

Why Prophecy.. 4
The case for a new ETL tool... 4
Prophecy as a low-code tool for data practitioners...5

Prophecy lakehouse architecture tour.. 8
Integrations..15

Databricks..15
Git... 16
SQL...18
Airflow.. 19

Prophecy architecture.. 21
Users and teams...21
Data fabrics...22
Projects... 23
Unified metadata..24
Data pipelines... 25

What is a pipeline?... 25
Running a pipeline..26

Jobs... 26
Data lineage..28
Code generation and Git...29

Extensibility..30
Custom gems... 30
Gem builder... 31
Dependencies...32
UDFs.. 32

Using Prophecy to construct data pipelines... 33
Gems... 33

Deploying pipelines �CI/CD�.. 34
Steps for deploying pipelines... 34
Unit testing... 36

Output rows equality... 36
Output predicates.. 36

Working with other tools... 36

2 | The low-code lakehouse architecture guide

Prophecy installation and deployment.. 38
Cloud-managed and on-premises infrastructure...38
Deployment architecture...38
Prophecy deployment components...40
Security... 42

Authentication.. 42
Authorization.. 43
Encryption...43

Upgrades.. 43
Monitoring...43

Conclusion..45

Appendix.. 46
Sources and targets Gems... 46
Transform Gems...48
Join and Split Gems...49
Custom Gems...49
Subgraph Gems..50

3 | The low-code lakehouse architecture guide

Why Prophecy
The case for a new ETL tool
Data engineering is complex. Many enterprises encounter numerous barriers that prevent
them from getting value from their data. Data practitioners are struggling to build the next
generation of data products. Collecting, storing, processing and analyzing data becomes
slow, complicated and hard to maintain. Enterprises have their pick of modern, robust
execution engines, but their complexity prevents users from being productive. Significant
pains include challenges for individual contributors to learn business and technical
complexities, leading to team silos and collaboration challenges. Very few organizations
provide a self-service toolkit.

Apache SparkTM is an incredibly powerful execution engine that supports large-scale data
processing. It’s reliable, flexible and highly scalable. But, with its power, comes complexity.
To onboard, a new data engineer must learn the ins and outs of distributed systems, data
storage and data processing in various business verticals. Experts in these broad, highly
technical areas are very limited. The knowledge required to build a flexible, robust and
performant data stack demands many years of knowledge that can only be obtained by
working with large-scale data platforms.

Promoting standardized, high-quality and well-documented code to production is
complicated. Many organizations need more collaboration between teams and team
members. When team members do not communicate, multiple engineers write the same
code, with various standards and quality. Siloed teams find maintenance expensive and
grueling because only the handful of engineers that wrote the code can understand it.

Businesses must endure long design and data implementation processes, long onboarding
cycles, expensive maintenance, and poor data quality, resulting in inaccurate business
intelligence �BI�. Complexities and inconsistencies create silos between operations,
platforms, infrastructure and analytics teams. Silos prevent teams from gathering accurate
business and technical requirements to build functional and optimized data products.
Teams are pitted against each other because requirements are thrown "over the wall,"
delivered without understanding the business need.

Instead, business and data teams need a self-serve paradigm.

4 | The low-code lakehouse architecture guide

Prophecy as a low-code tool for data practitioners
Prophecy’s low-code approach with Apache Spark combines a drag-and-drop visual
interface, performance and management of traditional warehouses with the flexibility and
scalability of data lakes to deliver a modern, low-code data lakehouse architecture. This
architecture allows all data practitioners to build out complex pipelines easily, quickly and
at scale.

Many data teams need to onboard new data quickly to meet business needs. Prophecy
provides these capabilities using a visual user interface and built-in transformation and
enrichment features. Instead of writing thousands of lines of code that few people can
understand, a feature-rich UI brings everyone together to build pipelines in minutes.
Prophecy uses gems — configurable visual entities representing data sources,
transformations, targets and jobs — as building blocks. Organizations find it easy to
standardize their development environment using gems. They also enable other teams to
reuse these abstractions. Prophecy eliminates duplicated team efforts to reduce
development time and resource costs. If a team discovers a pipeline they want to reuse,
they can import it into their own project with a few clicks. Code reuse is a central theme in
Prophecy, with the ability to reuse individual gems, pipelines or even a portion of a
pipeline. In addition to easy building blocks, Prophecy provides popular features such as
data lineage, quality checks and governance out-of-the-box.

Traditional data warehouses have scalability and usability concerns. Data teams are
moving from classic, centralized data warehouses to a lakehouse architecture. There, data
persists in its raw form on low-cost cloud storage in open formats. The architecture also
separates compute and storage layers, and supports diverse workloads while providing
management and governance capabilities.

5 | The low-code lakehouse architecture guide

Prophecy is used to migrate data from legacy data warehouse environments to a modern
data lakehouse architecture powered by Databricks, as described in the picture below.

A powerful architecture isn’t valuable if users can’t use it. Data engineers can't build data
products correctly without understanding the products’ use cases. Analysts shouldn’t have
to wait for data engineers to finish building a pipeline to check on data quality and results.
All data practitioners should be capable of transforming from raw data in the lakehouse’s
bronze layer to usable BI without convoluted processes and extensive coding.

With Prophecy and Databricks, BI users and data scientists can self-serve by using a visual
tool and collaborating with engineers to ensure the data meets business and technical
requirements. The code generated by Prophecy from each data practitioner is committed
to Git and follows software development best practices. This paradigm allows teams to
work together instead of in silos, providing data transparency to all data practitioners. The
architecture also lays out a single version of truth because data is stored in its raw form in
cloud storage. If data processing makes an error, it’s easy to replay data from its raw form.

Prophecy enforces data consistency downstream to avoid wrong business decisions
caused by poor data quality. Once a few data pipelines are developed, many components
can be reused to speed up new data onboarding. Prophecy also makes the iteration
process extremely fast because users can drag and drop existing entities into new
pipelines.

Understanding that ease of use and fast iterations do not translate to limitations is
essential. Prophecy is a visual ETL tool with built-in extensibility and customization. It fits
the user’s data ecosystem by keeping itself open and extensible. Popular tools such as
Airflow, Kafka and Splunk integrate easily into the lakehouse ecosystem for streaming, log

6 | The low-code lakehouse architecture guide

analytics and workflow management use cases. Customizable gems and UDFs extend
Prophecy further to address specific needs. The Prophecy engine translates visual
components into open-source code. Users’ code sits natively on Git and can be shared
securely. The users can leverage the CI/CD capabilities to promote their code from
development and testing to production in a reliable, standardized environment.

Prophecy was born from the need for a tool that allows data practitioners to collaborate
and self-serve in order to deliver data products quickly. The low-code lakehouse
architecture brings visual interface, code, BI and machine learning �ML� users together for
collaboration. Prophecy users can onboard and deploy a new data product in one sprint
(days) instead of multiple sprints (weeks and months).

7 | The low-code lakehouse architecture guide

Prophecy lakehouse
architecture tour

A lakehouse is an open architecture that combines the best elements of data lakes and
data warehouses. Lakehouses are enabled by a new system design: implementing similar
data structures and data management features to those in a data warehouse, directly on
top of low-cost cloud storage in open formats.

Prophecy is a feature-rich platform on top of the data lakehouse. Data engineers, visual
ETL developers, data analysts and data scientists become productive quickly on the
Databricks lakehouse using Prophecy’s low-code user interface.

Prophecy provides a visual development, deployment and management environment for
building data pipelines. As a user drags and drops gems to build out their pipelines,
Prophecy simultaneously generates high-quality Apache Spark code stored on Git — code
that provides more clarity and optimality than hand-written Spark code.

8 | The low-code lakehouse architecture guide

The lakehouse ecosystem consists of sources supporting both streaming and batch
workloads (under operational systems in the diagram). File-based sources are prevalent in
batch processing, representing a cost-effective and resilient storage layer that scales
independently and is decoupled from compute. Event-based sources usually work with
streaming pipelines. A messaging system such as Kafka is ideal for pulling events
continuously. Prophecy provides built-in source gems for both batch and streaming
pipelines.

The processing layer is responsible for data transformation, aggregation and enrichment.
The lakehouse architecture takes raw data consumed from sources (bronze), refines the
data, cleanses the data (silver) and transforms it into consumption-ready tables (gold).
Prophecy provides the visual layer on top of Spark APIs to build the transformation layer
with drag-and-drop components. The UI layer also allows data observability and
governance. Different teams can reuse and share entities built in this layer using Prophecy.

After the data is prepared, analytics tools consume serving-ready data from the gold layer
to build BI reports, machine learning models, near real-time dashboards and applications
(analytics in the diagram). Prophecy automatically applies all the best practices to your
tables (e.g., Z-ordering) and generates the most efficient, Databricks-approved code.
Prophecy works well with Delta Lake by reading from and writing to Delta tables. It also
supports more complex constructs, such as slowly changing dimensions.

Prophecy users can build and manage entities from the pipeline builder canvas. The UI —
which has a project browser located on its left-hand side — makes it seamless to navigate

9 | The low-code lakehouse architecture guide

between projects, pipelines, subgraphs, datasets and jobs. Code generated from projects
is persisted on Git.

Major Prophecy entities:

● Projects — Git repositories that store all Spark, Airflow and metadata code

● Data pipelines— Various ETL/ELT tasks written in PySpark, Scala or SQL

● Jobs— The orchestration of data pipelines written in Databricks Jobs or Airflow

● Teams— Users grouped in different teams with assigned ACL

● Fabrics — Connections to Databricks workspace

● Datasets — Representations of where data is stored and the schema of the data

10 | The low-code lakehouse architecture guide

A Prophecy user can toggle between design and code views. In the code view, for
example, users can view a pipeline stored as PySpark, Sclala or SQL in full transparency.
�Note, Prophecy does not generate any preparatory code to maximize extensibility and
customizations.)

Every project in Prophecy is a fully-fledged Git repository that’s integrated with Git
providers. As mentioned earlier, every change in gems (the visual elements) generates
high-quality code in PySpark, Scala or SQL committed to a branch — code Prophecy
ensures follows software engineering best practices.

The typical software engineering process involves committing your code changes,
resolving any Git conflicts, pushing them to release branches, getting them approved,
running any integration tests, building all the artifacts and, finally, deploying them to
clusters.

11 | The low-code lakehouse architecture guide

Prophecy data fabrics are connected to Databricks workspaces. The diagram above shows
three fabrics connected to three workspaces. Each fabric is a dedicated functional
execution environment for development, staging and production, and may have one or
more clusters. A pipeline must be attached to a cluster for execution. Bronze, silver and
gold tables will be populated when pipelines are executed.

The administrator of a team can configure multiple fabrics associated with workspaces.
The size of clusters can be configured based on the workload (we provide sizing guidelines
under the upcoming “Prophecy deployment components” section).

12 | The low-code lakehouse architecture guide

Pipelines can run interactively by clicking the Play button or scheduled periodically as jobs.
Jobs can be orchestrated by Databricks Workflows (recommended), a fully-managed
orchestration service that’s deeply integrated with the lakehouse platform, or Apache
Airflow (advanced). A Prophecy job is a way to run your data pipelines using a data fabric.
A job consists of a single pipeline or a large, multi-pipeline workflow with complex
dependencies. You can run your pipelines immediately or periodically. Prophecy captures
additional metrics and data profiles for observability. You may also set up automated alerts
to monitor how the data changes every run.

13 | The low-code lakehouse architecture guide

As mentioned earlier, data fabric is a logical execution environment. It includes everything
required to run a data pipeline. Teams organize their data domain into multiple
development, staging and production environments. Administrators will set up a Prophecy
account and create a “dev fabric” for development and “prod fabric” for production.
Prophecy connects to Databricks using REST API. Each fabric defined in Prophecy
connects to a single Databricks workspace, and each user must provide a personal access
token to authenticate. Enterprises that use Databricks with limited network access must
add the Prophecy Data Plane IP address �3.133.35.237� to their Databricks-allowed access
list.

A Prophecy project is the primary unit of development and deployment. It integrates
seamlessly with Git providers to manage the code generated by pipelines. Prophecy
supports multiple Git providers, including GitHub. It authenticates with GitHub using
per-user personal access tokens or OAUTH. Enterprises that use Git providers within
private networks behind firewalls must add the Prophecy Control Plane IP address
�3.133.35.237� to their private network allow-list or the Git provider-allowed access list.

14 | The low-code lakehouse architecture guide

Integrations

Databricks

Prophecy and Databricks work seamlessly together. Prophecy provides the visualization
layer on top of Spark APIs as a low-code visual environment. The integration is accessible
using Databricks Partner Connect or via the Prophecy UI by creating a data fabric.

15 | The low-code lakehouse architecture guide

Prophecy connects to Databricks with data fabrics using REST APIs. A Prophecy data
fabric is a logical execution environment. Prophecy users are organized into teams. A team
can organize its data fabrics into multiple tiers: development, staging, testing and
production. Each data fabric defined in Prophecy connects to a single Databricks
workspace. A user is required to provide a personal access token for authentication.

Prophecy uses Databricks for the following functionalities:

● The interactive execution on Databricks is triggered from Prophecy using the
Databricks REST APIs. Prophecy allows its users to spin up new clusters or connect
to existing clusters. When a cluster connection exists, Prophecy enables the user to
run their code in the interactive mode. Interactive code queries are sent to
Databricks using the Databricks Command API 1.2.

● Scheduled runs are orchestrated through the Databricks Jobs API 2.1. Prophecy
Spark pipeline code and Databricks job definition are deployed through the CI/CD
process to Databricks (e.g., through the Prophecy Build Tool or any other build and
CI system like Jenkins). Permissions for the CI/CD are managed by the Git provider
itself (e.g., GitHub).

By default, Prophecy does not store any data samples when executing code using
Databricks. Data samples (execution metrics) can be optionally stored for observability
purposes.

Prophecy takes care of auto-generating and refreshing the Databricks personal access
tokens when using Active Directory.

Git
Working in a robust development environment is essential. Every Prophecy project is
connected to a Git repository. Prophecy can integrate with the Git provider of the user’s
choice. Every change in gems (the visual elements) generates optimal PySpark, Scala or
SQL code. The code is committed to a specific branch. Additionally, Prophecy complies
with all software engineering best practices.

The traditional way of managing ETL code can get complicated, requiring many scripts to
be pieced together. Prophecy automates most of those steps, minimizing the number of
repeatable, error-prone steps.

16 | The low-code lakehouse architecture guide

https://docs.databricks.com/dev-tools/api/1.2/index.html
https://docs.databricks.com/dev-tools/api/latest/jobs.html
https://github.com/SimpleDataLabsInc/prophecy-build-tool

Prophecy supports the following Git providers:

● Prophecy-managed— Automatically sets up the connectivity between Prophecy
and the repositories. Prophecy-managed is based on open-source GitTea.

● GitHub (including GitHub Enterprise) — Authenticates using per-user personal
access tokens or OAuth.

● Bitbucket (including Bitbucket self-hosted) — Authenticates using per-user
personal access tokens.

● GitLab (including GitLab self-hosted) — Authenticates using per-user personal
access token.

● Azure DevOps— Authenticates using per-user personal access tokens.

Security-conscious enterprises that use Git providers within private networks behind
firewalls have to add the Prophecy Control Plane IP address �3.133.35.237� to their private
network allow list or the Git provider allow list.

17 | The low-code lakehouse architecture guide

SQL
Prophecy 3.0 introduces a feature-rich visual environment that runs natively on Databricks
using dbt Core. This functionality expands the existing Prophecy offering, which runs
natively with PySpark and Scala.

Users well-acquainted with dbt Core will find familiar entities in Prophecy:

● Projects: Prophecy projects are mapped to dbt projects. They inform dbt about the
context of your project and how to transform your data (build your datasets). Each
project corresponds to a GIT repository. Projects include:

○ Models: A set of visual gems to transform data. Prophecy models are
mapped to dbt models. Each model lives in a single file and contains logic
that either transforms raw data into a dataset ready for analytics or — more
often the case — is an intermediate step in such a transformation.

○ Seeds: CSV files with static data you can load into your data platform with
dbt.

○ Sources: A way to name and describe the data loaded into your warehouse
by extract-and-load tools.

● Environments: A list of entities from the Databricks environment that are
associated with the fabric.

Prophecy supports SparkSQL in addition to PySpark and Scala. The execution engine has
dedicated compute to process the data. The size of compute clusters can impact
performance depending on the number of users running concurrently and the type of
workloads running on Spark (please refer to the provider’s sizing guide to ensure your
clusters are sized appropriately for the workload).

Data fabrics are logical execution environments. The following parameters must be defined
to connect with the Databricks cluster via JDBC�

18 | The low-code lakehouse architecture guide

Airflow
Cloud providers offer managed Airflow services. Prophecy currently supports Amazon
MWAA and GCP Cloud Composer, with Azure support coming soon.

Prophecy jobs executes pipelines running on Spark. These jobs are triggered on a schedule
to keep data up to date. The jobs need an orchestrator to run in a particular time and
sequence and to inform administrators of their running status. The Airflow platform is a tool
for describing, executing and monitoring workflows. Prophecy enables users to visually
orchestrate data pipelines on a specified schedule or condition using Apache Airflow.

Prophecy has the concept of data fabrics. The user can choose Airflow as its provider
type. Airflow connection information and configurations (e.g., DAG location) can be defined
at the fabric level. A user can create a new job and choose Airflow as the scheduler after
creating the fabric. Schedule interval is also defined at the job level. An administrator can

19 | The low-code lakehouse architecture guide

manage and submit Jobs directly from Prophecy while monitoring the jobs using Airflow
providers.

Prophecy pushes the DAG to its location. It waits for Airflow to pick up the new DAG every
10 seconds. If Airflow fails to recognize the DAG within 30 tries, the user will be notified as
“DAG not found.”

Prophecy converts visual pipeline jobs into Airflow DAG definitions in Python. Users do not need
to code their Airflow DAGs manually. They can use the monitoring screen to track statuses and
logs.

20 | The low-code lakehouse architecture guide

Prophecy architecture
Users and teams

A Prophecy team is a logical grouping of users working together. Prophecy is designed to
perform and scale with the number of users and their concurrent workloads. Every
Prophecy user belongs to a team. Users are automatically assigned to their default team
after they sign up for Prophecy. They may also have access to other existing teams, and
they can create new teams. An administrator can invite many users to the team that they
manage. An administrator can also assign proper access to their team members — for
example, only admins can create or delete execution environments (fabrics).

A team of Prophecy users can access appropriate development and execution
environments. Each user in the team must provide their identity to authenticate with the
execution environment to which they have access.

The token used to authenticate with the execution environment is managed by Databricks
(see more information here). If the user’s Databricks token is expired or is invalid, they will
be asked to update their Databricks token. The user will be automatically logged out of Prophecy
after 48 hours of inactivity.

21 | The low-code lakehouse architecture guide

https://docs.databricks.com/dev-tools/api/latest/authentication.html#generate-a-personal-access-token

Data fabrics

A data fabric is the execution environment of data pipelines where code will run and data
may be persisted. Not all users within a team can create a data fabric. A team
administrator can create data fabrics, and other team members can use the fabric. Each
fabric is defined with a functional purpose, either as a development, testing or production
environment. Each environment is mapped to a Databricks Workspace and accessed via a
token.

The typical flow for a new Prophecy team starts with an administrator creating a data
fabric called “dev” for development. They will create a team called “marketing_adhoc” and
invite marketing users that typically run ad hoc workloads on their data to the team.
Marketing users now have access to the “dev” data fabric, and they can create pipelines
that run on “dev.” Business users do not have access to the “prod” fabric because they will
not deploy their pipelines to production.

As mentioned above, data fabrics are logical execution environments. The size of the
execution environment depends on the number of users running concurrently and the type
of jobs running on Spark. For example, if pipelines are complex, with many concurrent
workloads, an XL Spark cluster of ten i3.xlarge instances, each with 40 CPUs and 300GB
of memory, might be a good fit (see Databricks for sizing examples).

An administrator can configure the following within a data fabric.

● Cluster — The Databricks runtime version, auto-terminate, instance types and the
number of instances. This is the cluster that runs your data pipelines.

22 | The low-code lakehouse architecture guide

https://docs.databricks.com/clusters/cluster-config-best-practices.html#cluster-sizing-examples

● Job — The default size of the cluster that's going to be created for the job to run. This
setting should be the commonly used cluster size.

● Library — The Scala and Python libraries written by Prophecy provide additional
functionalities on top of Spark. These libraries would get automatically installed in your
Spark execution environment when you attach or create a cluster and are also publicly
available on Maven Central and PyPI.

Projects
A Prophecy “project” is the primary unit of development and deployment. Prophecy
translates visual components into open-source code. It supports multiple project types,
including PySpark, Scala and SQL.

The business logic that represents the assets within a project — pipelines, datasets and
jobs — is represented as code. A project can be connected to a repository on GitHub or a
folder in a repository. A repository may have multiple projects. Each project can be mapped
to a folder. These projects are not required to have the same project type — for example,
you may have a Python project in one folder and a Scala project in a different folder in the
same repository. You cannot mix project types within the same folder.

When a user creates a new project, they will authenticate with their GitHub account.
Software development best practices are enforced using Git. The user will develop their
pipelines within a project, and code will be committed and merged. CI/CD can be
performed using GitHub actions or other third-party tools.

Users can create a new project from scratch or import from an existing project located in a
different repository. Importing from another project makes it easy and seamless to share
and reuse existing assets.

For sharing projects, the user can create a new project and identify an existing project
upon which the new project is dependent. This means the new project can access the
pipelines, datasets, subgraphs, custom gems and UDFs from an existing project. All
dependencies are stored at the project level. When a dependency is added to a single

23 | The low-code lakehouse architecture guide

pipeline, it becomes available by default to all the other pipelines within the same project.
Users can enable or disable a given dependency within each pipeline.

Unified metadata
Prophecy produces metadata that describes various aspects of Prophecy entities. An
entity represents the primary assets in the metadata system (such as project, pipeline and
user, shown in blue in the diagram below). Aspects store details that describe the entities
— they contain the content or points to the external systems where content is stored.
They can be evolved independently without affecting other aspects. For a pipeline, the info
aspect stores information in Postgres, the code aspect stores the code in Git, and the test
aspect stores in unit tests. A user can drill down into each entity and discover the
components that make up an entity.

24 | The low-code lakehouse architecture guide

A user can access aspects using REST API and a personal access token. There are two
components to the request URL� the base and the path. The base will depend on the
endpoint that you use to access Prophecy. Example:

https://test.prophecy.io/api/md/graphql

Data pipelines

What is a pipeline?
A pipeline (formerly known as a “workflow”) is a type of entity within Prophecy that
represents how data flows. It’s similar to a factory production line: you have sources and
targets (file-based or event-based) with operations (gems) in between to enrich and
transform a data product from raw to finished.

Pipelines are built with UI drag-and-drop features instead of with code. For example, for a
pipeline that has multiple data sources from Databricks Filesystem �DBFS� in various
formats:

● Source gems read the files

● A join gem combines the data on the same key(s) and pushes the joined results
downstream for reformatting and aggregations

● The target gem writes its results to DBFS for analysts and data scientists to build
models, reports and dashboards

25 | The low-code lakehouse architecture guide

A user can choose between batch or streaming when creating a pipeline. A unique set of
gems are available for building the pipelines for streaming. Prophecy currently supports
file-based, event-based and warehouse-based streaming. Users can use Kafka and S3 as
sources and target gems. Splunk HEC is available as a target, with more coming soon.

Running a pipeline
Users can run pipelines interactively or by scheduling a job (see jobs). There are two ways
to run the pipelines interactively:

1. Run the entire pipeline by clicking the Play button

2. Click the Play button on a specific gem (this option only executes the flow in the
pipeline up to and including that gem, and lets users quickly identify issues and
debug the relevant gem)

Pipeline interims allow users to troubleshoot and modify their pipeline by checking the
output of a gem. Interims cache data samples that appear after executing a pipeline or a
gem.

When running pipelines and jobs, users may be interested in execution metrics. For
example, records read, records written, bytes read, bytes written, total time taken and data
samples between components. These dataset-, pipeline- and job-related metrics are
accumulated and stored on the data plane, where they can be viewed from the Prophecy
UI.

Jobs
A pipeline on Databricks can be run interactively or by scheduling for automatic
executions. Prophecy provides a low-code layer on top of Databricks jobs and also offers
the option for users to use Airflow �See Airflow Integration) for orchestration.

A user can run one or multiple pipelines in a job.

26 | The low-code lakehouse architecture guide

https://docs.databricks.com/workflows/jobs/jobs.html

Jobs can be defined with pipeline gems and script gems.

● Pipeline gems are defined by various sources, targets, transformations and
aggregations to represent data flow

● Script gems allow users to define their jobs using Python

You can add gems to the canvas to determine which pipelines will run during the job. To
define dependencies between the pipelines within the job, you can simply connect them
by dragging and dropping the edges between gems.

Some users may want to have fine-grained control over who has access to view, manage
and administer the Databricks jobs created from Prophecy. Prophecy allows the user to
define job permission settings, using functionally equivalent to the Databricks interface.

Deploying a job on Databricks requires the user to release the project from Prophecy UI. As
soon as the project is released, the job will start appearing on the Databricks Jobs page.

Prophecy supports two different job deployment modes, each of which has various
impacts on job cost and parallelism:

● Multi-job cluster mode— Each component of job will spawn a separate cluster of
its own

● Single-cluster mode— Each component of job will run on the same cluster

27 | The low-code lakehouse architecture guide

Prophecy’s monitoring page shows the status of all jobs deployed. It also provides the
status of historical/current runs. Data quality observability is also available with the release
of Prophecy 3.0.

Data lineage
Data lineage tells us about the lifecycle of data. In Prophecy, lineage is the process of
understanding, recording and visualizing data as it flows from source to target. The lineage
includes all transformations the data undergoes along the way. Knowing the source of a
particular data set is not always enough to understand its importance, perform error
resolution, understand process changes, and perform system migrations and updates.

It’s essential for data practitioners to understand how data is updated and by which
transformations. Understanding data lineage improves overall data quality and allows data
custodians to protect integrity and confidentiality throughout the data lifecycle.

Data lineage enables a user to:

● Track errors in data processes

● Improve overall data quality

● Implement process changes and system migrations with lower risk and more
confidence

28 | The low-code lakehouse architecture guide

● Combine data discovery with a comprehensive view of metadata

● Improve overall data governance

Watch a data lineage video here.

Code generation and Git

A project in Prophecy is a fully-fledged Git repository that can integrate with the user’s
favorite Git provider. Every change in gems (the visual elements) generates high-quality
code in PySpark, Scala or SQL. The generated code is committed to a specific branch and
follows all the best software engineering practices.

29 | The low-code lakehouse architecture guide

https://www.prophecy.io/prophecy-university?video=etvhm3xvn8

Extensibility
Easy usability should not result in a lack of flexibility and customization. Prophecy is
designed to be extensible and pluggable. It has pre-built visual components for standard
inputs, outputs and transformations. Users can add their gems to read and write to internal
systems, and standardize everyday operations (e.g., security ops with encrypt, decrypt
and anonymize). Prophecy frameworks are shareable Git projects and used as libraries
across teams.

Custom gems

Prophecy offers several custom gems out-of-box. One of the most popular gems is the
script gem, which provides a SparkSession and allows users to run custom code. It can be
used to write any ad hoc code. Custom gem logic can be shared with other users within
the team and organization.

30 | The low-code lakehouse architecture guide

Gem builder

As mentioned earlier, each Prophecy pipeline is assembled with individual gems that
perform transformations on data. While Prophecy offers dozens of gems out-of-the-box,
some data practitioners want to extend this idea and create their gems. Our Gem Builder
allows users to extend their Prophecy capabilities by adding custom gems. The Gem
Builder is an excellent tool for data engineers to include custom code that’s easily
accessible to other users. Like regular gems, custom gems are available for users to drag
and drop into their pipelines.

Building a custom gem is simple:

1. Navigate to the gem listing to review Prophecy-defined and user-defined gems

2. Add a new gem or modify an existing gem — specify the gem name, preferred
language and gem category

3. Paste/Write your code specification at the prompt

4. Click “Preview” to review the UX

5. Fill in some values and click “Save” to check the Python or Scala code generated

6. When the gem is ready, hit “Publish”! The new custom gem is available to use in
pipelines!

31 | The low-code lakehouse architecture guide

Dependencies
Using dependencies is one of many ways to extend Prophecy. Prophecy offers users the
capability to define third-party or custom code libraries. This extension allows users to use
third-party or custom code in data pipelines and Jobs. They can be written in Java, Scala
or PySpark and connected to data pipelines by pointing to Maven or PyPi coordinates.

UDFs
User-defined functions �UDFs) are another way to extend Prophecy. A UDF is a function
defined by a user that allows custom logic to be reused in the user environment. Prophecy
supports many types of UDFs to allow for distributing extensible logic. The UDFs can be
utilized anywhere in the pipeline.

32 | The low-code lakehouse architecture guide

Using Prophecy to construct
data pipelines
Gems
As mentioned above, Prophecy uses gems to build pipelines and jobs. A gem is a unit of
functionality ranging from reading, transforming, writing and various other ad hoc
operations on data. A gem instance has its configurations and produces output code. Each
gem instance can be seen as a Spark DataFrame. Prophecy provides gems out of the box.
They’re visual components that a user can drag and drop without writing code.

The Gem Drawer, located in Prophecy’s pipeline editor, organizes gems into several
categories. See Appendix for more details.

gem Category Description

Source and Target Gems that conduct loading and writing data

Transform Gems that help transform data

Join and Split Gems that merge or split data

Custom
Custom-built for a particular use case using the Gem
Builder then made available to the broader user group.

Subgraph A gem that can group multiple gems for reusability.

33 | The low-code lakehouse architecture guide

https://docs.prophecy.io/low-code-spark/gems/source-target/
https://docs.prophecy.io/low-code-spark/gems/transform/
https://docs.prophecy.io/low-code-spark/gems/join-split/
https://docs.prophecy.io/low-code-spark/gems/custom/
https://docs.prophecy.io/low-code-spark/gems/subgraph/

Deploying pipelines �CI/CD�
Continuous integration and continuous deployment (collectively known as CI/CD� is a set
of methodologies used to continuously deliver new features. CI/CD is used to solve the
problems development and operations teams often encounter when integrating new code.

But implementing CI/CD can be challenging. That’s why Prophecy integrates seamlessly
with Git to provide a centralized environment to persist code for data pipelines and jobs.
Users can utilize Git to apply their DevOps best practices.

Prophecy works best with physical environments connected to different stages of
development. A common example is a setup with three fabrics — development, QA and
production — where each environment has its independent data, metastore, clusters and
permissions.

Steps for deploying pipelines

The following steps work within two environments: development and production.
● The development environment is accessible to the entire organization (developers,

analysts, support) and is connected to Databricks development workspace with
mock data

● The production environment is only accessible to the production support team and
is connected to our Databricks production workspace with real data

34 | The low-code lakehouse architecture guide

To set up entities :
1. Create two teams:

○ developers — A superset of all the teams, which includes developers and
members of the prod_support team

○ prod_support — A team composed of members who have privileged
production access permissions

2. Create two fabrics:

○ development — Owned by the developers' team

○ production— Owned by the prod_support team

3. Set up projects: Create projects, which should be owned by the developers' team

4. Set up jobs: Create two jobs for every single set of pipelines in a project ready for
scheduling:

○ Job_development — Jobs built by the developers for integration and testing
purposes

○ job_production— Jobs built by the prod_support team, based on the
development Jobs, which will run in the production environment

5. Test the entire data flow on the development environment

6. Deploy tested data flow to the production environment

○ Log in as a production support engineer (only a production support engineer
can perform the deployment)

○ Duplicate the job on the production fabric by calling the job and passing the
parameter for Fabric ID using PBT

○ Set appropriate pipeline configurations then enable the job

7. Commit any remaining changes and release the pipeline.

35 | The low-code lakehouse architecture guide

https://docs.prophecy.io/metadata/prophecy-build-tool/

Prophecy automatically takes care of the release process by building the pipelines, running
unit tests and deploying the pipeline JARs/wheels alongside the job definition directly to
Databricks (or AirFlow).

Unit testing
Writing good unit tests is one of the key stages of the CI/CD process. It ensures the
changes developers make to projects will be verified, and all the functionality will work
correctly after deployment.

Prophecy makes the process of writing unit cases easier by providing an interactive
environment via which unit test cases can be configured across each component.

Two types of unit test cases can be configured through the Prophecy UI�

1. Output rows equality

2. Output predicates

Output rows equality
This type of testing is the most basic way to check the functionality of a gem’s code by
providing a sample input and a sample output. If the function works correctly, the input
should always be computed to generate the output. It’s a great way to verify code keeps
working the same way as the codebase evolves and new versions are released.

Output predicates
You can use this type of testing for more advanced logic, using Spark expressions as
predicates. Consider requiring multiple rules for the test to pass.

Prophecy also supports generating sample input data automatically from the source
DataFrame; this option can be enabled while creating unit tests.

Working with other tools
Users may want to deploy pipelines from their Git, which enables users to work with a
secure production environment that doesn't have to connect directly to Prophecy.

As mentioned earlier, Prophecy publishes all entities (e.g., pipelines, jobs, metadata, etc.)
directly on Git. That means you can easily deploy that code to any chosen Databricks
environment.

36 | The low-code lakehouse architecture guide

The Prophecy-built Tool �PBT� CLI can be used to build, test and deploy projects created
by Prophecy that are present in your local filesystem. It can be used to integrate with your
own CI/CD tools such as GitHub Actions. It allows you to utilize build systems such as Jenkins.
Databricks Workflows or Airflow can be used for orchestration.

Prophecy also allows opening pull requests on a user’s external Git provider in order to
merge development branches to the base branch of a project's remote repository. During
the PR creation process, Prophecy will redirect users to their external Git provider based
on the template defined in the Advanced > Pull Request Template tab in a project's
settings.

37 | The low-code lakehouse architecture guide

Prophecy installation and
deployment
Choosing the right deployment model is critical for the success and scalability of the
Prophecy platform. We want to provide the right configurations for each use case to ensure
the system reliably provides high-performance pipelines and workflows.

Cloud-managed and on-premises infrastructure
Prophecy supports deployments on Amazon AWS, Microsoft Azure or on premises (on
prem). It utilizes Kubernetes to manage its services and deployments. This paper will use
Amazon AWS components to explain Prophecy’s deployment model. The architecture is
similar on Microsoft Azure and on prem with different terminologies. The easiest way to
install and deploy Prophecy is through AWS Marketplace and Azure Marketplace.

Deployment architecture

38 | The low-code lakehouse architecture guide

https://aws.amazon.com/marketplace/seller-profile?id=98c6b644-fbc7-40d6-9139-2f04e7fa3555
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/simpledatalabsinc1635791235920.prophecy-data-engineering?tab=Overview

The cloud-managed �SaaS� deployment hosts Prophecy in its managed VPC. A public
subnet and a private subnet reside in a managed VPC.

● The public subnet hosts NAT Gateway, Bastion Host and ELB to manage
connectivity and external requests.

● The private subnet hosts Prophecy deployments and services using Kubernetes.
Network traffic management, data storage, protection and encryption also reside in
the private subnet.

Private deployments have a similar architecture, except they’re deployed within the user’s
VPC or private network. It’s essential to understand that Prophecy does not persist user
data.

39 | The low-code lakehouse architecture guide

Prophecy deployment components

Prophecy can handle management and execution requests at scale. A Kubernetes cluster
is deployed in the private subnet. Cluster is deployed using Terraform or CloudFormation.
The Control Plane manages the global decisions whenever a user makes a request (e.g.,
creating pipelines or jobs, or checking metadata). Every user action is managed using the
Control Plane.

Prophecy users send requests to the Control Plane. The Control Plane receives requests
and schedules them. The Data Plane receives decisions from the Control Plane and
executes the requests. For example, if a Control Plane receives a request to create a
pipeline, the creation of the pipeline code happens on the Data Plane. The execution
services on the Data Plane connect to a Spark environment and run Spark jobs on a Spark
cluster. In other words, the Data Plane translates Prophecy pipelines into Spark code and

40 | The low-code lakehouse architecture guide

tells the Spark cluster to run them by making API calls. The execution of jobs can be
immediate or scheduled for later.

Installation requirements include Kubernetes Version: 1.14�. For private deployments,
images must be accessible from a secure container registry available at gcr.io. You can
configure the location to use an internal container registry.

Kubernetes is a highly scalable platform for managing containerized workloads and
services. It’s important to size the platform correctly — the following table provides general
guidelines:

For a small cluster up to 25 users.

Namespace Description # Cores # RAM Block/File
Storage

Control Plane Main services (front-end,
code editor, metadata,
lineage, etc…)

34 Cores 68GB 150GB

Data Plane Services serving as a
bridge between Spark and
Prophecy UI

6 Cores 10GB 10GB

Platform Backup �2x/day,
configurable), monitoring,
logging services (optional)

4 Cores 8GB 200GB

Prophecy requires block or file storage to be available for the Kubernetes cluster. A
Kubernetes cluster can be configured in the multi-availability zone or single availability
zone mode. For multi-availability zone mode, the block or file storage requires volume
binding mode specified as “waitforfirstconsumer”. The storage is dynamically provisioned,
and Prophecy supports any storage class out of the box.

ClusterRole permissions are optional for Custom Resource installation. Users can create
the required CRDs by deploying a single Helm Chart (shared upon request) if the role is
unavailable.

For networking, Prophecy supports a Prophecy-managed or user-managed NGINX Ingress
Controller. Both Kubernetes NGINX and official NGINX Controllers are supported. Prophecy
supports Istio-based ingress gateways as well.

41 | The low-code lakehouse architecture guide

https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode
https://kubernetes.io/docs/concepts/storage/storage-classes/#volume-binding-mode
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#role-and-clusterrole
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://docs.nginx.com/nginx-ingress-controller/

Wildcard certificates are used for path-based routing. Certificates can be managed by
Prophecy or the user’s cert manager. Certificates are automatically generated for every
ingress resource created. To successfully resolve the service host names, Prophecy
supports a Prophecy-managed or user-managed external DNS (or equivalent).

The requirements outlined earlier can support up to 25 Prophecy users actively working on
pipelines at the same time. Prophecy supports vertical and horizontal scaling for additional
concurrent users.

Prophecy utilizes an autoscaler to scale a cluster whenever needed. If the number of users
increases by 10x, the Prophecy deployment will automatically scale out appropriately and
require a proportionate amount of resources.

Approximate resource by the number of users:

Number of users 25 50 150

CPUs 44 vCPUs 80 vCPUs 230 vCPUs

Memory 86 GB 160 GB 460 GB

Disk space (with backups) 360 GB 720 GB 1440 TB

The numbers above are an estimation — the actual recommended resources may vary
based on the complexity of a user’s workload.

Security

Authentication
Users can authenticate with Prophecy using an external identity provider. Prophecy
currently supports the following identity and access management systems:

● Azure Active Directory

● Okta �SAML�

● Active Directory �LDAP�

Prophecy supports SSO-based authentication to Prophecy’s SaaS. Passwords are
managed by the user's SSO system. Personal access tokens will be stored on encrypted

42 | The low-code lakehouse architecture guide

storage with AES�256-based encryption and always transmitted from encrypted storage to
microservices over TLS1.3 in a secure, segregated environment.

Authorization
When users access the underlying Spark execution infrastructure, the identity is passed
through by Prophecy. The existing authorization mechanisms are respected. The minimum
scope for the token for interactive execution is “Can Attach To” permissions. For cluster
creation, “Can Manage permissions” are required. Any user with “Can Manage” permission
for a cluster is allowed to configure whether a user can attach to, restart, resize and
manage that cluster.

Encryption
Prophecy supports both encryption-at-rest and encryption-in-transit for sensitive data.

Encryption-in-transit is supported inherently. Prophecy supports working with
encryption-at-rest solutions. If the public cloud has standard storage classes, Prophecy
can provision storage with encryption-at-rest. If it's a private cloud, Prophecy requires a
provisioned encrypted storage system and corresponding storage class.

Upgrades
Prophecy manages upgrades and patches automatically for fully managed �SaaS�
accounts. If the user chooses a private deployment, Prophecy can manage upgrades
automatically after “controlcenter.prophecy.io” on port 443 is whitelisted. Prophecy will
provide a list of the latest containers, and users are required to manually deploy the
upgrades if the environment is completely locked down, with no inbound or outbound
traffic.

Monitoring
Prophecy deploys Loki, a log database that contains an index to efficiently access logs and
provides storage to persist the logs, for log management. Prophecy deploys Loki using a
log volume for storing logs and BoltDB to store indices. If Prophecy private SaaS is
deployed on AWS, Loki can also leverage S3 to store the logs and DynamoDB to store the
indices.

Prophecy runs a log client to pull logs from the services and push them to Loki. It utilizes
Promtail as a log client. Promtail is configured to push logs at regular intervals to Loki. The
default batch size for the intervals is 1048576 bytes. The maximum amount of time to wait
before sending a batch, even if that batch isn't full, is one second (these are configurable
values).

43 | The low-code lakehouse architecture guide

https://docs.databricks.com/security/auth-authz/access-control/cluster-acl.html#types-of-permissions
https://grafana.com/oss/loki/
https://grafana.com/docs/loki/latest/clients/promtail/

Promtail runs as a sidecar for aggregated log volume for Prophecy private SaaS
deployment. In the fully managed setup, Prophecy deploys an RWM volume and mounts it
to all service pods. The services write the logs to the RWM volume in different directories.
Promtail runs in a pod with the same volume mounted. Promtail accesses these volumes
and ships the logs to Loki.

Users can whitelist “controlcenter.prophecy.io” on port 443 to receive critical alerts from
clusters. This will help Prophecy provide proactive support and enable Prophecy to push
any new release availability information using the same channel. User clusters will be
automatically updated with all the latest critical patches and new features.

For clusters with table ACL enabled, users may have limited access to catalogs, schemas
and tables. It’s recommended users set up the execution metrics tables beforehand. Data
is stored in the workspace storage. The tables can be selected from the team view. The
following table options are available at the time of team creation:

● Pipeline metrics — Contains metrics and code for pipeline runs

● Component (dataset) metrics — Contains metrics for individual component runs

● Interim— Contains samples of data, depending on the interim mode selected

44 | The low-code lakehouse architecture guide

https://docs.prophecy.io/low-code-spark/execution/execution-metrics/#pre-requisite

Conclusion
This guide is intended to highlight a few of our best practices for low-code Spark
architecture. Each real use case and workload will be slightly different, and the best
architectures are tailored to the specific requirements of the organization.

When designing an architecture, it’s also critical to consider things like pipeline
characteristics, data usage patterns and SLAs, which are too specific to cover here. For
help choosing the right architectural strategy for your particular use cases, we recommend
you engage directly with Prophecy and Databricks data engineers for an architecture and
operational review.

45 | The low-code lakehouse architecture guide

Appendix
Sources and targets Gems
Sources and targets are a set of gems that load data from various sources and write to
different targets. These gems support batch or streaming pipelines (the user can define a
pipeline as a batch or streaming during the creation process). Prophecy supports many
files, data warehouses and data catalogs as sources. Users can read their data and
automatically infer the schema. Advanced options are available for parsing source data.

Special sources are also available, including streaming and lookup gems:

● Streaming gems— Support file-based (e.g. object store), event-based (e.g. Kafka)
and more

● Lookup gems— Allow users to designate a particular dataframe as a broadcast
dataframe

46 | The low-code lakehouse architecture guide

Spark ensures this data is available on every computation node. These lookups can be
done without shuffling data. This is useful for looking up values in tables.

gem Name Category Type Description

Source File Parquet, JSON, CSV,
Avro, Kafka, FTP, Text,

Delta, ORC, Fixed Format,
XLSX

Reads files directly from
storage (e.g. DBFS�.

Source Warehouse Snowflake, Teradata,
Redshift, MongoDB,

Oracle, DB2, Salesforce,
JDBC

Reads data from traditional
data warehouses.

Source Catalog Table Hive / Delta Reads data from tables
connected to Metastores.

Lookup Lookup User-defined Defines the columns to
perform lookups.

Target File Parquet, JSON, CSV,
Avro, Kafka, Text, Delta,

ORC, Fixed Format,
DataCreatorFormat

Writes transformed data to
storage (e.g. DBFS�

Target Warehouse Snowflake, Redshift,
Salesforce, JDBC

Writes transformed data to
data warehouses.

Target Catalog Table Hive / Delta Writes data to tables
connected to metastores.

47 | The low-code lakehouse architecture guide

Transform Gems
Transformation gems are a set of gems that transform or aggregate data from upstream
gems. These built-in gems allow users to perform simple and complex data
transformations, enrichments and aggregations by configuring using a visual interface. The
gems convert to code that runs on Spark clusters. Each gem represents a function that
defines a Spark DataFrame.

gem Name Description

Reformat Formats a column’s name or value

Filter Filters DataFrames based on the provided filter condition

OrderBy Sorts a DataFrame on one or more columns in ascending or
descending order

Aggregate Groups the data; applies aggregation methods and pivot
operations

Deduplicate Removes rows with duplicate values of specified columns

FlattenSchema Flattens complex data types (e.g., structs and arrays)

Limit Limits the number of rows in the output

SchemaMapper Allows multiple columns to be renamed all at once

SchemaTransform Is similar to the reformat gem, (e.g. for transforming columns),
except it uses the withColumn syntax rather than the SELECT
column AS syntax

SetOperation Adds or subtracts rows from DataFrames with identical
schemas and difference in data

WindowFunction Defines a WindowSpec; applies Window functions on a
DataFrame

48 | The low-code lakehouse architecture guide

Join and Split Gems
Join and split gems are used to merge or split DataFrames to create new DataFrames.
Since Spark is a parallel processing engine, it’s important to partition data appropriately to
achieve desirable performance. Under-partitioning, over-partitioning and incorrect
partitioning can significantly degrade performance.

gem Name Description

Join Joins two or more DataFrames based on the given
condition

Repartition Repartitions or coalesces the input DataFrame

RowDistributor Creates multiple DataFrames based on provided filter
conditions from an input DataFrame

Custom Gems
Custom gems are ones that cannot be categorized at the moment.

gem Name Description

SQLStatement Runs defined SQL queries against one or more input
DataFrames to create new DataFrames

Script Provides a SparkSession and allows users to run custom
code

FileOperation Runs file operations (e.g., copy and move) on different
file systems where data is located

DeltaTableOperations Conducts table operations (e.g., register table in a
catalog, vacuum table, optimize table, etc.)

RestAPIEnrich Enriches the DataFrame by adding columns with content
from REST API output based on defined parameters

49 | The low-code lakehouse architecture guide

Subgraph Gems

Subgraphs allow users to wrap multiple, different gems under a single reusable parent
gem. They’re useful for decomposing complex logic into reusable components and
simplifying the data engineering process.

For example, take a large financial company that computes the monthly recurring revenue
�MRR� with a calculation that applies to different data sources (e.g. Stripe, Salesforce, etc.).
Without a subgraph, when the business needs to compute MRR, every developer would
have to create a set of transformations: reformat gem to clean the data, aggregate gem to
sum the amounts by month and OrderBy gem to sort the months from the latest. Instead,
with a subgraph, one person can define the business logic for the transformation and wrap
all of them up in a subgraph, which can be easily shared with the rest of the team.

50 | The low-code lakehouse architecture guide

Prophecy is a low-code data
transformation platform that offers an
easy-to-use visual interface to build,
deploy, and manage data pipelines
with software engineering best
practices. Prophecy is trusted by
enterprises including multiple
companies in the Fortune 50 where
hundreds of engineers run thousands
of ETL workloads every day. Prophecy
is backed by some of the top VCs
including Insight Partners and
SignalFire. Learn how Prophecy can
help your data engineering in the cloud
at www.prophecy.io.

With origins in academia and the open
source community, Databricks was
founded in 2013 by the original
creators of Apache Spark™, Delta Lake
and MLflow. As the world’s first and
only lakehouse platform in the cloud,
Databricks combines the best of data
warehouses and data lakes to offer an
open and unified platform for data and
AI.

51 | The low-code lakehouse architecture guide

http://www.prophecy.io/

