temporalio/temporal-development-patterns-whitepapers/blob/8fdbb7a9d957f42ec87f25211b772bfeb78c1841/statemachine-vs-temporal/statemachine/src/main/java/pubstatemachine/StateMonitor.java
https://github.com/temporalio/temporal-development-patterns-whitepapers/blob/8fdbb7a9d957f42ec87f25211b772bfeb78c1841/statemachine-vs-temporal/statemachine/src/main/java/pubstatemachine/state/AwaitingEdits.java#L19

7
St
at
e
ma
ch
in
es
 s
im
pl
if
ie
d

Re
du
ci
ng
 t
he
 c
om
pl
ex
it
y
of
 s
ta
te
 m

ac
hi
ne
s
wi
th
 T
em
po
ra
l

temporal.io

The transition rule emits a COMMAND_PUBLISH event, which tells the system to

publish the document, when the document has moved through GraphicEdit and

CopyEdit states.

An important thing to remember about a state machine in general, and

a message-driven state machine in particular, is that unless a sequence

management mechanism like a StateMonitor is put in place, state

transformations might occur in an arbitrary manner. The effort required to

manage the sequence of events in a business process that has one, two or

event three steps is minimal. However, ensuring order in a business process with

dozens, if not hundreds, of steps can require a herculean programming effort—

not to mention code maintenance.

Another challenge with state machines is maintaining system state in the event

of a failure. Failures are commonplace, even with the simplest of business

processes. Some failures, such as timeout, can be remedied by a retry. Others

require the system to be reverted to its last known good state. Addressing failure

in a State Machine is difficult; in fact, it can be just as much, if not more work as

creating the State Machine’s happy path.

When all is said and done, using a state machine for an application that has

a limited number of states and has infrequent changes makes sense (like

computer games or applications that run a streaming service on your television).

But, for applications that can have a large number of states and are subject to

rapidly changing requirements, there are better alternatives to state machines.

Temporal is one such alternative.

StateMonitor sm = StateMonitor.getStateMonitor(message.getDocument());
.
.
.

if (sm.isGraphicEdited() && sm.isCopyEdited() && !sm.isPublishable()) {
 queue.putMessage(new MessageImpl(MessageType.COMMAND_PUBLISH, document));
 sm.setPublishable(true);
}

Listing 3: The state machine demonstration used a class named StateMonitor to keep track of the various
states that the document publication process has passed through.

8
St
at
e
ma
ch
in
es
 s
im
pl
if
ie
d

Re
du
ci
ng
 t
he
 c
om
pl
ex
it
y
of
 s
ta
te
 m

ac
hi
ne
s
wi
th
 T
em
po
ra
l

temporal.io

Temporal: a simpler way to
manage state and transitions
Temporal is an open-source durable execution platform that abstracts away

the complexity of building scalable distributed systems. Temporal is specifically

intended for programming workflows, particularly complicated workflows. As

such, it has many of the characteristics of a state machine, yet avoids a good

deal of the work that goes with programming a state machine. Additionally,

because it provides durability, Temporal ensures state is always saved and all

processes complete, even in the event of a failure.

At the conceptual level, Temporal includes some of the parts typically found in a

state machine. These parts are built into the framework. A Temporal Workflow

is an essential primitive of the framework that can be thought of as a controller.

A Temporal Workflow manages the sequence and execution of activities.

Temporal Activities can be thought of as command handlers.

Figure 2 below illustrates the document publication process previously

implemented as a state machine, this time implemented as a Temporal

Workflow.

Figure 2: Implementing the documentation publication process as a Temporal Workflow.

https://docs.temporal.io/temporal#durable-execution
https://docs.temporal.io/workflows
https://docs.temporal.io/activities

9
St
at
e
ma
ch
in
es
 s
im
pl
if
ie
d

Re
du
ci
ng
 t
he
 c
om
pl
ex
it
y
of
 s
ta
te
 m

ac
hi
ne
s
wi
th
 T
em
po
ra
l

temporal.io

As with the state machine example mentioned previously, a document is

submitted to a workflow for processing. Then, the document is graphic edited

and copy edited simultaneously. The document is published after editing

completes. The high level behavior of both the state machine and Temporal

Workflow is similar. However, the effort that goes into implementing the Temporal

Workflow is apparent and straightforward, and requires significantly less time.

As shown below in Listing 4, all the code that manages the Workflow is in one

place.

public void startWorkflow(Document document) {
 logger.info(“Starting workflow for publishing document: “ + document.getUrl());
 try {
// Make it so that the copyEdit() and graphicEdit() activities are executed in parallel ...
 List<Promise<Void>> promisesList = new ArrayList<>();
 promisesList.add(Async.procedure(activities::copyEdit, document));
 promisesList.add(Async.procedure(activities::graphicEdit, document));

 Promise.allOf(promisesList).get();

 // ...then execute the publish() activity
 Promise<Void> publishPromise = Async.procedure(activities::publish, document);
 publishPromise.get();
 logger.info(“Publishing complete for document: “ + document.getUrl());

 } catch (ActivityFailure e) {
 throw e;
 }
 }
}

The interesting thing to notice about the Workflow code in Listing 4 above is

that the editing and publishing work is encapsulated within Temporal Activities

as shown at Lines 7, 8 and 13. Temporal Activities are the fundamental, atomic

‘steps’ that act as the ‘doers’ in a Temporal Workflow. This implementation

demonstrates that they may be executed concurrently using Promises while the

Workflow blocks to await the results of both steps.

Separating Activity implementation from the Workflow makes the application

easier to understand and easier to manage. Should a developer need to add a

new Workflow Activity such as LegalReview, they can just add a method for the

Activity to the file in which the Temporal Activities are defined and then add

that Activity method to the Temporal Workflow file according to its position in the

Workflow Execution.

By contrast, implementing a new Activity within the document publication state

machine would require a lot more work.

Listing 4: A Temporal workflow for the document publishing use case

https://github.com/temporalio/temporal-development-patterns-whitepapers/blob/8fdbb7a9d957f42ec87f25211b772bfeb78c1841/statemachine-vs-temporal/temporal/src/main/java/publishingdemo/PublicationWorkflowImpl.java
https://www.javadoc.io/doc/io.temporal/temporal-sdk/latest/io/temporal/workflow/Promise.html
https://github.com/temporalio/temporal-development-patterns-whitepapers/blob/8fdbb7a9d957f42ec87f25211b772bfeb78c1841/statemachine-vs-temporal/temporal/src/main/java/publishingdemo/PublishingActivities.java

10
St
at
e
ma
ch
in
es
 s
im
pl
if
ie
d

Re
du
ci
ng
 t
he
 c
om
pl
ex
it
y
of
 s
ta
te
 m

ac
hi
ne
s
wi
th
 T
em
po
ra
l

temporal.io

Why choose Temporal
With Temporal, you don’t need to develop the controller, events, transitions,

or commands that make up the state machine. That functionality is built into

Temporal. Developers program the outcome of Temporal Workflows: describe

the sequence of Activities in the Workflow, and program the behavior for

each Activity executed in the Workflow. These actions are straightforward to

accomplish because Temporal’s programming model is well defined with its

Workflow and Activity primitives.

Additional benefits of Temporal compared to a state machine are:

إ	 Durability. Temporal’s durability is one of its strongest values. Temporal

durably stores any progress that has occurred in a Workflow. Regardless

of faults in a system, progress in Temporal will always be recovered, and

therefore the business state is always consistent.

إ	 Configurable retries. Retry logic takes tremendous time to implement

in state machines. With Temporal, implementing retries is a matter of a

configuration setting that Temporal will execute automatically.

إ	 Easy compensations. In a state machine, even under the best case when

a state machine is well structured, compensation behavior would need to

be programmed into each state. Implementing compensation behavior

in a loosely structured state machine can result in spaghetti code that’s

hard to program and test. In Temporal, implementing system reversions is

a straightforward undertaking. Compensation code is programmed in one

place: within the Workflow file.

إ	 Message queues. If a state machine is message-driven, then the developer

needs to implement the message queue(s) and the messages that

the queue will support too. This can be significant work, particularly for

distributed applications that operate at web scale. In Temporal, there’s no

need to create a message queue from scratch because it provides a user-

accessible equivalent called a Task Queue that automatically queues up

tasks.

إ	 Built-in messaging primitives that interact with applications. Temporal’s

built-in messaging primitives for interacting with applications remove yet

another infrastructure task developers must undertake to apply transitions to

their application state.

11
St
at
e
ma
ch
in
es
 s
im
pl
if
ie
d

Re
du
ci
ng
 t
he
 c
om
pl
ex
it
y
of
 s
ta
te
 m

ac
hi
ne
s
wi
th
 T
em
po
ra
l

temporal.io

In conclusion
Temporal’s essential value proposition is that the framework allows developers

to focus on what they do best: creating effective, efficient Workflows that meet

the needs of the business. When it comes to implementing complex business

processes, Temporal provides a structured and straightforward approach to

Workflow development that is hard for a state machine to emulate.

JOIN OUR COMMUNITY SLACK

EXPLORE PROJECT-BASED TUTORIALS AND DOCS

https://t.mp/slack
https://learn.temporal.io/tutorials/
https://learn.temporal.io/tutorials/go/
https://learn.temporal.io/tutorials/php/
https://learn.temporal.io/tutorials/python/
https://learn.temporal.io/tutorials/typescript/
https://t.mp/slack
https://learn.temporal.io/tutorials/
https://docs.temporal.io/dev-guide/java
https://github.com/temporalio/sdk-dotnet#readme

