~>} Coder

Cloud Development
Environment
Maturity Model

SevaZ’

S

-

Table of contents

What is a Cloud Development Environment?
Cloud Development Environment Maturity Model
Stage 0: Ad-hoc

Stage 1: Foundational

Stage 2: Defined

Stage 3: Refined

Stage 4: Optimized

Conclusion

Cloud Development Environment Maturity Model

02

03

05

08

1

14

18

21

-5} Coder

Cloud Development Environment
Maturity Model

Software development is iterative and constantly evolving. To modernize a
development environment an organization must:

e Understand the current state and set an overarching goal
 Align technology, developer experience, and processes

» Define incremental milestones to achieve the goal

This document defines how organizations can use a Cloud Development Environment to achieve
those goals. CDEs are a rapidly growing technology; the segment is at the top of the Innovation
Trigger phase of the Gartner Hype Cycle for Platform Engineering, 2024. A mature CDE drives
innovation, efficiency, governance, and growth through a consistent and low-friction developer
experience. Achieving maturity requires a thorough understanding of the platform stages and a
dedication to refining practices and strategies tailored to the objectives of the organization.

Cloud Development Environment Maturity Model r"S} Coder

&) oz

What is a Cloud Development Environment?

A CDE is a platform that provides developers with:

e Predefined workspaces that are decoupled from their physical workstation
» A comprehensive and consistent set of development tooling

» High performance remote resources to develop and build on

A mature CDE embodies the tactical synergies of the Development and Platform Engineering teams.
It enables teams to self-govern enterprise-wide development practices and utilize stable, scalable,
and secure cloud resources. Product and leadership stakeholders can leverage a CDE to improve
governance and drive the strategic direction of the organization. The flexible and iterative nature of
a CDE fulfills today’s requirements and future proofs the organization’s development practices.

Target audience

CTOs, VPs of Engineering Engineering Managers,
Development Teams

Transform business capabilities into

scalable products Streamline innovation-focused
development processes

Enterprise Architects, Platform Security Engineers

Engineers Ensure adherence to security

Optimize Developer Experience with protocols and establish guardrails
a frictionless multi-cloud approach.

Cloud Development Environment Maturity Model ~5} Coder

-}

Cloud Development
Environment Maturity Model

This model is based on the Software Engineering Institute’s Capability Maturity Model Integration.

It addresses the ideas and questions many organizations have when considering, deploying, or
expanding a CDE. It outlines five distinct stages of maturity and identifies the tooling, infrastructure,
people, and process dimensions for each. It is imperative to understand that these dimensions are
interconnected; progress — or lack thereof — in one dimension affects neighboring dimensions.

It also identifies risks with stagnation and offers guidance to advance through each stage. It provides
a structured framework to assess current state and a roadmap to plan future state of a CDE. This
comprehensive, iterative, and incremental approach highlights specific areas of focus for strategic
growth and improved competitive advantage. The model is defined by the following stages:

B O G e G e o

R et
o i
¢ o Gttt ety
¢ Lo Gttt et

U i vt You o e v

Cloud Development Environment Maturity Model f'ﬁ} Coder

04

Cloud Development Environment Maturity Model

Stage

STAGE 4
Optimized

STAGE 3
Refined

STAGE 2
Defined

STAGE 1
Foundational

STAGE O

Ad-hoc

Cloud Development Environment Maturity Model

Tooling

Development teams
build and maintain
their own templates

Development teams
fulfill own
requirements,
additional use cases
added

Standardized CDE
conversion patterns
emerge. Platform team
maintains developer
requirements.

Pilot use cases
enabled on CDE

No standards

Infrastructure

Infrastructure chosen
by developer and
additional platform
teams

Tiered, multi-cloud,
multi-platform
infrastructure
controlled by Platform
Engineering Team

Software defined,
scalable cloud.
Integrated with
enterprise IDP,
monitoring, security.

Minimally viable,
supported
infrastructure

Laptop or shadow IT

People

Local development is
now an edge case,
teams using
templates to build out
development
infrastructure

CDE only teams
approaching the
majority

Multiple teams
CDE only

Pilot group CDE only

Inconsistent
developer experience

Process

Platform engineering
provides pipeline for
templates,
infrastructure, and
maintains enterprise
integrations

Platform engineering
still maintains use
cases, but focuses
on scalability

Production grade
CDE deployed and
managed by
enterprise platform
engineering

Deploy and govern
a pilot CDE, iterate
and refine.

Practices, automation
and abstraction vary
from team to team

~5} Coder

STAGE O

Ad-hoc

This is the widest ranging stage of this model since it encompasses all teams at a pre-CDE
organization. At worst teams are mired in a non-standardized and poorly controlled environment. At
best they have begun to abstract their environments, standardize some processes, and — most
importantly — are aware of the organization-wide issues of this stage. The goal of this stage is to
catalog existing processes and identify a pilot group to work on the Foundational stage. The Ad-hoc
stage is generally characterized by these dimensions:

D

Tooling

Each team chooses foundational components such as libraries, frameworks, and
compilers as they see fit. Leads to inconsistent builds, bugs, and regressions.

Infrastructure

Coding and builds take place on laptops, workstations, and unsanctioned virtual

machines. Permission issues, access issues and hardware contention waste valuable time.
Non-standard architectures lead to hardware related bugs. Unsanctioned resources are risky
and expensive.

Cloud Development Environment Maturity Model ~5} Coder

o O
oo

People

Manual onboarding and enablement is lengthy and error
prone, time to first commit ranges from days to weeks.
Morale and productivity suffer from delays, lost work,
bugs, and regressions due to an inconsistent environment.
Developer experience rating ranges from extremely poor to
good: teams with best practices, abstraction, and some
automation have the best DevEx in this phase.

(®)

Process

Ranges from completely manual to team-based best
practices. On the low end of this range, developers are
selecting, installing, and manually configuring each tool
individually. Inconsistently configured or patched
environments proliferate “works on my machine” issues.
Productivity halts when developers perform maintenance
tasks. On the high end of the range, there are team-based
abstractions in the form of golden images plus automation
in the form of scripts and declarative configurations.

Cloud Development Environment Maturity Model

Adapting rating models like Net
Promoter Score (NPS) and System
Usability Scale (SUS) to measure
Developer Experience (DevEx)
allows organizations to assess and
improve the tools, environments,
and processes that developers
interact with daily.

7

Net Promoter Score (NPS):

Ask developers how likely they are to
recommend their development
environment or tools to others. This
captures the overall satisfaction and
loyalty developers feel towards their
work environment. By analyzing the
feedback from promoters, passives, and
detractors, organizations can identify
strengths and areas for improvement in
the developer experience.

System Usability Scale (SUS):

Developers rate statements about the
ease of use, efficiency, and intuitiveness
of the tools they use. The results provide
a quantifiable measure of the usability of
the development environment, helping to
identify pain points and prioritize
enhancements.

By leveraging these adapted rating
models, organizations can gain valuable
insights into the developer experience,
driving continuous improvements that
enhance productivity, satisfaction, and
overall development efficiency.

&) o7

This scenario is not ideal for any organization that depends on its developers. It
ranges from poorly controlled and unpredictable to abstracted but inconsistent.

The risks of stagnation are severe:

» High rate of developer attrition
e Longer development cycles and increased costs
e Negative effects on innovation and competitive advantage

e Lost incremental revenue and customer churn

No matter where an organization stands in the range outlined above, transcending this stage is crucial
for any growing organization, it is simply not scalable and in some cases unsustainable. It is not
necessary to build consensus or have a final goal at this point. This is the time to identify which team
to work with on a CDE pilot. Focus on the following dimensions to progress to the Foundational stage:

Tooling & Infrastructure

Assess the current situation. Catalog and grade variations in tooling and infrastructure.
ldentify any current best practices.

= People
22
Discuss best practices with each team, identify teams that have or are willing to follow a
best practice model. Target teams that are using the same base operating system as the
CDE (most likely Linux), this ensures minimal friction when enabling their tooling in a
workspace. Establish a DevEx rating model and establish an acceptable baseline. Assure
developers that the goal is simply to assess, not to eliminate any processes; there are

always edge cases in software development that necessitate a local environment.

@ Process

Determine which team to invite to the CDE pilot. Ideally the assessor finds a team that has
an abstracted and semi-automated process and an acceptable baseline rating for
developer experience. That is most likely the team to invite to the pilot.

Cloud Development Environment Maturity Model ~5} Coder

o} 08

STAGE 1
Foundational

The Foundational stage has a narrower focus, the goal of this
stage is to deploy a CDE that:
e Runs on supported infrastructure

e Supports the pilot team’s development projects without
carrying any technical debt over from Stage O

e Improve pilot team’s DevEx rating

The Foundational stage is characterized by these dimensions:

Tooling

Work with the pilot team to define requirements and select a CDE. Enable pilot team’s workspaces.
It is crucial to settle any workspace related technical debt at this point, build the workspaces
according to best practices on the CDE’s base operating system.

Most CDE vendors/providers offer a

— free-to-use tier that is fully functional
and usable for smaller teams and

Infrastructure projectg These offerings arg a g.reat
way to introduce CDE functionality to

Involve the platform and security teams at the start your team, but as your CDE usage

of this phase to evaluate the chosen CDE and increases you'll need the advanced

determine the best minimally viable, secure, and scaling and governance features that

supported infrastructure that is representative of the paid enterprise tiers offer.

the organization’s production systems.

If your CDE could grow to 50 or more
developers, considering enterprise
features from the start will ease any
scaling issues you may see in the future.

Cloud Development Environment Maturity Model ~>} Coder

&) 0o

People

Pilot team readies their projects and moves the first project to CDE. Iterate until DevEx rating for that
project is measurably better than their Ad-hoc baseline. Once a DevEx rating gain is established,
build a workspace for the pilot team’s next project, and repeat until the pilot team is CDE-only.

&

Process

Small team of platform engineers and pilot team work in conjunction to deploy and govern CDE,
iterate and refine workflow.

There are two types of risk at this stage. The first is simply stopping at this point. If the pilot team is
the only user of the CDE, the organization effectively regresses to Stage 0; the CDE becomes just
another team-based abstraction among many. The second risk is expanding too quickly. Other
teams will take notice and may want to start using the CDE at this point. However, a foundational
CDE is not enterprise ready and adding workloads at this point creates technical debt. Focus on the
deliverable of this stage: a CDE that supports one team that can be used as a baseline for an
enterprise CDE.

Cloud Development Environment Maturity Model

f_

S} 10

Enterprise-wide goals and use cases become apparent as this phase draws to a
close. Focus on the following dimensions to progress to the Defined stage:

Tooling

Catalog and prioritize use cases to enable during the Defined stage.
Create technical supportability collateral that define requirements to convert to a workspace pattern.

</>

Infrastructure

Begin preliminary design work on an enterprise grade infrastructure. It must conform to
organizational security standards, include at least one scalable cloud platform, and integrate with
existing enterprise systems; e.g. a hybrid cloud that runs federated instances of the same platform
both on-prem and in a public cloud and integrates with the organization's identity provider and
monitoring systems. Organizations that are already cloud-native hold an advantage here.

)
(=)
o O
oo

People

Generate buzz around the CDE; talk with teams who expressed interest.
Create a list of ideal teams to convert in the next stage. Define enterprise wide DevEx scoring model.

(®)

Processes

A great CDE is started as a ground-up effort that becomes fully backed by leadership. Identify a
process champion in leadership and present the findings from this stage. Work with the champion to
define goals for the Defined stage and beyond. Model how productivity and DevEx scoring gains are
multiplied in the next stages. Foster preliminary discussions about the organization’s visions for a
Golden Path for developers.

Cloud Development Environment Maturity Model ~>} Coder

-}

STAGE 2

Defined

gl

The goal of the Defined stage is to deploy an enterprise grade CDE that is stable,
secure, and scalable. This stage has a clearly defined, yet expansive scope including

the following deliverables:

Migrate the pilot group’s workspaces

Expand CDE usage to ideal teams

Decommission Foundational infrastructure

Establish a staging environment

The Defined stage is characterized
by these dimensions:

Tooling

Fully migrate the pilot team’s workspaces from the
Foundational CDE to the production CDE. Then
incrementally enable other ideal teams’ workloads.
Follow the same pattern from the Foundational stage:
settle technical debt and build workspaces according

to best practices on the CDE’s base operating system.

Standardize local-to-CDE conversion patterns. All
workspace requirement requests flow through the
platform engineering team in the form of a request/
enablement cycle; i.e. developers request a change to
their environment, the platform engineers update the
workspace template, and finally developers update
from the template.

Cloud Development Environment Maturity Model

Build out and integrate a long-lived production infrastructure

Technical Debt:

The accumulation of suboptimal
configurations, quick fixes, or shortcuts
that are taken to meet immediate
deadlines or reduce upfront costs. These
compromises often result in increased
complexity, fragility, and reduced
maintainability. Over time, this "debt"
incurs "interest" in the form of additional
effort required to address issues,
refactor, and implement new features,
leading to slower iterations and higher
long-term costs.

By proactively addressing technical debt,
organizations can streamline their
development processes, improve code
quality, and reduce the long-term costs
associated with maintenance and
rework. Moreover, minimizing technical
debt frees up resources, allowing teams
to focus on innovation and quickly adapt
to new challenges or market demands,
ultimately enhancing the organization’s
competitive edge.

~>} Coder

& &

Infrastructure

CDE is deployed on a software defined, scalable cloud platform. This could include on-prem, hybrid
on-prem/public, or public cloud. It is fully integrated with enterprise identity provider, monitoring,
and security systems. It is crucial to decommission the infrastructure used in the Foundational
stage and establish a staging environment that is representative of production. Use the staging
environment to vet all potentially breaking changes to the CDE.

o O
oo

People

Groups for each team and/or function are created in an enterprise identity provider. Developers
from multiple teams ready their projects to migrate to CDE. As with the Foundational stage, iterate
on a project until its DevEx rating is inline with the rating from the pilot team. Keep in mind that this
is a larger jump (stage O to stage 2) for these developers. Once an acceptable DevEx rating is
achieved, move on to the next project and repeat until these teams are CDE-only.

&)

Process

Production-grade CDE is deployed, managed, and observed by the enterprise platform
engineering team. Staging system is in place to vet all changes.

At this stage the CDE has gained significant traction and both tangible and intangible
benefits are realized. The journey is far from complete. Stagnating at this stage risks losing
continual incremental gains, losing expansion opportunities, and — most critically — waning
enthusiasm from the organization’s most advanced development teams. If the advanced
teams don’t experience progressive functionality and constantly reduced friction they could
abandon the CDE. Which leads the organization on a regressive path back to Stage 0.

Cloud Development Environment Maturity Model ~>} Coder

o} 13

As the organization moves through this stage, points of both refinement and
expansion become apparent. To progress to the Refined stage focus on the
following dimensions:

Tooling

Research the use of self-serve technologies such as the development container specification.
Also research converting some alternate use cases such as VDI and workspaces for
non-developers: data scientists, system operators, SREs, etc.

Infrastructure

Consider alternate cloud providers, computing platforms and hardware tiering. Developers may
need features and capabilities not available on the current platform. Advanced development use
cases may require additional resources while alternate use cases may run perfectly on less
powerful nodes.

o
=
o O
oo

People

Continue to generate buzz around the CDE. Form two peer teams composed of developers; one for
optimization and one for expansion. The optimization team focuses on accelerating innovation by
reducing friction. The expansion team focuses on identifying alternate use cases and setting DevEx
rating goals for each.

@

Processes

Work with platform and security teams to discover or implement internal systems that make self-
service possible such as container registries, software catalogs and software repositories. Continue
to work with CDE process champion to refine goals, and boost the visibility of the CDE.

Cloud Development Environment Maturity Model ~>} Coder

&) z

STAGE 3

Refined

The Defined stage provided a CDE that is useful to a significant number of
developers. The Refined stage aims to expand that CDE in both capabilities and user
population. The strategic importance of the CDE becomes apparent in this stage.
The goals of this stage are:

e Grow CDE usage

e Reduce developer friction

e Expand the computing platform

The Refined stage is characterized by these dimensions:

Tooling

The development container specification is introduced. The CDE is granted access to additional
enterprise systems such as software catalogs, secure container registries, and secure software
repositories to enable developer self-service processes.

At least one alternate use case is enabled via the platform team’s request/enablement cycle. An
alternate use case is defined as either a development use case that uses a different operating
system than the platform (such as Windows) or a non-development use case such as data science.
Windows development may require additional tooling and configurations such as secure browsers,
RDP clients, and the enterprise policies that go along with them.

Cloud Development Environment Maturity Model ~5} Coder

o} 15

Infrastructure

Authentication and authorization to at least one alternate cloud provider or platform are federated.
This could include multiple public cloud providers and/or multiple on-prem platforms spanned across
multiple datacenters. Multiple compute platforms are available for workspace deployment (Docker,
Kubernetes, VMs). Hardware tiering is enabled and determined per use case.

This stage aims to meet the CDE users where they are, with the hardware they need. For example,
providing an Al/ML developer on a different continent a workspace that is deployed in-region with
the required memory and GPU cores for the task. Or providing 100s of Windows workspaces in each
of the organization's large offices.

o O
oo

People

Up to this point, the platform team has been responsible for fulfilling the developers’ requirements
with a request/enablement cycle. This stage introduces developer self-service with the developer
container specification. It allows the platform team to maintain control over the templates and
infrastructure, but allows developer teams to fulfill their workspace dependencies in a secure and
scalable manner. This is a significant milestone in creating a Golden Path for developers.
Development teams work with the optimization team (as established in the previous stage) to adopt
the development container specification.

The Golden Path is a set of best practices, tools, and processes that guide developers to efficiently and
effectively use a CDE. It is a curated, opinionated approach designed to minimize friction, reduce errors, and
ensure that developers can focus on writing code rather than dealing with environment setup and
maintenance. It provides a clear, consistent workflow that all developers in the organization can follow,
leading to a more predictable and productive development process.

It is continuously refined based on feedback from developers and advancements in technology. It empowers

developers by providing a robust, low-friction experience, allowing them to spend more time on innovation
and less on troubleshooting or configuring their environments.

Cloud Development Environment Maturity Model

o} 16

Use cases so far have been narrowly scoped: teams of developers working on the native operating
system of the CDE. This stage introduces workspaces to enable developers who use Windows
systems or enable non-developer use cases such as data science and analysis. Alternate use cases
do not move towards self-service at this stage, they rely on the platform team’s request/enablement
cycle. These teams work with the expansion team (as established in the previous stage) and
enterprise security to enable alternate use cases.

(®)

Process

The platform team still owns the templating and infrastructure placement for workspaces; placement
and platform selection is determined by either performance or economic factors. The platform team
focuses on solving — and future proofing against — scaling issues related with self-serve, multi-cloud,
hardware tiering, and alternate use cases. Platform, security and leadership teams work together to
create governance, observability and security guidelines.

At this point the CDE is truly an enterprise-wide standard platform with room for continual growth
and improvement. The platform is solid and growth has become organic; teams are requesting
access then working with the expansion team to onboard with minimal overhead. Stagnation at this
stage poses a significant risk to platform growth, centered around scalability and delegation. If
these are not continuously improved it will lead to waning enthusiasm for the platform and a
regressive path for the organization.

g

To progress to the Optimized stage focus on the following dimensions:

Tooling

Catalog as many unconverted workloads as possible, grade, and rank as conversion candidates.

Infrastructure

Ensure any scaling issues with the increased growth and multi-cloud capabilities are solved.
Identify ideal uses for various cloud providers, computing platforms and hardware tiers.

o O
oo

People

Engage the optimization team to identify developers to delegate template maintenance.
Shift devcontainer enablement from optimization team to expansion team. Engage the
expansion team to identify additional self-service users and alternate use cases.

(®)

Process

Define guidelines for template delegation operations. Establish CI/CD pipeline for templates.
The CDE is a major enterprise resource at this point but there is always room for improvement.
Continue to work with CDE process champion to pave the Golden Path and boost the visibility
of the CDE.

17

Cloud Development Environment Maturity Model ~5} Coder

S}
STAGE 4
Optimized

During the Refined stage, the CDE met many of the
organization’s tactical requirements and matured into
a strategic system with a clear process.

The Optimized stage is a major inflection point for the
CDE; the organization’s strategy begins to center
around the CDE rather than the CDE simply meeting
the organization’s requirements. This is the final stage
of the maturity model so any efforts are continuous
and iterative.

The goals of this stage are:

e Continue to scale the platform and
reduce developer friction

e Enable tiered self-service

 Introduce a clearly defined Golden Path
for the organization’s development staff

The Optimized stage is characterized by the
following dimensions:

@

Tooling

As with the Refined stage, automation and alternate

use cases are continually vetted and added to the CDE.

A CI/CD pipeline has been deployed by the platform
team to allow developers to create, test, and maintain
their own templates, enabling full self-service. This
creates a tiered self-service model where teams can
mature to full self-service.

Cloud Development Environment Maturity Model

Tiered Self-Service:

A CDE can offer developers varying levels
of control over their environments,
allowing for flexibility and scalability based
on their expertise and needs. This
approach helps balance the ease of use
for developers with the governance and
oversight required by the organization.

Tier O:

Developers rely entirely on the platform
engineering team to set up and maintain their
development environments. Any changes or
updates to the environment require a request
from the developer, which the platform team
then implements. This tier is ideal for alternate
use cases and non-developer users

Tier 1:

Developers use pre-defined templates to define
the workspace hardware and networking while
using the devcontainer spec to define the
software dependencies. This allows developers
to adjust their workspace to meet specific
project needs while still maintaining the
consistency and security of the core
environment. It strikes a balance between
control and flexibility, enabling faster iterations
without sacrificing governance.

Tier 2:

Developers have complete control over their
development environment templates. This level
of autonomy accelerates development and
innovation, as developers can rapidly adapt
their environments to new tools or workflows
without waiting for platform team approval.
However, this tier also requires a higher level of
expertise and responsibility from developers to
ensure that their environments remain secure
and aligned with organizational standards.

~>} Coder

Infrastructure

The underlying infrastructure is the same as the Refined stage, although continuously and
incrementally improved. The major infrastructure change in this stage is developers are now
able to choose where to deploy their workspaces in a secure manner without intervention
from the platform team.

o O
oo

People

Developers are free to fully self-serve and smooth out any points of friction in their enablement
process; this accelerates innovation and competitive advantage. The optimization team’s scope
narrows to enabling full self-service. The expansion team continues to find and enable new use
cases and encourage progression through the self-service tiers.

(®)

Process

Tiered enablement, fewer teams are fully dependent on the platform team’s request/
enablement process. Most developers self-serving with either devcontainers or templates.
The organization’s Golden Path for developers is clearly defined: a process for teams wanting
to onboard to the CDE and progress to fully self-service. Platform team focuses on running
and maintaining CDE as just another platform.

Even though this is the final stage there are risks with stagnation. As with any strategic system, the
organization must ensure it is properly maintained, improved, and governed. Continual incremental

improvements ensure that the CDE is seen as the go-to platform.

19

Cloud Development Environment Maturity Model ~5} Coder

To continuously improve the CDE, focus on the following dimensions:

Tooling

Continually enable new use cases. Continually iterate on self-service processes.

</>

Infrastructure

Integrate ongoing CDE optimization with strategic organizational goals. For example, if the
organization needs to balance spending across multiple providers — or even completely move away
from a provider — utilize CDE’s multi-cloud capabilities to move workloads. Ensure the latest tech is
available to CDE users at the appropriate tiers. Continually iterate on automation.

o O
oo

People

Task the expansion and optimization teams to continuously find new use cases and encourage
self-service. Periodically assess DevEx rating for all users of the CDE.

(®)

Process

Utilize DevEx rating data to drive incremental improvements at all levels of the CDE. Ensure CDE
stays in compliance with all security and governance requirements. Work with process champion
to continuously adjust and improve the strategic goals of the CDE and Golden Path.

Cloud Development Environment Maturity Model ~5} Coder

-}

Conclusion:

The Cloud Development Environment Maturity Model offers a comprehensive framework for
organizations aiming to modernize and optimize their development environments. By progressing
through the maturity stages—Ad-hoc, Foundational, Defined, Refined, and Optimized—organizations
can systematically enhance their development processes, infrastructure, and tooling. This journey
not only drives efficiency and innovation but also aligns with broader organizational goals, ensuring
that the development environment remains scalable, secure, and adaptable to future challenges.

Achieving a mature CDE requires a clear understanding of the current state, a commitment to
incremental improvements, and active engagement from all stakeholders, including developers,
platform engineers, and leadership. As the CDE evolves, it becomes a strategic asset that empowers
teams, reduces friction, and fosters a culture of continuous improvement. By following the guidelines
and best practices outlined in this model, organizations can create a robust, self-service
development platform that not only meets today’s demands but also anticipates and adapts to future
needs, securing a competitive advantage in an ever-changing technological landscape.

". oy .' .. : ‘..' l L] . H Ai. \. .\ \ \ ‘t N \q“'- -.' .’o .\. - ;:......
. FEEEERERRR R ALY

Cloud Development Environment Maturity Model ~>} Coder

	Maturity Model 2
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21

