
Cars require seatbelts. Pill bottles 
need safety caps. Applications 
need web application firewalls 
(WAFs), bot management and 
API protection – and for good 
reason. The web application 

threat landscape is in a constant state of flux. From 
DevOps to new attack vectors, these changes can 
leave security professionals scrambling to safeguard 
their most prized digital assets.

The Open Web Application Security Project (OWASP) Top 10 list is 
an invaluable tool for accomplishing this. Since 2003, this list has 
sought to provide security professionals with a starting point for 

©2023 Radware Ltd. All rights reserved. The Radware products and solutions mentioned in this document are protected by trademarks, patents and pending patent applications of  
Radware in the U.S. and other countries. For more details, please see: https://www.radware.com/LegalNotice/. All other trademarks and names are property of their respective owners.

Understanding the OWASP TOP 10 
and How WAFs Can Mitigate Them

Which OWASP Vulnerabilities Are the Most 
Popular with Cybercriminals?
Based on data from Radware’s Quarterly DDoS and Application Threat Analysis Center, 
the most common OWASP Top 10 application vulnerabilities that cybercriminals exploit 
are Broken Access Control and Injection, the two of which typically comprise over half of 
all violations in any given quarter.

More specifically, predictable resource location attacks (which falls under A1: Broken 
Access Control) is witnessed nearly twice as often as the second-most-common 
violation – SQL Injection (which falls under Injection), according to the aforementioned 
online data. Predictable resource location attacks target hidden content and functionality 
of web applications. By guessing common names for file directories, an attack may be 
able to access resources unintended for exposure. Examples of resources that might be 
uncovered through Brute Force techniques include old backup and configuration files, 
web application resources yet to be published, and others.

OWASP Top 10 Overview and WAF Capabilities to Mitigate Threats 

A01:2017-Injection
A02:2017-Broken Authentication
A03:2017-Sensitive Data Exposure
A04:2017-XML External Entities (XXE)
A05:2017-Broken Access Control
A06:2017-Security Misconfiguration 
A07:2017-Cross-Site Scripting (XSS)
A08:2017-Insecure Deserialization
A09:2017-Using Components with Known Vulnerabilities 
A10:2017-Insufficient Logging & Monitoring

A01:2021-Broken Access Control 
A02:2021-Cryptographic Failures 
A03:2021-Injection
A04:2021-Insecure Design (New)
A05:2021-Security Misconfiguration
A06:2021-Vulnerable and Outdated Components 
A07:2021-Identification and Authentication Failures 
A08:2021-Software and Data Integrity Failures (New)
A09:2021-Security Logging and Monitoring Failures*
A10:2021-Server-Side Request Forgery (SSRF)* (New)

20212017

1 Risk: Broken Access Control
Improperly configured or missing restrictions on 
authenticated users allow them to access unauthorized 
functionality or data. Also, restrictions on what 
authenticated users are allowed to do are often not 
properly enforced.

Mitigation: Fastest Time to Protection
Penetration testing is essential for detecting nonfunctional access 
controls; other testing methods detect only where access controls are 
missing. It can take several weeks to test, produce and assess these 
reports and then implement necessary security changes. And the 
problem can be exasperated when four out of five organizations report 
at least a medium degree of manual work to make security policy 
updates to their WAF, according to Radware’s annual “State of Web 
Application Security Report.”

Any WAF should serve as a catalyst for stemming unauthorized access 
via authentication gateway functionality, single sign-on, user tracking 
and access controls to the web application based on user role, profile 
information and security token validations.

2 Risk: Cryptographic Failures 
Cryptographic failures (formerly known as Sensitive Data 
Exposure) focus on cryptography-related failures, which often 
lead to sensitive-data exposure or system compromise.

Many web applications and APIs contain vulnerabilities due 
to coding, thereby exposing sensitive data such as financial, 
healthcare and personally identifiable information. Attackers 
may steal or modify such weakly protected data to conduct 
credit card fraud, identity theft or other crimes. Sensitive 
data may be compromised without extra protection, such 
as encryption at rest or in transit, and requires special 
precautions when exchanged with the browser.

Mitigation: Encryption
Encryption is key, both for data at rest or in transit. Leading WAFs 
provide inspection and encryption of data, including SSL inspection and 
protection capabilities to eliminate security blind spots. This includes, 
but is not limited to, SSL traffic decryption and encryption, masking 
server identities and veiling sensitive information. An adaptive WAF 
that leverages automatic policy generation and machine learning 
capabilities to automatically create and apply security configurations 
and policies is also critical. Finally, any enterprise-grade firewall should 
support the encryption of ingress and egress traffic across both on-
premise and cloud-based infrastructures.

3 Risk: Injection
Injection flaws, such as SQL, NoSQL, OS and Lightweight 
Directory Access Protocol (LDAP) injection, have been a 
perennial favorite among hackers for some time, so it’s 
no surprise that this threat is still at the top of the list. An 
injection flaw occurs when suspicious data is inserted into 
an application as a command or query. This hostile data can 
trick the interpreter into executing unintended commands or 
accessing data without proper authorization.

The most common code injection is a SQL injection, which is 
an attack that is accomplished by sending malformed code 
to the database server. It’s a simple and quick attack type 
that almost anyone with internet access can accomplish, 
since SQL injection scripts are available for download and are 
easily acquirable.

Cross-site scripting (XSS) is now included as part of this 
category as well. XSS occurs whenever an application includes 
untrusted data in a new webpage without proper validation or 
updates an existing webpage with user-supplied data using a 
browser API that can create HTML or JavaScript. These flaws 
give attackers the capability to inject client-side scripts into 
the application to hijack user sessions, deface websites or 
redirect the user to malicious sites.

Mitigation: Positive Protection
Many web application security solutions leverage a negative security 
model, which defines what is disallowed while implicitly allowing 
everything else. Since attack signatures may generate false positives 
by detecting legitimate traffic as attack traffic, such rules tend to be 
simplistic, trying to detect the obvious attacks. The result is protection 
against the lowest common denominator.

A positive security model, which defines the set of allowed types and 
values, is required to provide proper protection where signature-based 
protection cannot fill the gap. In the case of a SQL injection, a positive 
security model screens user input for known patterns of attacks and 
leverages logic to tell the difference between legitimate user input and 
injection flaws.

Against XSS attempts, it’s important to make sure any WAF 
can provide signature- and rule-based protection with updated 
signatures (similar to a blacklist), identify scripting patterns and block 
malicious requests.

4 Risk: Insecure Design
This category focuses on risks related to design flaws. 
This means using more threat modeling for secure 
design patterns and principles in the earlier stages of 
the application development cycle. It is a broad category 
representing many different weaknesses. According to 
OWASP, “Secure design is a culture and methodology 
that constantly evaluates threats and ensures that code 
is robustly designed and tested to prevent known attack 
methods. Secure design requires a secure development 
lifecycle, some form of secure design pattern or paved road 
component library or tooling, and threat modeling.”

Mitigation: Secure Software Development
First, secure software development lifecycle (SDLC) methodologies 
must be adapted. Much of this revolves around the continuous 
integration and continuous development (CI/CD) pipeline. To 
that end, it’s critical to ensure that any web application security 
solution provides a series of core capabilities that address security 
assessment at the early stages of application deployment, including 
API management to configure the web application firewall in such 
environments, automatic policy generation to automatically create 
new security policies based on any new application, and integration 
with dynamic analysis security testing (DAST) tools to create security 
policies based on a DAST security assessment. 

In an unsecure SDLC environment, there is no one-size-fits-all capability 
to ensure application security. However, the following features can 
ensure a security policy is properly tailored to safeguard the application: 
security filters leveraging a positive/negative security model; IP-, geo-, 
and role-based policies; rate-limiting access to the server resources; use 
of a multilayered attack correlation detection engine.

5 Risk: Security Misconfiguration
Security misconfiguration remains one of the most 
commonly seen web application security issues to this day. 
This risk refers to improper implementation of controls 
intended to keep application data safe, such as insecure 
default configurations, incomplete or ad hoc configurations, 
open cloud storage, misconfigured HTTP headers, and 
perhaps most important, not patching or upgrading systems, 
frameworks, libraries, applications and components.

This OWASP category now includes XML external entities 
as well. Many older or poorly configured XML processors 
evaluate external entity references within XML documents. 
Attackers can use external entities for attacks, including 
remote code execution, and to disclose internal files and 
Server Message Block (SMB) file shares, conduct internal 
port scanning and launch denial-of-service attacks.

Mitigation: Ability to Learn
As notable ransomware and malware outbreaks in recent years (for 
example, WannaCry) have proven, system upgrades are critical. An 
adaptive WAF will leverage automatic policy generation and machine 
learning capabilities to automatically create and apply security filters 
and enforcement rules where security is misconfigured. It will evaluate 
the structure of a web application, set relevant security filters and 
analyze traffic properties from a production environment to build a 
dynamic network profile, thereby maximizing security while minimizing 
false positives.

A WAF should be able to parse and inspect protocols and structured 
documents, including HTTP and HTTPS traffic, POST requests and 
XML JSON schemas. In addition, the aforementioned machine learning 
algorithms can learn XML and JSON structures and schemas for 
enforcement as part of the validation phase and create security policies.

6 Risk: Vulnerable and Outdated Components
Formerly referred to as Using Components with Known 
Vulnerabilities, various components, such as libraries, 
frameworks, and other software modules, that run with 
the same privileges as the application. If a vulnerable 
component is exploited, such an attack can facilitate serious 
data loss or server takeover. Developers frequently don’t 
know which open source or third-party components are in 
their applications, making it difficult to update components 
when new vulnerabilities are discovered. These components 
can undermine application defenses and enable various 
attacks and impacts.

Mitigation: Knowledge of Where the Holes Exist
Any WAF that provides integration with programs such as 
Microsoft’s Windows Server Update Services can protect against 
exploitations of vulnerable and outdated components by screening 
client requests and server responses. In addition, security updates 
and threat intelligence feeds are essential to keep security teams in 
the know and facilitate quicker responses to maximize protection 
and reduce exposure.

7 Risk: Identification and Authentication 
Failures (Formerly Broken Authentication)
When an application’s functions are not implemented 
correctly, the door is left open for criminals to break in. 
Attackers can compromise passwords, keys or session 
tokens or exploit other implementation flaws to assume 
other users’ identities temporarily or permanently. Sessions 
should be unique to individual users. Without some session 
management, an attacker can sneak in disguised as a user to 
access valuable data.

Mitigation: Challenge and Validate 

Securing an application in terms of access control is no easy task. 
Authenticating users by having them provide their identity and 
challenging them to verify their identity is a key first step. Single 
sign-on and multifactor authentication are also key steps that reduce 
the risk of compromised accounts.

A key second step is to have a WAF that proactively encrypts session 
parameters between network and client, proactively inspects 
login attempts and thwarts HTTP sessions via code-encrypting, 
cryptographic capabilities.

8 Risk: Software and Data Integrity Failures
A new category for 2021, Software and Data Integrity 
Failures refers to code and infrastructure that fails to protect 
against integrity violations. This includes software updates, 
critical data and CI/CD pipelines that are implemented 
without verification. An example of this includes objects or 
data encoded or serialized into a structure that an attacker 
can modify. Another is an application that relies on plugins, 
libraries or modules from untrusted sources. Insecure CI/CD 
pipelines that can introduce the potential for unauthorized 
access, malicious code or system compromise also fit into 
this category. Lastly, applications with automatic update 
functionality – in which updates are downloaded without 
sufficient integrity verification and applied to a previously 
trusted application – are considered software and data 
integrity failures because attackers could infiltrate the 
supply chain to distribute their own malicious updates. 

Insecure deserialization is now part of this category. Insecure 
deserialization often leads to remote code execution to 
tamper with or delete serialized objects or elevate privileges. 
Even if deserialization flaws do not result in remote code 
execution, they can be used to perform attacks, including 
replay or injection attacks and privilege escalation.

Mitigation: Best of Both Worlds
To mitigate insecure deserialization vulnerabilities, it’s useful to 
identify WAFs that provide the best of both worlds, combining 
negative (defining what is forbidden and accepting the rest) and 
positive (defining what is allowed and rejecting the rest) security 
models. This winning combination should leverage various WAF 
access control filters such as cookie encryption, XML and JSON 
parsing, parameters enforcement and more.

9 Risk: Security Logging and Monitoring Failures
Security Logging and Monitoring Failures (formerly Insufficient 
Logging and Monitoring), coupled with missing or ineffective 
integration with incident response systems, is the bedrock 
for the majority of incidents, allowing attackers to run amok, 
attacking further systems and tampering with, extracting or 
destroying data. Many studies show that the time to detect is 
measured in weeks or months, typically detected by external 
parties rather than internal processes or monitoring. Typical 
attacks seeking to exploit these vulnerabilities can include 
SQL injections, XSS, cross-site request forgery, server-side 
request forgery, cookie poisoning, and Brute Force attacks.

Attackers rely on the lack of monitoring and timely 
response to achieve their goals without being detected. 
Most successful attacks start with vulnerability probing. 
Allowing such probes to continue can raise the likelihood of 
successful exploit to nearly 100%.

Mitigation: Suite Solutions Versus Best of Breed
To address the issue of internal processes, it’s vital to think like an 
attacker and internally test and audit to discover if an organization 
has sufficient monitoring. If it lacks this “white hat hacker” expertise, 
the cybersecurity vendor chosen as a partner must provide 
distributed denial-of-service (DDoS) mitigation expertise via a team 
of security experts.

These same experts should also play a role in the second-biggest 
concern, which is real-time monitoring and detection. Timely 
detection of malicious malware or snooping hackers comes down 
to best-of-breed versus suite offerings. Stopping cyberattacks 
in near-real time is best accomplished through a single vendor 
attack mitigation system. Many organizations leverage best-of-
breed mitigation tools from different vendors. This hodgepodge 
collection results in poor communication and detection. Suite WAF 
and DDoS solutions can more effectively communicate, setting 
network traffic baselines and comparing data points to quickly detect 
when something is awry, in addition to providing enterprise-grade 
monitoring and management dashboards and analytics.

10 Risk: Server-Side Request Forgery
Server-side request forgery (SSRF) occurs when a web 
application fetches a remote resource without validating the 
user-supplied URL. An attacker can coerce the application to 
send a crafted request to an unexpected destination, even 
when protected by a firewall, VPN or other type of network 
access control list. Though SSRF shows a relatively low 
incidence rate in the data OWASP reviewed, this category 
was added based on industry survey results. Users are 
concerned that SSRF attacks are becoming more prevalent 
and potentially more severe due to the increased use of 
cloud services and the complexity of architectures.

Mitigation: Be Positive
A positive security model is critical to successfully mitigate the risks 
associated with the SSRF vulnerability. To that end, it’s important to 
keep the following capabilities in mind when evaluating a WAF: API 
security protection, parameter filters, strong input validation, sensitive 
data exposure and signature creation related to direct file access - all 
of which require a WAF that can employ a positive security model. 

ensuring protection from the most common and virulent threats, 
application misconfigurations that can lead to vulnerabilities, as well 
as detection tactics and remediations.

The OWASP Top 10 list for 2021 reflects a significant overhaul, 
debuting these brand-new categories: Insecure Design, Software 
and Data Integrity Failures and Server-Side Request Forgery. These 
point to an increasing focus on architectural vulnerabilities and going 
beyond surface-level bugs for the benchmark in software security. 

Just like the adaptive threat landscape it seeks to define, this list 
is updated to continue to serve as an industry benchmark for the 
application security community. This piece provides an overview 
of the 2021 OWASP Top 10 list and technical capabilities security 
professionals should consider when evaluating WAFs.

Learn More About What Comprehensive Application Security For Any Environment Means 

Contact Us  

The OWASP Top 10 is not intended as “one list to rule them all,” 
but rather serves as a great starting point for application security 
programs and WAF evaluation. It serves as a benchmark for 
empowering improved people, processes and technology.

Successful organizations must establish and use repeatable 
processes and security controls, testers should establish 
continuous application security testing, application managers need 
to take charge of the application lifecycle and the organization 

needs to have an application security program in place that 
effectively coordinates across all facets of its infrastructure.

To that end, selecting the right WAF vendor to partner with is a 
critical step in executing these concepts. Be sure any WAF solution 
your organization is evaluating not only meets your organization’s 
existing security needs but is flexible enough to adapt to future 
infrastructure environments, business needs and attack vectors.

2021 OWASP Top 10  
Application Vulnerabilities

A1: Broken Access Control

A2: Cryptographic Failures

A3: Injection

A4: Insecure Design [NEW]

A5: Security Misconfiguration

A6:  Vulnerable and Outdated Components 

A7:  Identification and  
Authentication Failures

A8:  Software and Data Integrity  
Failures [NEW]

A9:  Security Logging and Monitoring 
Failures

A10:  Server-Side Request Forgery [NEW]

Common Web Application 
Attacks and Threats

SQL Injection

Cross-Site Scripting 

Cross-Site Request Forgery

 Server-Side Request Forgery

Protocol

Irregular Expressions

Denial of Service

Cookie Poisoning

Zero Day

Brute Force

Local File Inclusion and Remote  
File Inclusion

https://www.radware.com/resources/ddosappreport-2/
https://www.radware.com/solutions/application-protection/
https://www.radware.com/contactus/

