
4 ways to reduce
cloud native
observability costs
Affordably keep your systems and your

business running at top performance

EBOOK

EBOOK | 2

The cloud native observability challenge
Companies of all sizes are rapidly moving to cloud native technologies and practices. This modern strategy
offers speed, efficiency, availability, and the ability to innovate faster, which means organizations can seize
business opportunities that simply aren’t possible with a traditional monolithic architecture.

Yet moving to an architecture based on containers and microservices creates a new set of challenges that,
if not managed well, will undermine the promised benefits.

Exploding observability data growth

Rapid cost increases

Cloud native environments emit a massive amount of monitoring data —
somewhere between 10 and 100 times more than traditional VM-based
environments. This is because every container/microservice is emitting as
much data as a single VM. Additionally, service owners start adding metrics to
measure and track more granularly to run the business. Scaling containers
into the thousands and collecting more and more complex data (eg: higher
data cardinality) results in data volume becoming unmanageable.

The explosive growth in data volume and the need for engineers to collect an
ever-increasing breadth of data has broken the economics and value of
existing infrastructure and application monitoring and tools. Costs can
unexpectedly spike from a single developer rolling out new code. Observability
data costs can exceed the cost of the underlying infrastructure.

EBOOK | 3

To understand the balance between cost and insight, it’s important to understand cardinality. This is the

number of possible ways you can group your data, depending on its properties, also called dimensions.

Metric cardinality is defined as the number of unique time series that are produced by a combination of

metric names and associated dimensions. The total number of combinations that exist are cardinalities.

The more combinations that are possible, the higher a metric’s cardinality is. Here’s a delicious practical

example: purchasing fine cheese.

Cardinality: A primer

As the amount of metrics data being produced grows, the pressure on the observability platform grows,

increasing cost and complexity to a point where the value of the platform diminishes. So how do

observability teams take control over the growth of the platform’s cost and complexity, without dialing

down the usefulness of the platform? This eBook describes the trade-offs between cost and value that can

come with investing in observability. It specifically dives into four ways you can significantly reduce costs

and still get all the promised benefits from your observability platform:

In a recent survey of 500 engineers,

If your only preference is that the cheese you buy is made of sheep’s milk, your data would have just one

dimension. Analyze 100 different kinds of cheese based on that dimension, you’d have 100 data points,

each labeling the cheese as either sheep’s milk-based or not (made from another source). But then you

decide you only want sheep’s milk cheese made in France. That would add another dimension to track

for each cheese made of sheep’s milk — the country of origin. Think of all the cheese-producing countries

in the world — about 200 — and you can understand how the cardinality, or the ways to group the data,

can quickly increase.

Understanding data sets

said their business

can't innovate effectively

without good observability.

71% said having a strong observability

function provides the foundation

for all business value.

67%

1.

2.

Limit dimensionality

Use downsampling

Lower retention

Use aggregation

3.

4.

EBOOK | 4

With the transition from monolithic to cloud native environments, there’s been an explosion of metrics

data in terms of cardinality. This is because microservices and containerized applications generate

metrics data an order of magnitude more than monolithic applications on VM-based cloud

environments. To achieve good observability in a cloud native system, then, you need to deal with

large-scale data and take steps to understand and control cardinality.

Controlling cardinality

If you then decide to analyze the data based on the type of cheese, it adds many hundreds of other

dimensions for grouping (think of all the different kinds of cheese in the world). Finally, you decide you

want to only consider Camembert, and group Camembert cheese only by whether it was made with

raw milk, warm milk, or completely pasteurized milk. That’s three more dimensions. You’d be right in

thinking that, with all these dimensions, the cardinality would be high — even in traditional on-premises,

VM-based environments. A key point, it’s difficult to calculate the overall cardinality of a data set. You

can’t just multiply together the cardinality of individual dimensions to know what the overall cardinality

is — you will frequently have dimensions that only apply to a subset of your data.

In addition to cardinality, it’s important to understand two other terms when managing data quantity

in an observability platform: resolution and retention.

From 150,000 to 150 million metrics with cloud native architecture

Cloud native environmentVirtual-machine based environment

Virtual Machine

Service

HTTP routes

VM host

HTTP routes

Service

Environment
/version

CNTR CNTR CNTR

CNTR CNTR CNTR

CNTR CNTR CNTR

CNTR CNTR CNTR

POD

A simple VM-based architecture A more complex container-based architecture

EBOOK | 5

Resolution

is the interval of the measurement; how often

a measurement is taken. This is important

because a longer interval often smooths out

peaks and troughs in measurements, making

them not even show up in the data; time

precision is an important aspect of catching

transient and spiky behaviors.

Retention

is how long high-precision measurements are

kept before being aggregated and

downsampled into longer-term trend data.

Summarizing and collating reduces

resolution, trading off storage and

performance with less accurate data.

When it comes to cardinality in metrics, you can classify dimensions into three high-level buckets to

consider the balance between value and cardinality:

Classifying cardinality

High value

These are the dimensions you need to

measure to understand your systems, and

they are always or often preserved when

consuming metrics in alerts or dashboards. An

example is including service/endpoint as a

dimension for a metric tracking request

latency. There’s no question that this is

essential for visibility to make decisions about

your system. But in a microservices

environment, even a simple example like this

can end up adding quite a lot of cardinality.

When you have dozens of services each with a

handful of endpoints, you quickly end up with

many thousands of series even before you add

other sensible dimensions such as region or

status code.

Low value

These dimensions are of more questionable

value. They may not even be intentionally

included, but rather come because of how

metrics are collected from your systems. An

example dimension here is the instance

label in Prometheus — it is automatically

added to every metric you collect. Although

in some cases you may be interested in

per-instance metrics, looking at a metric

such as request latency for a stateless

service running in Kubernetes, you may not

look at per-instance latency at all. Having it

as a dimension does not necessarily add

much value.

EBOOK | 6

No value (useless or even harmful)

These are essentially anti-patterns to be avoided at all costs. Including them can result in serious

consequences to your metric system’s health by exploding the amount of data you collect and

causing significant problems when you query metrics.

Each team has to continuously make accurate trade-offs between the cost of observing their service

(or application), and the value of the insights the platform drives. This sweet spot will be different for

every service, as some have higher business value than others, so those services can capture more

dimensions, with higher cardinality, better resolution, and longer retention than others.

This constant balancing of cost and derived value also means there is no easy fix. There are, however,

some things you can do to keep costs in check.

4 ways to keep your observability costs low

The simplest way of managing the explosion of observability data is by reducing what dimensions

you collect for metrics. By setting standards on what types of labels are collected as part of a metric,

some of the cardinality can be farmed out to a log or a trace, which are much less affected by the

high cardinality problem. And the observability team is uniquely positioned to help teams set

appropriate defaults for their services.

These standards may include how and what metrics will use what labels, moving higher cardinality

dimensions like unique request IDs to the tracing system to unburden the metrics system.

This is a strategy that limits what is ingested, which reduces the amount of data sent to the metrics

platform. This can be a good strategy when teams and applications are emitting metrics data that is

not relevant, reducing cardinality before it becomes a problem.

1. Limit dimensionality

!EBOOK | 7

Downsamping is a tactic to reduce the overall volume of data by

lowering the sampling rate of data. This is a great strategy to

apply, as the value of the resolution of metrics data diminishes as

it ages. Very high resolution is only really needed for the most

recent data, and it’s perfectly ok for older data to have a much

lower resolution so it’s cheaper to store and faster to query.

Downsampling can be done by reducing the rate at which metrics

are emitted to the platform, or it can be done as it ages. This

means that fresh data has the highest frequency, but more and

more intermediate data points are removed from the data set as

it ages. It is of course important to be able to apply resolution

reduction policies at a granular level using filters, since different

services and application components across different

environments need different levels of granularity.

By downsampling resolution as the metrics data ages, the amount

of data that needs to be saved is reduced by orders of magnitude.

Say we downsample data from 1 second to 1 minute, that is a 60x

reduction of data we need to store. Additionally, it vastly improves

query performance.

A solid downsampling strategy includes prioritizing what metrics

data (per service, application, or team) can be downsampled,

and determining a staggering age strategy. Often, organizations

adapt a week-month-year strategy to their exact needs, keeping

high-resolution data for a week (or two) and stepping down

resolution after a month (or two) — and after a year, keeping a few

years of data. With this strategy, teams retain the ability to do

historical trend analysis with week-over-week, month-over-

month, and year-over-year.

2. Use downsampling

By lowering retention, we’re tweaking the total amount of metrics

data kept in the system by discarding older data (optionally after

downsampling first).

By classifying and prioritizing data, we can get a handle on what

data is ephemeral and only needed for a relatively short amount

of time (such as dev or staging environments or low-business-

value services), and what data is important to keep for a longer

period of time to refer back to as teams are triaging issues. Again,

being able to apply these retention policies granularly is key for

any production-ready system, as a one-size-fits-all approach just

doesn’t work for every metric alike.

For production environments, keeping a long-term record, even at

a lower resolution, is key to being able to look at longer trends and

being able to compare year-over-year. However, we don’t need all

dimensions or even metrics for this long-term analysis. Helping

teams choose what data to keep, at a low resolution, and what

metrics to discard after a certain time will help limit the amount of

metrics data that we store, but never look at again.

Similarly, we don’t need to keep data for some kinds of

environments, such as dev, test, or staging environments. The

same is true for services with low business value, or non-customer

facing (internal) services. By choosing to limit retention for these,

teams can balance their ability to query health and operational

state, without overburdening the metrics platform.

EBOOK | 8

3. Lower retention

Instead of throwing away intermediate data points, aggregate

individual data points into new summarized data points. This

reduces the amount of data that needs to be processed and

stored, lowering storage cost and improving query performance

for larger, older data sets.

Aggregation can be a good strategy because it lets teams

continue to emit highly dimensional, high-cardinality data from

their services, and then adjust it based on the value it provides as

it ages.

4. Use aggregation

INGESTION

CONTROL PLANE

DATA STORE

QUERYING

DASHBOARDS
& ALERTS

EBOOK | 9

While tweaking resolution and retention are relatively

simple ways to reduce the amount of data stored by

deleting data, they don’t do much to reduce the

computational load on the observability system. Because

teams often don’t need to view metrics across all

dimensions, a simplified, aggregate view (for instance,

without a per-pod or per-label level) is good enough to

understand how your system is performing at a high level.

So instead of querying tens of thousands of time series

across all pods and labels, we can make do with querying

the aggregate view with only a few hundred time series.

Aggregation is a way to roll up data into a more

summarized, but less-dimensional state, creating a

specific view of metrics and dimensions that are

important. The underlying raw metrics data can be kept

for other use cases, or it can be discarded to save on

storage space and to reduce cardinality of data if there is

no use for the raw unaggregated data.

There are two schools of aggregation:

streaming vs. batch.

With stream aggregation, metrics data is

streaming continuously, and the aggregation

is done in memory on the streaming ingest

path before writing results to the time series

database. Because data is aggregated in

real-time, streaming aggregation is typically

meant for information that’s needed

immediately. This is especially useful for

dashboards, which need to query the same

expression repeatedly every time they refresh.

Steaming aggregation makes it easy to drop

the raw unaggregated data to avoid

unnecessary load on the database.

Batch aggregation first stores raw metrics in

the time series database, and periodically

fetches them and writes back the

aggregated metrics. Because data is

aggregated in batches over time, batch

aggregation is typically done for larger

swaths of data that isn’t time-sensitive. Batch

aggregation cannot skip ingesting the raw

non-aggregated data, and even incurs

additional load as written raw data has to be

read, and re-written to the database, adding

additional query overhead.

The additional overhead of batch

aggregation makes streaming better suited

to scaling the platform, but there are limits to

the complexity real-time processing can

handle due to the real-time nature; batch

processing can deal with more complex

expressions and queries.

Stream vs batch

Before you adopt a cloud native observability platform, be sure it will help you keep costs low by enabling you to

understand the value of your observability data as well as shaping and transforming data based on need,

context, and utility. Get more from your investment, too, with capabilities that permit you to delegate

responsibility for controlling cardinality and growth and continuously optimize platform performance.

The cloud native Chronosphere observability platform does all this, and more. It helps you keep costs low by

identifying and reducing waste. It also improves engineers’ experience by reducing noise. Best of all, teams

remediate issues faster with Chronosphere’s automated tools and optimized performance.

Rethink observability; control your costs

Learn more and
watch a demo at
chronosphere.io

https://go.chronosphere.io/request-a-demo.html?utm_source=chronosphere&utm_medium=pdf

