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Do your product dashboards look funky? Are your quarterly 
reports stale? Is the data set you’re using broken or just 
plain wrong? These problems affect almost every team, yet 
they’re usually addressed on an ad hoc basis and in a reactive 
manner. If you answered yes to these questions, this book is 
for you.

Many data engineering teams today face the “good pipelines, 
bad data” problem. It doesn’t matter how advanced your 
data infrastructure is if the data you’re piping is bad. In this 
book, Barr Moses, Lior Gavish, and Molly Vorwerck, from 
the data observability company Monte Carlo, explain how 
to tackle data quality and trust at scale by leveraging best 
practices and technologies used by some of the world’s most 
innovative companies.

• Build more trustworthy and reliable data pipelines

• Write scripts to make data checks and identify broken 
pipelines with data observability

• Learn how to set and maintain data SLAs, SLIs, and SLOs

• Develop and lead data quality initiatives at your company

• Learn how to treat data services and systems with the 
diligence of production software

• Automate data lineage graphs across your data ecosystem

• Build anomaly detectors for your critical data assets
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Learn how modern data teams rely on
Monte Carlo’s Data Observability Platform
to deliver end-to-end data trust.
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Praise for Data Quality Fundamentals

Data engineers, ETL programmers, and entire data pipeline teams need a reference
and testing guide like this! As I did, they will learn the building blocks, processes,

and tooling that help ensure the quality of data-intensive applications.
This book adds fresh perspectives and practical test scenarios

that expand the wisdom to test modern data pipelines.
—Wayne Yaddow, Data and ETL Quality Analyst

Your data investments, infrastructure, and insights don’t matter at all if you can’t
trust your data. Barr, Lior, and Molly have done a tremendous job in breaking

down the fundamentals of what trusting your data means and have created a very
practical framework to implement data quality in enterprises. A must-read for anyone

who cares about data quality.
—Debashis Saha, Data Leader

AppZen, Intuit, and eBay

As data architecture becomes increasingly distributed and the accountability for data
increasingly decentralized, the focus on data quality will continue to grow. Data

Quality Fundamentals provides an important resource for engineering teams that are
serious about improving the accuracy, reliability, and trust of their data through some

of today’s most significant technologies and processes.
—Mammad Zadeh, Data Leader and

Former VP of Engineering at Intuit
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Preface

If you’ve experienced any of the following scenarios, raise your hand (or, you can just
nod in solidarity—there’s no way we’ll know otherwise):

• Five thousand rows in a critical (and relatively predictable) table suddenly turns•
into five hundred, with no rhyme or reason.

• A broken dashboard causes an executive dashboard to spit null values.•
• A hidden schema change breaks a downstream pipeline.•
• And the list goes on.•

This book is for everyone who has suffered from unreliable data, silently or with muf‐
fled screams, and wants to do something about it. We expect that these individuals
will come from data engineers, data analytics, or data science backgrounds, and be
actively involved in building, scaling, and managing their company’s data pipelines.

On the surface, it may seem like Data Quality Fundamentals is a manual about how
to clean, wrangle, and generally make sense of data—and it is. But more so, this book
tackles best practices, technologies, and processes around building more reliable data
systems and, in the process, cultivating data trust with your team and stakeholders.

In Chapter 1, we’ll discuss why data quality deserves attention now, and how architec‐
tural and technological trends are contributing to an overall decrease in governance
and reliability. We’ll introduce the concept of “data downtime,” and explain how it
harkens back to the early days of site reliability engineering (SRE) teams and how
these same DevOps principles can apply to your data engineering workflows as well.

In Chapter 2, we’ll highlight how to build more resilient data systems by walking
through how you can solve for and measure data quality across several key data
pipeline technologies, including data warehouses, data lakes, and data catalogs. These
three foundational technologies store, process, and track data health preproduction,
which naturally leads us into Chapter 3, where we’ll walk through how to collect,
clean, transform, and test your data with quality and reliability in mind.

xi



Next, Chapter 4 will walk through one of the most important aspects of the data
reliability workflow—proactive anomaly detection and monitoring—by sharing how
to build a data quality monitor using a publicly available data set about exoplanets.
This tutorial will give readers the opportunity to directly apply the lessons they’ve
learned in Data Quality Fundamentals to their work in the field, albeit at a limited
scale.

Chapter 5 will provide readers with a bird’s-eye view into what it takes to put these
critical technologies together and architect robust systems and processes that ensure
data quality is measured and maintained no matter the use case. We’ll also share how
best-in-class data teams at Airbnb, Uber, Intuit, and other companies integrate data
reliability into their day-to-day workflows, including setting SLAs, SLIs, and SLOs,
and building data platforms that optimize for data quality across five key pillars:
freshness, volume, distribution, schema, and lineage.

In Chapter 6, we’ll dive into the steps necessary to actually react to and fix data
quality issues in production environments, including data incident management, root
cause analysis, postmortems, and establishing incident communication best practices.
Then, in Chapter 7, readers will take their understanding of root cause analysis one
step further by learning how to build field-level lineage using popular and widely
adopted open source tools that should be in every data engineer’s arsenal.

In Chapter 8, we’ll discuss some of the cultural and organizational barriers data teams
must cross when evangelizing and democratizing data quality at scale, including
best-in-class principles like treating your data like a product, understanding your
company’s RACI matrix for data quality, and how to structure your data team for
maximum business impact.

In Chapter 9, we’ll share several real-world case studies and conversations with
leading minds in the data engineering space, including Zhamak Dehghani, creator of
the data mesh, António Fitas, whose team bravely shares their story of how they’re
migrating toward a decentralized (and data quality first!) data architecture, and Alex
Tverdohleb, VP of Data Services at Fox and a pioneer of the “controlled freedom”
data management technique. This patchwork of theory and on-the-ground examples
will help you visualize how several of the technical and process-driven data quality
concepts we highlight in Chapters 1 through 8 can come to life in stunning color.

And finally, in Chapter 10, we finish our book with a tangible calculation for measur‐
ing the financial impact of poor data on your business, in human hours, as a way to
help readers (many of whom are tasked with fixing data downtime) make the case
with leadership to invest in more tools and processes to solve these problems. We’ll
also highlight four of our predictions for the future of data quality as it relates to
broader industry trends, such as distributed data management and the rise of the data
lakehouse.
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At the very least, we hope that you walk away from this book with a few tricks
up your sleeve when it comes to making the case for prioritizing data quality and
reliability across your organization. As any seasoned data leader will tell you, data
trust is never built in a day, but with the right approach, incremental progress can be
made—pipeline by pipeline.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element signifies a tip or suggestion.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/data-quality-fundamentals-code.

If you have a technical question or a problem using the code examples, please send an
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
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amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Data Quality Funda‐
mentals by Barr Moses, Lior Gavish, and Molly Vorwerck (O’Reilly). Copyright 2022
Monte Carlo Data, Inc., 978-1-098-11204-2.”

If you feel your use of code examples falls outside fair use or the permission described
herein, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/data-quality-fundamentals.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.
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Watch us on YouTube: https://www.youtube.com/oreillymedia.
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CHAPTER 1

Why Data Quality Deserves
Attention—Now

Raise your hand (or spit out your coffee, sigh deeply, and shake your head) if this
scenario rings a bell.

Data is a priority for your CEO, as it often is for digital-first companies, and she is
fluent in the latest and greatest business intelligence tools. Your CTO is excited about
migrating to the cloud, and constantly sends your team articles highlighting perfor‐
mance measurements against some of the latest technologies. Your downstream data
consumers including product analysts, marketing leaders, and sales teams rely on
data-driven tools like customer relationship management/customer experience plat‐
forms (CRMs/CXPs), content management systems (CMSs), and any other acronym
under the sun to do their jobs quickly and effectively.

As the data analyst or engineer responsible for managing this data and making it
usable, accessible, and trustworthy, rarely a day goes by without having to field some
request from your stakeholders. But what happens when the data is wrong?

Have you ever been about to sign off after a long day running queries or building data
pipelines only to get pinged by your head of marketing that “the data is missing” from
a critical report? What about a frantic email from your CTO about “duplicate data” in
a business intelligence dashboard? Or a memo from your CEO, the same one who is
so bullish on data, about a confusing or inaccurate number in his latest board deck?

If any of these situations hit home for you, you’re not alone.

This problem, often referred to as “data downtime,” happens to even the most
innovative and data-first companies, and, in our opinion, it’s one of the biggest
challenges facing businesses in the 21st century. Data downtime refers to periods of
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time where data is missing, inaccurate, or otherwise erroneous, and it manifests in
stale dashboards, inaccurate reports, and even poor decision making.

The root of data downtime? Unreliable data, and lots of it.

Data downtime can cost companies upwards of millions of dollars per year, not to
mention customer trust. In fact, ZoomInfo found in 2019 that one in five companies
lost a customer due to a data quality issue.

As you’re likely aware, your company’s bottom line isn’t the only thing that’s suffering
from data downtime. Handling data quality issues consumes upwards of 40% of your
data team’s time that could otherwise be spent working on more interesting projects
or actually innovating for the business.

This statistic probably comes as no surprise to you. It certainly didn’t to us.

In a former life, Barr Moses served as VP of Operations at a customer success
software company. Her team was responsible for managing reporting for the broader
business, from generating dashboards for her CEO to use during All Hands meetings
to setting strategy to reduce customer churn based on user metrics. She was responsi‐
ble for managing her company’s data operations and making sure stakeholders were
set up for success when working with data.

Barr will never forget the day she came back to her desk from a grueling, hours-long
planning session to find a sticky note with the words “The data is wrong” on her
computer monitor. Not only was this revelation embarrassing; unfortunately, it also
wasn’t uncommon. Time and again she and her team would encounter these silent
and small, but potentially detrimental, issues with their data.

There had to be a better way.

Poor data quality and unreliable data have been problems for organizations for
decades, whether it’s caused by poor reporting, false information, or technical errors.
And as organizations increasingly leverage data and build more and more complex
data ecosystems and infrastructure, this problem is only slated to increase.

The concept of “bad data” and poor data quality has been around nearly as long as
humans have existed, albeit in different forms. With Captain Robert Falcon Scott
and other early Antarctic explorers, poor data quality (or rather, data-uninformed
decision making) led them to inaccurately forecast where and how long it would take
to get to the South Pole, their target destination.

Several in more recent memory stick out, too. Take the infamous Mars Climate
Orbiter crash in 1999. A NASA space probe, the Mars Climate Orbiter crashed
as a result of a data entry error that produced outputs in non-SI (International
System) units versus SI units, bringing it too close to the planet. This crash cost
NASA a whopping $125 million. Like spacecraft, analytic pipelines can be extremely
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vulnerable to the most innocent changes at any stage of the process. And this just
scratches the surface.

Barr’s unfortunate sticky note incident got her thinking: “I can’t be alone!” Alongside
Lior Gavish, Barr set out to get to the root cause of the “data downtime” issue.
Together, they interviewed hundreds of data teams about their biggest problems, and
time and again, data quality sprang to the top of the list. From ecommerce to health‐
care, companies across industries were facing similar problems: schema changes were
causing data pipelines to break, row or column duplicates were surfacing on business
critical reports, and data would go missing in dashboards, causing them significant
time, money, and resources to fix. We also realized that there needed to be a better
way to communicate and address data quality issues as part of an iterative cycle of
improving data reliability—and building a culture around driving data trust.

These conversations inspired us to write this book to convey some of the best
practices we’ve learned and developed related to managing data quality at each stage
of the data pipeline, from ingestion to analytics, and share how data teams in similar
situations may be able to prevent their own data downtime.

For the purpose of this book, “data in production” refers to data from source systems
(like CRMs, CMSs, and databases from any of the other analogies previously men‐
tioned) that has been ingested by your warehouse, data lake, or other data storage and
processing solutions and flows through your data pipeline (extract-transform-load,
or ETL) so that it can be surfaced by the analytics layer to business users. Data
pipelines can handle both batch and streaming data, and at a high level, the methods
for measuring data quality for either type of asset are much the same.

Data downtime draws corollaries to software engineering and developer operations,
a world in which application uptime or downtime (meaning, how frequently your
software or service was “available” or “up” or “unavailable” or “down”) is measured
scrutinously to ensure that software is accessible and performant. Many site reliabil‐
ity engineers use “uptime” as a measurement because it correlates directly to the
customer impact of poor software performance on the business. In a world where
“five nines” (in other words, 99.999% uptime) of reliability is becoming the industry
standard, how can we apply this to data?

In this book, we will address how modern data teams can build more resilient
technologies, teams, and processes to ensure high data quality and reliability across
their organizations.

In this chapter, we’ll start by defining what data quality means in the context of this
book. Next, we’ll frame the current moment to better understand why data quality
is more important for data leaders than ever before. And finally, we’ll take a closer
look at how best-in-class teams can achieve high data quality at each stage of the
data pipeline and what it takes to maintain data trust at scale. This book focuses

Why Data Quality Deserves Attention—Now | 3



primarily on data quality as a function of powering data analytical data pipelines for
building decision-making dashboards, data products, machine learning (ML) models,
and other data science outputs.

What Is Data Quality?
Data quality as a concept is not novel—“data quality” has been around as long as
humans have been collecting data!

Over the past few decades, however, the definition of data quality has started to
crystallize as a function of measuring the reliability, completeness, and accuracy of
data as it relates to the state of what is being reported on. As they say, you can’t
manage what you don’t measure, and high data quality is the first stage of any robust
analytics program. Data quality is also an extremely powerful way to understand
whether your data fits the needs of your business.

For the purpose of this book, we define data quality as the health of data at any stage
in its life cycle. Data quality can be impacted at any stage of the data pipeline, before
ingestion, in production, or even during analysis.

In our opinion, data quality frequently gets a bad rep. Data teams know they need
to prioritize it, but it doesn’t roll off the tongue the same way “machine learning,”
“data science,” or even “analytics” does, and many teams don’t have the bandwidth
or resources to bring on someone full time to manage it. Instead, resource-strapped
companies rely on the data analysts and engineers themselves to manage it, diverting
them from projects that are perceived to be more interesting or innovative.

But if you can’t trust the data and the data products it powers, then how can data
users trust your team to deliver value? The phrase, “no data is better than bad data” is
one that gets thrown around a lot by professionals in the space, and while it certainly
holds merit, this often isn’t a reality.

Data quality issues (or, data downtime) are practically unavoidable given the rate of
growth and data consumption of most companies. But by understanding how we
define data quality, it becomes much easier to measure and prevent it from causing
issues downstream.

Framing the Current Moment
Technical teams have been tracking—and seeking to improve—data quality for as
long as they’ve been tracking analytical data, but only in the 2020s has data quality
become a top-line priority for many businesses. As data becomes not just an output
but a financial commodity for many organizations, it’s important that this informa‐
tion can be trusted.
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As a result, companies are increasingly treating their data like code, applying frame‐
works and paradigms long-standard among software engineering teams to their data
organizations and architectures. Development operations (DevOps), a technical field
dedicated to shortening the systems development life cycle, spawned industry-leading
best practices such as site reliability engineering (SRE), CI/CD (continuous inte‐
gration / continuous deployment), and microservices-based architectures. In short,
the goal of DevOps is to release more reliable and performant software through
automation.

Over the past few years, more and more companies have been applying these con‐
cepts to data in the form of “DataOps.” DataOps refers to the process of improving
the reliability and performance of your data through automation, reducing data silos
and fostering quicker, more fault-tolerant analytics.

Since 2019, companies such as Intuit, Airbnb, Uber, and Netflix have written
prolifically about their commitment to ensuring reliable, highly available data for
stakeholders across the business by applying DataOps best practices. In addition to
powering analytics-based decision making (i.e., product strategy, financial models,
growth marketing, etc.), data produced by these companies powers their applications
and digital services. Inaccurate, missing, or erroneous data can cost them time,
money, and the trust of their customers.

As these tech behemoths increasingly shed light on the importance and challenges of
achieving high data quality, other companies of all sizes and industries are starting
to take note and replicate these efforts, from implementing more robust testing to
investing in DataOps best practices like monitoring and data observability.

But what has led to this need for higher data quality? What about the data landscape
has changed to facilitate the rise of DataOps, and as such the rise of data quality?
We’ll dig into these questions next.

Understanding the “Rise of Data Downtime”
With a greater focus on monetizing data coupled with the ever-present desire to
increase data accuracy, we need to better understand some of the factors that can lead
to data downtime. We’ll take a closer look at variables that can impact your data next.

Migration to the cloud
Twenty years ago, your data warehouse (a place to transform and store structured
data) probably would have lived in an office basement, not on AWS or Azure.
Now, with the rise of data-driven analytics, cross-functional data teams, and most
importantly, the cloud, cloud data warehousing solutions such as Amazon Redshift,
Snowflake, and Google BigQuery have become increasingly popular options for
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companies bullish on data. In many ways, the cloud makes data easier to manage,
more accessible to a wider variety of users, and far faster to process.

Not long after data warehouses moved to the cloud, so too did data lakes (a place
to transform and store unstructured data), giving data teams even greater flexibility
when it comes to managing their data assets. As companies and their data moved
to the cloud, analytics-based decision making (and the need for high-quality data)
became a greater priority for businesses.

More data sources
Nowadays, companies use anywhere from dozens to hundreds of internal and exter‐
nal data sources to produce analytics and ML models. Any one of these sources can
change in unexpected ways and without notice, compromising the data the company
uses to make decisions.

For example, an engineering team might make a change to the company’s website,
thereby modifying the output of a data set that is key to marketing analytics. As
a result, key marketing metrics may be wrong, leading the company to make poor
decisions about ad campaigns, sales targets, and other important, revenue-driving
projects.

Increasingly complex data pipelines
Data pipelines have become increasingly complex with multiple stages of processing
and nontrivial dependencies between various data assets as a result of more advanced
(and disparate) tooling, more data sources, and increasing diligence afforded to
data by executive leadership. Without visibility into these dependencies, however,
any change made to one data set can have unintended consequences impacting the
correctness of dependent data assets.

In short, a lot goes on in a data pipeline. Source data is extracted, ingested, trans‐
formed, loaded, stored, processed, and delivered, among other possible steps, with
many APIs and integrations between different stages of the pipeline. At each juncture,
there’s an opportunity for data downtime, just like there’s an opportunity for applica‐
tion downtime whenever code is merged. Additionally, things can go wrong even
when data isn’t at a critical juncture, for instance, when data is migrated between
warehouses or manually entered in a source system.

More specialized data teams
As companies increasingly rely on data to drive smart decision making, they are
hiring more and more data analysts, data scientists, and data engineers to build and
maintain the data pipelines, analytics, and ML models that power their services and
products, as well as their business operations.
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While data analysts are primarily responsible for gathering, cleaning, and querying
data sets to help functional stakeholders produce rich, actionable insights about the
business, data engineers are responsible for ensuring that the underlying technologies
and systems powering these analytics are performant, fast, and reliable. In industry,
data scientists typically collect, wrangle, augment, and make sense of unstructured
data to improve the business. The distinction between data analysts and data scien‐
tists can be a little vague, and titles and responsibilities often vary depending on the
needs of the company. For instance, in the late 2010s, Uber changed all data analysts’
titles to data scientists after an organizational restructure.

As data becomes more and more foundational to business, data teams will only grow.
In fact, larger companies may support additional roles including data stewards, data
governance leaders, operations analysts, and even analytics engineers (a hybrid data
engineer-analyst role popular with startups and mid-sized companies who may not
have the resources to support a large data team).

With all of these different users touching the data, miscommunication or insufficient
coordination is inevitable and will cause these complex systems to break as changes
are made. For example, a new field added to a data table by one team may cause
another team’s pipeline to fail, resulting in missing or partial data. Downstream, this
bad data can lead to millions of dollars in lost revenue, erosion of customer trust, and
even compliance risk.

Decentralized data teams
As data becomes central to business operations, more and more functional teams
across the company have gotten involved in data management and analytics to
streamline and speed up the insights gathering process. Consequently, more and
more data teams are adopting a distributed, decentralized model that mimics the
industry-wide migration from monolithic to microservice architectures that took the
software engineering world by storm in the mid-2010s.

What is a decentralized data architecture? Not to be confused with the data mesh,
which is an organizational paradigm that leverages a distributed, domain-oriented
design, a decentralized data architecture is managed by a central data platform team,
with analytical and data science teams distributed across the business. Increasingly,
we’re finding that more and more teams leaning into the embedded data analyst
model are relying on this type of architecture.

For instance, your 200-person company may support a team of 3 data engineers
and 10 data analysts, with analysts distributed across functional teams to better
support the needs of the business. These analysts will report to operational teams or
centralized data teams but own specific data sets and reporting functions. Multiple
domains will generate and leverage data, leading to the inevitability that data sets
used by multiple teams become duplicated, go missing, or go stale over time. If you’re
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reading this book, you’re probably no stranger to the experience of using a data set
that’s no longer relevant, unbeknownst to you!

Other Industry Trends Contributing to the Current Moment
In addition to the aforementioned factors that frequently lead to data downtime,
several industry shifts are also occurring as a result of technological innovation that
are driving transformation of the data landscape. These shifts are all contributors to
this heightened attention to data quality.

Data mesh
Much in the same way that software engineering teams transitioned from monolithic
applications to microservice architectures, the data mesh is, in many ways, the data
platform version of microservices. It’s important to note that the concept of data
mesh is nascent, and there is much discussion in the data community regarding how
(or whether it makes sense) to execute on one at both a cultural and technical level.

As first defined by Zhamak Dehghani, a Thoughtworks consultant and the original
architect of the term, a data mesh, illustrated in Figure 1-1, is a sociotechnical para‐
digm that recognizes the interactions between people and the technical architecture
and solutions in complex organizations. The data mesh embraces the ubiquity of data
in the enterprise by leveraging a domain-oriented, self-serve design. It utilizes Eric
Evans’s theory of domain-driven design, a flexible, scalable software development
paradigm that matches the structure and language of your code with its correspond‐
ing business domain.

Unlike traditional monolithic data infrastructures that handle the consumption,
storage, transformation, and output of data in one central data lake, a data mesh
supports distributed, domain-specific data consumers and views “data-as-a-product,”
with each domain handling their own data pipelines. The tissue connecting these
domains and their associated data assets is a universal interoperability layer that
applies the same syntax and data standards.

Data meshes federate data ownership among domain data owners who are held
accountable for providing their data as products, while also facilitating communica‐
tion between distributed data across different locations.

While the data infrastructure is responsible for providing each domain with the
solutions with which to process it, domains are tasked with managing ingestion,
cleaning, and aggregation of the data to generate assets that can be used by business
intelligence applications. Each domain is responsible for owning their pipelines, but
there is a set of capabilities applied to all domains that stores, catalogs, and maintains
access controls for the raw data. Once data has been served to and transformed by
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a given domain, the domain owners can then leverage the data for their analytics or
operational needs.

Figure 1-1. The data mesh, pioneered by Zhamak Dehghani, pushes for a decentralized,
domain-oriented data architecture that relies on high-quality reliable data and universal
governance

The data mesh paradigm is successful only if the data is reliable and trustworthy,
and if this “universal interoperability layer” is applied across domains. The only way
data can be reliable and trustworthy? Close attention to data quality through testing,
monitoring, and observability.

Many companies are adopting the data mesh paradigm, particularly larger organi‐
zations with the need for multiple data domains. For instance, in a January 2021
blog article written by Intuit’s former VP of Data Engineering, Mammad Zadeh,
and Raji Arasu, Intuit’s SVP of Core Services & Experiences, Intuit positions itself
as a “AI-driven expert platform company,” whose platform “collects, processes, and
transforms a steady stream of data into a connected mesh of high-quality data.”
Another example is JPMorgan Chase, which built a data mesh architecture to help
them delineate data ownership between discrete analytics functions and improve
visibility into data sharing across the enterprise.
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Regardless of your perspective on the data mesh, it’s certainly taken the data commu‐
nity by storm and surfaced great conversation—and blog articles—on the future of
our distributed data architectures and team structures.

Streaming data
Streaming data refers to the process of transmitting a continuous flow of data into
your pipeline to quickly generate real-time insights. Traditionally, data quality was
enforced via testing batch data before it entered production pipelines, but increas‐
ingly, businesses are seeking more real-time analysis. While this has the potential to
make insights faster, it also opens up greater questions and challenges related to data
quality since streaming data is data “in motion.”

Increasingly, organizations are adopting both batch processing and stream process‐
ing, which forces data teams to rethink their approach to testing and observing their
data.

Rise of the data lakehouse
Data warehouse or data lake? That is the question—at least if you ask a data engi‐
neer. Data warehouses, a structured data repository, and data lakes, a pool of raw,
unstructured data, both rely on high-quality data for processing and transformation.
Increasingly, data teams are opting to use both data warehouses and data lakes to
accommodate the growing data needs of their business. Meet: the data lakehouse.

Data lakehouses first came onto the scene when cloud warehouse providers began
adding features that offer lake-style benefits, such as Redshift Spectrum or Databricks
Lakehouse. Similarly, data lakes have been adding technologies that offer warehouse-
style features, such as SQL functionality and schema. Today, the historical differences
between warehouses and lakes are narrowing so you can access the best of both
worlds in one package.

This migration to the lakehouse model suggests that pipelines are growing more and
more complex, and while some might choose one dedicated vendor to tackle both,
others are migrating data to multiple storage and processing layers, leading to more
opportunities for pipeline data to break even with ample testing.

Summary
The rise of the cloud, distributed data architectures and teams, and the move toward
data productization have put the onus on data leaders to help their companies drive
toward more trustworthy data (leading to more trustworthy analytics). Achieving
reliable data is a marathon, not a sprint, and involves many stages of your data pipe‐
line. Further, committing to improving data quality is much more than a technical
challenge; it’s very much organizational and cultural, too. In the next chapter, we’ll
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discuss some technologies your team can use to prevent broken pipelines and build
repeatable, iterative processes and frameworks with which to better communicate,
address, and even prevent data downtime.
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CHAPTER 2

Assembling the Building Blocks of a
Reliable Data System

With Ryan Kearns

While solving data quality issues in production is a critical skill set for any data
practitioner, data downtime can often be prevented almost entirely with the right
systems and processes in place.

Like software, data can rely on any number of operational, programmatic, or even
data-related influences at various stages in the pipeline, and all it takes is one schema
change or code push to send a downstream report into disarray.

As we’ll discuss in Chapter 8, solving for data quality and building more reliable
pipelines is broken into three key components: process, technologies, and people.
In this chapter, we’ll tackle the technology component of this equation, mapping
together the disparate pieces of the data pipeline and what it takes to measure, fix,
and prevent data downtime at each step.

Data systems are ridiculously complex, with various stages in the data pipeline con‐
tributing to this chaos. And as companies increasingly invest in data and analytics,
the pressure to build at scale puts serious pressure on data engineers to account for
quality before data even enters the pipeline.

In this chapter, we’ll highlight the various metadata-powered building blocks—from
data catalogs to data warehouses and lakes—to ensure your data infrastructure is
set up for success when it comes to ensuring high-quality data at each stage of the
pipeline.
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Understanding the Difference Between Operational
and Analytical Data
If you ask a data engineer for the broadest possible distinction between data within
their organization, you might hear the terms “operational data” and “analytical data.”
The operational versus analytical distinction is just one of many ways to cleave the
data in your ecosystem. But it’s an important one, and one you’ll need to understand
if you’re interested in adopting a culture of data quality.

While we’ll dive into operational data a bit here, it’s important to note that for the
purposes of this book, we have been and will continue to focus on data quality as
it relates to analytical data. Managing the quality and reliability of operational data
often lies in the realm of DevOps, site reliability engineering, and other software
disciplines more concerned with building software products that are informed by
analytical data.

Operational data
Data produced operationally—that is, by the day-to-day ongoing operations at
your organization. Inventory snapshots at moments in time, customer impres‐
sions, and transaction records are all examples of operational data.

Analytical data
Data used analytically. This is to say, it’s the type of data behind data-driven
business decisions. Marketing churn, clickthrough rates, and impressions by
global region are all examples of analytical data categories.

In a nutshell, operational data records data from actual business processes for quick
updates to systems and processes, while analytical data is used for more robust and
efficient analysis. One easy way of thinking about this is that operational data runs
your business while analytical data manages your business. Given that analytical data
drives business intelligence in a way operational data does not, one might be tempted
to suspect this data is more important or more “central” to an organization’s success.
Yet more often than not, analytical data rests on a backbone of operational data
transformations and aggregations.

This operational versus analytical distinction is the same one made
by the comparison between transaction-processing and analytic
data systems (OLTP versus OLAP), e.g., in Designing Data-Intensive
Applications (O’Reilly).
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What Makes Them Different?
As you likely guessed, analytical and operational data are different in a few critical
ways that inform how we manage their reliability, as depicted in Figure 2-1.

Figure 2-1. An example data platform, illustrating just one way to distinguish opera‐
tional and analytical data

Almost always, operational data appears upstream from analytical data in your data
pipelines. This is because analytical data can and often does contain aggregations or
augmentations of operational datastores. The clickthrough rate of a given user from
her browser at 5 a.m. is one operational datum, and the clickthrough rate for your
December marketing campaign is a corresponding analytical datum.

One crucial reason for why the operational versus analytical data distinction is
important is what’s called the throughput versus latency trade-off. The through‐
put–latency constraint affects any system with fixed computational power. Tradition‐
ally throughput refers to the quantity of data processed within some unit of time, and
latency refers to the delay before data is processed.

Think of a popular internet cafe with a line outside. How long before someone at the
end of the line receives their coffee? This process involves standing in line, ordering,
paying, and then waiting for the barista to make the drink. The sum total of this time
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describes the cafe’s latency. Conversely, the number of customers able to enjoy their
coffees indoors in, say, an hour’s time describes the throughput of the cafe.

Unfortunately, these two measures of data processing performance are doomed to
compete. We cannot have both high throughput and low latency for our internet
cafe. But why, you ask? It’s not like throughput and latency describe opposite ideals.
The answer has to do with how data processing systems are architected in reality—
specifically, with a limited number of request handlers.

Imagine, again, our internet cafe. We have a fixed number of employees at our cafe,
and those robot serve-o-trons we ordered are on backlog due to the chip shortage.
As managers, we have to decide how many employees should staff the espresso
machines and registers, and how many should go around bussing tables. Notice the
trade-off yet? Suppose we try at all costs to optimize our cafe latency. This would
involve staffing nearly all of our employees at the registers and espresso machines,
so that drinks could be ordered and picked up as fast as possible. Yet if we do this,
we’re guaranteed to drastically reduce our throughput, since no one is around to bus
tables and make space for the new customers. If, by contrast, we relegate most of our
workers to hover around tables, snatching empty cups the moment they’re forfeited,
our latency will increase—because no one is operating the cash register!

In certain cases, the balance to strike is obvious. Operational—that is, transactional—
databases require certain information like order details to be fetched on page load as
quickly as possible. As a result, their architectures, through various design decisions,
will be optimized for low latency. Analytical databases, by contrast, cater to users
conducting large aggregations across massive data sets, and so they must optimize for
high throughput. This heuristic won’t pass for flawless advice about which services
to employ for what, but it at least explains why you won’t generally query Snowflake
or Redshift from a customer UI or run trillion-row aggregations in your MySQL or
Postgres instance.

Data Warehouses Versus Data Lakes
Data warehouses and data lakes—perhaps no two words receive as much headspace
in the day-to-day vernacular of a data engineering team. While warehouses and lakes
are not interchangeable, these technologies are rapidly converging, with each offering
the best of both worlds.

Many organizations genuinely require both kinds of systems within their data pipe‐
lines, but they’re used for quite different things. Generally, data warehouses store data
in a structured (row-column) format. Such data is highly transformed (the result
of defined preprocessing procedures) and present only because it has a determinate
reason for being there—at least, in theory.
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Data lakes by contrast store anything—structured data, semi-structured data, unstruc‐
tured data. Unlike warehouses, data lakes need not have highly specified procedures
through which data enters—you can dump any format you like into a lake and
directly access it. The result is a system that is typically higher volume and often more
complex in terms of its governance and data.

Data Warehouses: Table Types at the Schema Level
Data warehouses require “schema on write” access, meaning we set the structure of
the data at the instant it enters the warehouse. Further transformations of this data
must make its new structure explicit at every step.

Data warehouses are fully integrated and managed solutions, making them simple to
build and operate out of the box. Unlike data lakes, data warehouses typically require
more structure and schema, which often forces better data hygiene and results in less
complexity when reading and consuming data.

The modern data warehouse owes its conception in part to the Kimball Group, who
developed the Data Warehouse / Business Intelligence Lifecycle Methodology in the
1980s. This innovation in systems design championed business value across all levels
of the enterprise, including the stages of data ingestion and preprocessing most often
occupied by engineers. Kimball was influential in identifying data storage techniques
as business assets instead of mere technological preferences.

Modern data warehouses follow this methodology with their schema-on-write archi‐
tectures and ready integrations to business intelligence tools like Looker and Tableau.
Simply put, data in a data warehouse has reasons for being there, and those reasons
should correspond to a business objective of some kind.

Today, common data warehouse technologies include:

Amazon Redshift
The first widely popular (and readily available) cloud data warehouse, Amazon
Redshift sits on top of Amazon Web Services (AWS) and leverages source con‐
nectors to pipe data from raw data sources into relational storage. Redshift’s
columnar storage structure and parallel processing make it ideal for analytic
workloads.

Google BigQuery
Like Redshift, Google BigQuery leverages its mothership’s proprietary cloud
platform (Google Cloud Platform, or GCP), uses a columnar storage format,
and takes advantage of parallel processing for quick querying. Unlike Redshift,
BigQuery is a serverless solution that scales according to usage patterns.
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Snowflake
Unlike Redshift or GCP, which rely on their proprietary clouds to operate, Snow‐
flake’s cloud data warehousing capabilities are powered by AWS, Google, Azure,
and other public cloud infrastructures. Unlike Redshift, Snowflake allows users
to pay separate fees for compute and storage, making the data warehouse a great
option for teams looking for a more flexible pay structure.

Owing to its prepackaged functionalities and strong support for SQL, data ware‐
houses facilitate fast, actionable querying, making them great for data analytics teams.

While data warehouses can be extremely valuable for business analytics use cases,
there are a few drawbacks you should keep in mind, particularly as related to manag‐
ing data quality:

Limited flexibility
Data warehouses are not the most flexible data storage solution on the market.
This is not to say they don’t scale well—many of the best modern solutions
famously do—but instead that the format of data in warehouses is limited.
Entries into a data warehouse must be coerced into tabular form with a definite
schema. Semi-structured data like JSON, and the querying thereof, is typically
not naturally supported, and bad data often falls through the cracks.

SQL-only support
Querying a data warehouse will require the use of a query language like SQL.
There’s generally no support for data manipulation with imperative languages
like Python, useful for machine learning due to a strong library ecosystem.
Thus, many machine learning implementations require data to be moved out of
a warehouse, via SQL, for further processing. Again, this movement of data is
where it often breaks and volume, freshness, and schema anomalies occur.

Frictional workflows
A small team of data scientists, working closely together on a quickly iterating
product, might find the cleanliness afforded by the schema-on-write system
more cumbersome than beneficial. When you want to work fast, it’s to your
benefit to have lax standards as to the structure of your data. That structure will
be constantly changing, and constant schema change is not something a data
warehouse happily supports.

For these reasons, it’s not uncommon for data teams to adopt both data warehouses
and lakes for analytical workloads, each serving a different purpose.

Data Lakes: Manipulations at the File Level
Data lakes, another increasingly popular storage and compute option for modern
data systems, also rely on high-quality analytical data to deliver optimal results.
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Unlike data warehouses, data lake architectures permit “schema on read” access. This
means we infer the structure of the data when we’re ready to use it.

Data lakes are the do-it-yourself version of a data warehouse, allowing teams to pick
and choose the various metadata, storage, and compute technologies they want to use
depending on the needs of their systems. Data lakes are ideal for data teams looking
to build a more customized platform, often supported by a handful (or more) of data
engineers. With data lakes, data scientists, ML engineers, and data engineers can draw
from a much larger pool of data that includes both semi-structured and unstructured
formats.

The concept of a data lake was first brought to life by James Dixon, the founder and
former CTO of software company Pentaho, which he described as “a large body of
water in a more natural state. The contents of the data lake stream in from a source
to fill the lake, and various users of the lake can come to examine, dive in, or take
samples.”

Very early data lakes were built primarily on Apache Hadoop MapReduce and HDFS,
leveraging Apache Hive to query their data with a SQL engine. In the early 2010s,
Apache Spark made data lakes much more tenable, providing a generalized frame‐
work for distributed computations across large data sets in the data lake.

Some common features of data lakes include:

Decoupled storage and compute
Not only can this functionality allow for substantial cost savings, but it also
facilitates parsing and enriching of the data for real-time streaming and querying.

Support for distributed compute
Distributed computing helps support the performance of large-scale data pro‐
cessing because it allows for better segmented query performance, more fault-
tolerant design, and superior parallel data processing.

Customization and interoperability
Owing to their “plug and chug” nature, data lakes support data platform scalabil‐
ity by making it easy for different elements of your stack to play well together as
the data needs of your company evolve and mature.

Largely built on open source technologies
This facilitates reduced vendor lock-in and affords great customization, which
works well for companies with large data engineering teams.

Ability to handle unstructured or weakly structured data
Data lakes can support raw data, meaning that you have greater flexibility
when it comes to working with your data, ideal for data scientists and data
engineers. Working with raw data gives you more control over your aggregates
and calculations.
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Support for sophisticated non-SQL programming models
Unlike most data warehouses, data lakes support Apache Hadoop, Apache Spark,
PySpark, and other frameworks for advanced data science and machine learning.

While data warehouses provide structure that makes it easy for data teams to effi‐
ciently operationalize data (i.e., gleaning analytic insights and supporting machine
learning capabilities), that structure can make them inflexible and expensive for
certain applications. On the other hand, data lakes are infinitely flexible and custom‐
izable to support a wide range of use cases, but with that greater agility comes a host
of other issues related to data organization and governance.

Here are a few salient challenges data teams face when trying to achieve more reliable
data across their lake environments:

Data integrity
Resources in a data lake, being manipulated at the file level, have no guarantees as
to their data’s schema. If you’re transforming data in a lake with some assumption
as to its schema, you’re doing something called “blind ETL,” which is incredibly
dangerous. Transformations may fail at any point due to unforeseen upstream
changes.

Swampification
Swampification refers to the tendency for data lakes to incur technical debt and
tacit knowledge over time. Often, you’ll have to rely on a skilled data engineer or
data scientist for knowledge about where certain data resides, who its stakehold‐
ers are, and how it might be expected to change. Lean too heavily on this and
your data lake “swampifies,” meaning no one can get any work done because data
literacy comes at a high learning curve.

More endpoints
Data reliability is often a bigger challenge in data lakes because there are more
ways that data can be collected, manipulated, and transformed. More steps in the
pipeline introduces more opportunity for error.

Data lakes are often used as collection points for large quantities of unstructured data,
such as application data or auto-generated data for the purposes of some machine
learning task. This data can either remain in its raw format in the lake or be intended
to feed some upstream resource, possibly in a data warehouse or business intelligence
tool, via an integration layer like AWS Glue.

Alternatively, smaller teams might operate with a data lake as their sole data store for
the purposes of moving quickly and not settling on a robust infrastructure—though
practitioners of this should always be wary of the “data swamp” problem.
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What About the Data Lakehouse?
Data lakehouses first came onto the scene when cloud warehouse providers began
adding features that offer lake-style benefits, such as Redshift Spectrum or Delta
Lake. Similarly, data lakes have been adding technologies that offer warehouse-style
features, such as SQL functionality and schema. Today, the historical differences
between warehouses and lakes are narrowing so you can access the best of both
words in one package.

The following functionalities are helping data lakehouses further blur the lines
between the two technologies:

High-performance SQL
Technologies like Presto and Spark provide a SQL interface at close to interactive
speeds over data lakes. This opened the possibility of data lakes serving analysis
and exploratory needs directly, without requiring summarization and ETL into
traditional data warehouses.

Schema
File formats like Parquet introduced more rigid schema to data lake tables, as
well as a columnar format for greater query efficiency.

Atomicity, consistency, isolation, and durability (ACID)
Lake technologies like Delta Lake and Apache Hudi introduced greater reliability
in write/read transactions, and took lakes a step closer to the highly desirable
ACID properties that are standard in traditional database technologies.

Managed services
For teams that want to reduce the operational lift associated with building and
running a data lake, cloud providers offer a variety of managed lake services.
For example, Databricks offers managed versions of Apache Hive, Delta Lake,
and Apache Spark while Amazon Athena offers a fully managed lake SQL query
engine and Amazon’s Glue offers a fully managed metadata service.

With the rise of real-time data aggregation and streaming to inform lightspeed
analytics (think Silicon Valley tech giant speeds: Uber, DoorDash, and Airbnb),
data lakehouses are likely to rise in popularity and relevance for data teams across
industries in the coming years.

Syncing Data Between Warehouses and Lakes
Different data warehouses and lakes are bridged by a data integration layer. Data inte‐
gration tools, such as AWS Glue, Fivetran, and Matillion, collect data from disparate
sources, unify this data, and transform it into an upstream source. A classic use case
of data integration would be to collect lake data and load it in a structured format into
one’s data warehouse.
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Extract-transform-load, or ETL, is one well-known process within data integration.
ETL generally describes integration steps where data is first extracted from one or
more data stores, transformed into a new structure or format, and finally loaded into a
destination data store.

Now that we’ve discussed these core elements of the modern data pipeline, let’s dive
into how they all work together and what we can do to ensure high data quality at
each step.

Collecting Data Quality Metrics
So far, we’ve covered various distinctions like operational versus analytical data,
transactional versus analytical databases, and data lakes versus data warehouses.
Understanding all of these distinctions helps us know exactly where our data may
reside. We also get a sense of the various advantages and risks of different storage
formats and steps in one’s data pipeline. But when it comes to data quality, which
metrics specifically should we be taking into account?

In this next section we’ll talk about data quality metrics—what they are, where they
might be found, and how you know you’re leveraging them correctly.

What Are Data Quality Metrics?
You can’t fix what you can’t measure. Likewise, you can’t have data quality without
data quality metrics, in other words, key performance indicators (KPIs) or other
indicators that your data is healthy and reliable enough to be used by stakeholders.

We advocate measuring data quality in terms of data downtime—periods of time
when your data is partial, erroneous, missing, or otherwise inaccurate. As mentioned
previously, we call it “downtime” to harken back to the early days of the internet.
Back then, online applications were a nice-to-have, and if they were down for a
while, it was not a big deal. You could afford downtime, since businesses were not
overly reliant on them. We’re now two decades into the Internet Age (or beyond it,
depending on whom you ask!), and online applications are mission-critical to almost
every business. As a result, companies measure downtime meticulously and invest a
lot of resources in avoiding service interruptions.

Similarly, companies are increasingly reliant on data to run their daily operations
and make mission-critical decisions. But we aren’t yet treating data downtime with
the diligence it demands. While a handful of companies are putting service-level
agreements (SLAs) in place to hold data teams accountable to accurate and reliable
data, it is not the norm yet. In the coming years, we expect there will be increased
scrutiny around data downtime and increased focus on minimizing it.

In assessing whether your data is down, you might build a list of questions:
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• Is the data up-to-date?•
• Is the data complete?•
• Are fields within expected ranges?•
• Is the null rate higher or lower than it should be?•
• Has the schema changed?•

This list might not be exhaustive for your own data quality needs, but it’s a good
place to start. It moves us from answering one broad and difficult question (“Is my
data down?”) to a sequence of more specific ones. We’re well on our way to data
quality metrics, which should answer questions like the preceding with quantitative
and measurable results.

How to Pull Data Quality Metrics
The answers to the preceding questions come from analysis of specific data assets,
which mostly take the form of the resources we discussed earlier in this chapter—data
warehouses, lakes, the transformation layers between them, and so on.

How do we go about formulating data quality metrics from a warehouse environ‐
ment? Recall from “Data Warehouses: Table Types at the Schema Level” on page 17
that data warehouses are differentiated by their structured content and “schema-on-
write” architecture.

Scalability
Tracking a large number of tables and big data sets can become tricky. You’ll need
to think about batching your calls, optimizing your queries for scale, deduplicating,
normalizing the various schemas, and storing all this information in a scalable store
so you can make sense of it. This requires building a dedicated data pipeline that you
operate, update, and maintain over time.

Don’t forget to keep track of your Snowflake credit consumption
(you don’t want to be getting a call from your CFO).

Monitoring across other parts of your stack
Building truly reliable data pipelines and achieving data observability requires more
than collecting metrics. In fact, as the modern data stack evolves, it has become criti‐
cal to keep tabs on the reliability of real-time streaming data, data lakes, dashboards,
ML models, and other assets.
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Monitoring data quality metrics as your data stack grows to incorporate additional
technologies and data sources is a fundamental challenge. Since data can break
literally anywhere in your pipeline, you will need a way to pull metrics and metadata
from not just your warehouse but other assets too.

Investing in solutions that allow these integrations to play nice with each other and
your end users, whether that’s your data engineers, analytics engineers, ML teams, or
data scientists, should be a top priority. True data observability extends beyond the
warehouse to provide insights into the health of data in your lakes, ETL, business
intelligence dashboards, and beyond before broken data snowballs into bigger prob‐
lems down the road.

In the following section, we highlight how you’d go about pulling data quality met‐
rics from Snowflake to measure data health in the warehouse. While we leverage
Snowflake for this specific example, pulling data quality information from Redshift,
BigQuery, and other popular OLAP-based warehouses follows a similar process.

Example: Pulling data quality metrics from Snowflake
Snowflake is one of the most popular cloud data warehousing tools, and its design
has prioritized data quality and integrity from the very beginning. One of the most
important features of the warehouse when it comes to building more reliable data
pipelines is the ability to pull data quality metrics directly from the warehouse and
visualize them for easy analysis (see Figure 2-2).

Figure 2-2. Pulling data quality metrics in Snowflake can help render a snapshot of data
health in the warehouse at a given point in time

Here are the four steps you need to take to successfully glean data quality metrics
from Snowflake. (Keep in mind that this tutorial is applicable to other brands of data
warehouse as well, with a few adjustments.)

Step 1: Map your inventory.    For the purposes of this tutorial, let’s assume you have a
single database on Snowflake called ANALYTICS (although, as with most data stacks,
this is rarely the case). To run the following queries in your environment, simply
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replace ANALYTICS with the name of the database you are looking to track. To list the
databases in your account, you can run SHOW DATABASES.

Your first step will be to map all the tables you have in your warehouse so you know
what needs to be tracked in the first place. While you do so, mapping schema can be a
powerful tool in understanding what’s in each table, and how that changes over time.

Here’s how to do that with Snowflake, as depicted in Example 2-1.

Example 2-1. Query to pull a list of tables with their relevant metadata

SELECT
 TABLE_CATALOG,
 TABLE_SCHEMA,
 TABLE_NAME,
 TABLE_OWNER,
 TABLE_TYPE,
 IS_TRANSIENT,
 RETENTION_TIME,
 AUTO_CLUSTERING_ON,
 COMMENT
FROM "ANALYTICS".information_schema.tables
WHERE
 table_schema NOT IN ('INFORMATION_SCHEMA')
 AND TABLE_TYPE NOT IN ('VIEW', 'EXTERNAL TABLE')
ORDER BY TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME;

This query will fetch a list of all tables along with helpful metadata about their
settings. The comment property is particularly useful if you’ve been diligent about
documenting your data with COMMENT.

To get the schema for your tables—understanding how it evolves can really help
prevent and troubleshoot data breakages—you might use the query in Example 2-2.

Example 2-2. Retrieving the schema for tables in Snowflake

SELECT
 '"' || TABLE_CATALOG || '"."' || TABLE_SCHEMA || '"."' || TABLE_NAME 
   || '"' AS FULL_NAME,
 COLUMN_NAME,
 DATA_TYPE,
 COLUMN_DEFAULT,
 IS_NULLABLE,
 COMMENT,
 CHARACTER_MAXIMUM_LENGTH,
 NUMERIC_PRECISION,
 NUMERIC_SCALE,
 DATETIME_PRECISION
FROM "ANALYTICS".information_schema.columns;
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Please note that the preceding snippets will help with tables, but we intentionally left
out views and external tables. To pull metadata for those, we recommend using the
following queries:

SHOW VIEWS IN DATABASE "ANALYTICS";
SHOW EXTERNAL TABLES IN DATABASE "ANALYTICS";

While it might add complexity to your implementation, these queries will fetch val‐
uable information that is not available when querying information_schema.tables.
For example, you will have the text property for views—which will provide insight
about the underlying SQL query for your views.

Step 2: Monitor for data freshness and volume.    Tracking volume and freshness for your
tables is incredibly important in understanding Snowflake data observability and the
overall health of your data pipelines. Thankfully, Snowflake tracks that information
as writes are made to tables in the warehouse. You can pull how many bytes and
rows tables have, as well as the time they were most recently updated using this query
(Example 2-3).

Example 2-3. Query generating results correlating to the freshness of the table

SELECT
 TABLE_CATALOG,
 TABLE_SCHEMA,
 TABLE_NAME,
 ROW_COUNT,
 BYTES,
 CONVERT_TIMEZONE('UTC', CREATED) as CREATED,
 CONVERT_TIMEZONE('UTC', LAST_ALTERED) as LAST_ALTERED
FROM "ANALYTICS".information_schema.tables
WHERE
 table_schema NOT IN ('INFORMATION_SCHEMA')
 AND TABLE_TYPE NOT IN ('VIEW', 'EXTERNAL TABLE')
ORDER BY TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME;

By storing these metrics and observing how they change over time, you can map how
frequently tables get updated, how much data is to be expected in each update, and,
most importantly, identify missing or anomalous updates.

Measuring the freshness and volume of views is not straightforward, as it is a func‐
tion of the tables included in the underlying queries. As far as external tables go, we
recommend using freshness information from SHOW EXTERNAL TABLES….

Step 3: Build your query history.    Having a solid history of all the queries running in
your Snowflake environment is an invaluable tool when troubleshooting issues—it
lets you see exactly how and when a table was most recently written to. More broadly,
an analysis of your query logs can help map lineage (dependencies between tables),

26 | Chapter 2: Assembling the Building Blocks of a Reliable Data System

https://oreil.ly/ICi96


understand which users use which assets, and even optimize the performance and
cost of your Snowflake instance.

Example 2-4 is the query we use to extract query logs—notice we’ll be filtering out
system and faulty queries to reduce noise. This can provide vital information about
who was using a given table and for what purpose.

Example 2-4. Extracting query logs

SELECT
   "QUERY_TEXT",
   "DATABASE_NAME",
   "SCHEMA_NAME",
   "QUERY_TYPE",
   "USER_NAME",
   "ROLE_NAME",
   "EXECUTION_STATUS",
   "START_TIME",
   "END_TIME",
   "TOTAL_ELAPSED_TIME",
   "BYTES_SCANNED",
   "ROWS_PRODUCED",
   "SESSION_ID",
   "QUERY_ID",
   "QUERY_TAG",
   "WAREHOUSE_NAME",
   "ROWS_INSERTED",
   "ROWS_UPDATED",
   "ROWS_DELETED",
   "ROWS_UNLOADED"
FROM snowflake.account_usage.query_history
WHERE
   start_time BETWEEN to_timestamp_ltz('2021-01-01 00:00:00.000000+00:00') 
     AND to_timestamp_ltz('2021-01-01 01:00:00.000000+00:00')
   AND QUERY_TYPE NOT IN ('DESCRIBE', 'SHOW')
   AND (DATABASE_NAME IS NULL OR DATABASE_NAME NOT IN ('UTIL_DB', 'SNOWFLAKE'))
   AND ERROR_CODE is NULL
ORDER BY start_time DESC;

You might also find it valuable to take a look at the history of copy and load
operations to understand how data is loaded and moved around (Example 2-5). This
can provide insights into table freshness.

Example 2-5. Query to gather information about how the data is loaded

SELECT
   "FILE_NAME",
   "STAGE_LOCATION",
   "LAST_LOAD_TIME",
   "ROW_COUNT",
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   "FILE_SIZE",
   "ERROR_COUNT",
   "STATUS",
   "TABLE_CATALOG_NAME",
   "TABLE_SCHEMA_NAME",
   "TABLE_NAME",
   "PIPE_CATALOG_NAME",
   "PIPE_SCHEMA_NAME",
   "PIPE_NAME",
   "PIPE_RECEIVED_TIME"
FROM snowflake.account_usage.copy_history
WHERE
   LAST_LOAD_TIME between to_timestamp_ltz('2021-01-01 00:00:00.000000+00:00') 
     AND to_timestamp_ltz('2021-01-01 01:00:00.000000+00:00')
   AND STATUS != 'load failed'
ORDER BY LAST_LOAD_TIME DESC;

In the next step, we take our analysis of data quality in Snowflake a step further by
running queries to monitor for null and zero values—signals that something might be
wrong.

Step 4: Health check.    Finally, for some of your critical tables, you might want to run
data quality checks to make sure all fields are populated properly and have healthy
values. By tracking health metrics over time and comparing them to past batches,
you can find a range of data quality issues as soon as they appear in your data.
Example 2-6 queries a historical record of your Snowflake data, which will help you
understand where there might be anomalies in a given table.

Example 2-6. Querying a historical record of Snowflake data

SELECT
   DATE_TRUNC('HOUR', created_on) as bucket_start,
   DATEADD(hr, 1, DATE_TRUNC('HOUR', created_on)) as bucket_end,
   
   COUNT(*) as row_count,
 
   -- string field
   COUNT(account_id) / CAST(COUNT(*) AS NUMERIC) as account_id___completeness,
   COUNT(DISTINCT account_id) as account_id___approx_distinct_count,
   COUNT(DISTINCT account_id) / CAST(COUNT(*) AS NUMERIC) 
     as account_id___approx_distinctness,
   AVG(LENGTH(account_id)) as account_id___mean_length,
   MAX(LENGTH(account_id)) as account_id___max_length,
   MIN(LENGTH(account_id)) as account_id___min_length,
   STDDEV(CAST(LENGTH(account_id) as double)) as account_id___std_length,
   SUM(IFF(REGEXP_COUNT(TO_VARCHAR(account_id), 
     '^([-+]?[0-9]+)$', 1, 'i') != 0, 1, 0)) / CAST(COUNT(*) AS NUMERIC) 
     as account_id___text_int_rate,
   SUM(IFF(REGEXP_COUNT(TO_VARCHAR(account_id), 
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     '^([-+]?[0-9]*[.]?[0-9]+([eE][-+]?[0-9]+)?)$', 1, 'i') != 0, 1, 0)) 
     / CAST(COUNT(*) AS NUMERIC) as account_id___text_number_rate,
   SUM(IFF(REGEXP_COUNT(TO_VARCHAR(account_id), 
     '^([0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}
     -[0-9a-fA-F]{12})$', 1, 'i') != 0, 1, 0)) / CAST(COUNT(*) AS NUMERIC) 
     as account_id___text_uuid_rate,
   SUM(IFF(REGEXP_COUNT(TO_VARCHAR(account_id), 
     '^(\\s+)$', 1, 'i') != 0, 1, 0)) / CAST(COUNT(*) AS NUMERIC) 
     as account_id___text_all_spaces_rate,
   SUM(IFF(UPPER(account_id) IN ('NULL', 'NONE', 'NIL', 'NOTHING'), 1, 0)) 
     / CAST(COUNT(*) AS NUMERIC) as account_id___text_null_keyword_rate,

Next, you can track the accuracy of a specific numeric field (or distribution) of
your data, as highlighted in Example 2-7. In this example, we’re specifically gather‐
ing information on the distribution of our data across two fields: account_id and
num_of_users.

Example 2-7. Gathering data distribution information for account_id and
num_of_users

   -- numeric field
   COUNT(num_of_users) / CAST(COUNT(*) AS NUMERIC) 
     as num_of_users___completeness,
   SUM(IFF(num_of_users = 0, 1, 0)) / CAST(COUNT(*) AS NUMERIC) 
     as num_of_users___zero_rate,
   SUM(IFF(num_of_users < 0, 1, 0)) / CAST(COUNT(*) AS NUMERIC) 
     as num_of_users___negative_rate,
   COUNT(DISTINCT num_of_users) / CAST(COUNT(*) AS NUMERIC) 
     as num_of_users___approx_distinctness,
   AVG(num_of_users) as num_of_users___numeric_mean,
   MIN(num_of_users) as num_of_users___numeric_min,
   MAX(num_of_users) as num_of_users___numeric_max,
   STDDEV(CAST(num_of_users as double)) as num_of_users___numeric_std,
   ARRAY_CONSTRUCT(APPROX_PERCENTILE(num_of_users, 0.00), 
     APPROX_PERCENTILE(num_of_users, 0.20), 
     APPROX_PERCENTILE(num_of_users, 0.40), 
     APPROX_PERCENTILE(num_of_users, 0.60), 
     APPROX_PERCENTILE(num_of_users, 0.80), 
     APPROX_PERCENTILE(num_of_users, 1.00)) 
     as num_of_users___approx_quantiles
  
FROM analytics.prod.client_hub
WHERE
   DATE_TRUNC('HOUR', measurement_timestamp) 
     >= DATEADD(day, -1, CURRENT_TIMESTAMP())
GROUP BY bucket_start, bucket_end
ORDER BY bucket_start ASC;

In this example, we are collecting health metrics for two fields in our client_hub
table.
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For the field account_id, a string, we track metrics like completeness (% of non-null
values), distinctness (% of unique values) and universally unique identifier (UUID)
rate (% of records that match a UUID format). Tracking those over time would help
identify common issues like accounts that have no IDs, duplicate records, and IDs
that have the wrong format.

For the numeric field num_of_users we track other kinds of metrics like zero rate
(% of records with the value 0), mean, and quantiles. These metrics—when observed
over time—can help us identify common issues like missing data causing our counts
to zero out, or bugs that would cause our user counts to be way off.

For scalability, note that we track only recent data (one day in this example) and
assume that past data was previously queried and stored. This practice—along with
sampling if necessary—will let you track some sizable data sets efficiently and cost
effectively.

The information you pull to track data quality metrics needs to be readily available
to other members of the team, particularly when things break or you’re in the
throes of conducting root cause analysis on your data pipelines. Baking in automatic
notifications when issues are detected and a centralized (and easy-to-navigate) UI to
better handle these workflows can spell the difference between fast resolution and a
days-long data disaster.

Using Query Logs to Understand Data Quality in the Warehouse
A powerful source of metadata accessible in warehouse environments is query logs—
records of the transformations made on the warehouse. Query logs let you answer
questions such as:

• Who is accessing this data?•
• Where does it come from upstream? Where is it going downstream?•
• How often, on average, is this particular transformation executed?•
• How many rows are affected?•

This information comes packaged in system tables in most major data warehouse
vendors. The Snowflake QUERY_HISTORY family of tables, BigQuery’s AuditLogs
resources, and the Redshift STL_QUERY table family are places to start. A Google
search for “[vendor-name] query logs” is probably sufficient for finding the analogue
from your warehouse provider.

Query log tables typically (1) store only some single number of days of query history,
and (2) contain way more information than you’ll need for your data quality initia‐
tive. This means that a robust solution handling query logs for data quality metrics
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will need to be proactive and store the desired metrics and aggregations in a more
permanent location. If we look at Snowflake and Redshift, the metrics appearing
ready-made for you will include:

• The user ID who executed the query•
• The SQL text of the query, as well as a hash that identifies it•
• The query’s total elapsed time, from start to end•
• An error code if one was produced•
• The size of the input/output of the query, in rows or in bytes•

This may not sound like a lot by itself, but think of the questions that now have
answers if we apply our metadata collection in an intelligent way:

• When was this table last queried?•
• Was that update part of a regular cadence, or does it break a pattern?•
• What’s the load on this warehouse as a function of the time of day?•
• Is this query taking progressively longer than it was two months ago?•
• Who (or what bot) has access to this resource who shouldn’t?•

Your query logs can answer these questions and more. Next we’ll take a look at how.

Using Query Logs to Understand Data Quality in the Lake
Data lakes, as we discussed in “Data Lakes: Manipulations at the File Level” on
page 18 differ from warehouses mainly in terms of the flexibility of storage format
they permit. Lakes permit “schema-on-read” access protocols, which allow data to
be stored in raw file formats and manipulated as such. This has obvious advantages,
as we discussed earlier, but comes with the increased risk of the lake “swampifying.”
Because schemas aren’t coerced by the system when data is inserted, many data
quality metrics present in warehouse architectures are harder or impossible to get in
these cases. But there’s no need to lose hope, because there’s plenty a modern data lake
can do to assure data quality.

Some metadata in your lake you’ll get for free. Lakes collect and store object metadata
when new data is added. Some of this metadata you’ll benefit from “accidentally”—
for example, Amazon S3 happens to require storing object insertion times and pay‐
load size for their own object management. Yet you can harness this metadata to
answer questions like “When was this object last updated?” or “What is the average
file size of files of this type, and has it recently been increasing?”
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System metadata present in most modern data lakes will include:

• Object insertion times•
• Object size in bytes•
• Object file format, if recognized•
• Whether encryption is enabled•

In addition to metadata the system stores on your behalf, you can specify additional
object headers at the time of creation. Here, the solution for data quality is more
open-ended. Think about what’s missing from system-defined metadata that you’ll
need to assess data downtime.

Some examples include:

• Which job pipeline or user was responsible for this object’s creation?•
• What schema is the object using or relying on? For example, you can hash the•

schema of an upstream transformation to tell whether the resource is configured
for a certain ETL workflow, or whether one side of the transformation has been
deprecated.

Keep in mind, however, that another common (and perhaps more holistic) way to
answer the question of “Who was responsible for this object’s creation?” is to enforce
more tightly controlled access permissions and grant write permissions only to a
single pipeline. While ambitious, this approach ensures that data quality is handled
more proactively.

Another key element of your data stack that plays a role in understanding data quality
is the data catalog.

Designing a Data Catalog
Analogous to a physical library catalog, data catalogs serve as an inventory of
metadata and give investors the information necessary to evaluate data accessibility,
health, and location. Companies like Alation, Collibra, and Informatica tout solutions
that not only keep tabs on your data but also integrate with machine learning and
automation to make data more discoverable, collaborative, and now, in compliance
with organizational, industry-wide, or even government regulations.

Since data catalogs provide a single source of truth about a company’s data sources,
it’s very easy to leverage data catalogs to manage the data in your pipelines. Data cata‐
logs can be used to store metadata that gives stakeholders a better understanding of a
specific source’s lineage, thereby instilling greater trust in the data itself. Additionally,
data catalogs make it easy to keep track of where personally identifiable information
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can both be housed and sprawl downstream, as well as who in the organization has
the permission to access it across the pipeline.

Data catalogs are designed to answer questions such as:

• Where should I look for my data?•
• Does this data matter?•
• What does this data represent?•
• Is this data relevant and important?•
• How can I use this data?•

If you were the first to ever design a data catalog at your company, certainly the most
low-tech approach to answering the preceding questions would be to amass all of
your data information into one enormous spreadsheet. And traditionally, this was
how data cataloging was solved—with Excel.

The issues with manual data cataloging are easy to identify, though. With large ware‐
houses sporting tens of thousands of tables, the need for automation is unavoidable.
Traditional data catalogs and governance methodologies typically rely on data teams
to do the heavy lifting of manual data entry, holding them responsible for updating
the catalog as data assets evolve. This approach is not only time-intensive but also
requires significant manual toil that could otherwise be automated, freeing time for
data engineers and analysts to focus on projects that actually move the needle.

Moreover, a greater majority of data stored today is unstructured and highly fluid—
the type of data perfect for ingestion into machine learning pipelines, and the type
of data you’d store in a data lake. It’s simply impossible to maintain a manual catalog
of these forms of data, unless you’d like to relegate a handful of engineers to the
task full time. On top of this, rather than simply describing the data that consumers
access and use, there’s a growing need also to understand the data based on its
intention and purpose. How a producer of data might describe an asset would be
very different from how a consumer of this data understands its function, and even
between one consumer of data to another there might be a vast difference in terms
of understanding the meaning ascribed to the data. All told, manual data catalogs just
no longer cut it.

Fortunately, data cataloging can be a matter of discovering and organizing the proper
metadata that explains your data pipeline. We’ve already established that this is
something we can automate.

Building a Data Catalog
Let’s say you did want to build a data catalog from scratch (may the force be with
you!)—how would you go about getting started?
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Before building or investing in a catalog, you need to partner with downstream
stakeholders on the operations and analytics teams to understand which data is most
important to the business and, as such, needs to be documented and cataloged. Many
teams tackle this first step (alignment) with a spreadsheet that highlights the data
source, what it connects to, and when it was last updated.

After alignment, teams should assign owners who are accountable for keeping their
column (and data!) up to date. Some teams assign ownership based on source,
schema, or even data domain.

At its most basic, a data catalog is a collection of data about your data (metadata) that
provides context and insight into the location, ownership, and potential use cases of
the data. To actually populate the data catalog, as depicted in its most basic state in
Table 2-1, data teams can manually comb through every table in the data warehouse
or use automated SQL parsers to do the work for them. Sqlparse, ANTLR, Apache
Calcite, and MySQL’s SQL Parser are all popular open source SQL parsing solutions.

Table 2-1. A basic, rough-and-dirty data catalog

Table name Dashboard/
report

Last updated Owner Notes

LIOR_GOOD_TABLE_3.csv Exec Forecasting
V3 (Looker)

March 3, 2022 Lior Gavish
(lior@internet.org)

Lior’s table; used for
executive financial
forecasts, i.e., ARR

MEETINGS_DOWNTIME_2022.csv Report 1234
(Tableau)

February 2,
2022

Barr Moses
(barr@internet.org)

Outages occurred
during in-person
meetings

DONT_USE_4_MV.csv Dashboard Yikes
(Chartio)

October 30,
2021

Molly Vorwerck
(molly@internet.org)

Who knows?

RYANS_DATA.csv Marketing Model
(Looker)

March 3, 2022 Ryan Kearns
(ryan@internet.org)

For demand generation
models to inform ad
spend across social
channels

SQL parsers separate pieces of a SQL statement (i.e., keywords, identifiers, clauses,
etc.) into a data structure that other routines can process.

Once you’ve parsed the SQL, you need somewhere to store and process it. Open
source databases like the open ELK stack, PostgreSQL, MySQL, and MariaDB are
great options when building a data catalog from the ground up.
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While each parser and database application will function differently, Example 2-8 is
an illustration of code you can write to pull a query (in this case, pulling a query from
a CSV file using ANTLR, and porting the “output” of the query into MySQL) that
ports information about data in a given database.

Example 2-8. Database query to gather metadata for storage in a catalog or discovery
tool

String sql = "SELECT CUST_NAME FROM CUSTOMERS WHERE CUST_NAME LIKE 'Kash%'"; 
  
MySqlLexer lexer = new MySqlLexer(CharStreams.fromString(sql)); 
MySqlParser parser = new MySqlParser(new CommonTokenStream(lexer)); 
ParseTree root = parser.dmlStatement(); 
  
System.out.println(root.toStringTree(parser));

The output of this query renders metadata about data in a given database, to be
stored in a data catalog or discovery tool, as shown in Example 2-9.

Example 2-9. Output from query in Example 2-8

(dmlStatement 
  (selectStatement 
    (querySpecification SELECT 
    (selectElements 
         (selectElement 
         (fullColumnName 
         (uid 
            (simpleId CUST_NAME))))) 
    (fromClause FROM 
    (tableSources 
         (tableSource 
         (tableSourceItem 
         (tableName 
            (fullId 
            (uid 
            (simpleId CUSTOMERS))))))) WHERE (expression (predicate 
 
    (predicate 
         (expressionAtom 
         (fullColumnName 
         (uid (simpleId CUST_NAME))))) LIKE 
    (predicate 
         (expressionAtom 
         (constant 
         (stringLiteral 'Kash%'))))))))))
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Open source query language tools like GraphQL, REST, and Cube.js will allow you to
query SQL in the database and render it in a cataloging visualization service such as
Amundsen, Apache Atlas, DataHub, or CKAN.

Data catalogs work well when you have rigid models, but as data pipelines grow
increasingly complex and unstructured data becomes the gold standard, our under‐
standing of the data (what it does, who uses it, how it’s used) doesn’t reflect reality.

Next-generation catalogs will have the capabilities to learn, understand, and infer the
data, enabling users to leverage its insights in a self-service manner. Most importantly,
data catalogs will support automated data discovery and active metadata. Imagine
being able to use Slack, Teams, or any other communication channel to query data in
your warehouse—exciting, right? Well, we’re not too far off.

In addition to cataloging data, data management strategies must also incorporate data
discovery, a new approach to understanding the health of your distributed data assets
in real time. Borrowing from the distributed domain-oriented architecture proposed
by Zhamak Dehghani and Thoughtworks’ data mesh model, data discovery posits
that different data owners are held accountable for their data as products, as well
as for facilitating communication between distributed data across different locations.
Once data has been served to and transformed by a given domain, the domain data
owners can leverage the data for their operational or analytic needs.

Data discovery replaces the need for a data catalog by providing a domain-specific,
dynamic understanding of your data based on how it’s being ingested, stored, aggre‐
gated, and used by a set of specific consumers. As with a data catalog, governance
standards and tooling are federated across these domains (allowing for greater acces‐
sibility and interoperability), but unlike a data catalog, data discovery surfaces a real-
time understanding of the data’s current state as opposed to its ideal or “cataloged”
state.

Data discovery can answer these questions not just for the data’s ideal state but for the
current state of the data across each domain:

• What data set is most recent? Which data sets can be deprecated?•
• When was the last time this table was updated?•
• What is the meaning of a given field in my domain?•
• Who has access to this data? When was it last used? By whom?•
• What are the upstream and downstream dependencies of this data?•
• Is this production-quality data?•
• What data matters for my domain’s business requirements?•
• What are my assumptions about this data, and are they being met?•
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A data quality–first catalog has the following features:

Self-service discovery and automation
Data teams should be able to easily leverage their data catalog without a dedica‐
ted support team. Self-service, automation, and workflow orchestration for your
data tooling removes silos between stages of the data pipeline and, in the process,
makes it easier to understand and access data. Greater accessibility naturally
leads to increased data adoption, reducing the load for your data engineering
team.

Scalability as data evolves
As companies ingest more and more data and unstructured data becomes the
norm, the ability to scale to meet these demands will be critical for the success
of your data initiatives. Data discovery leverages machine learning to gain a
bird’s-eye view of your data assets as they scale, ensuring that your understanding
adapts as your data evolves. This way, data consumers are set up to make more
intelligent and informed decisions instead of relying on outdated documentation
(aka data about data that becomes stale, how meta!) or worse—gut-based deci‐
sion making.

Data lineage for distributed discovery
Data discovery relies heavily on automated table and field-level lineage to map
upstream and downstream dependencies between data assets. Lineage helps
surface the right information at the right time (a core functionality of data
discovery) and draw connections between data assets so you can better trouble‐
shoot when data pipelines do break. This is becoming an increasingly common
problem as the modern data stack evolves to accommodate more complex use
cases. In Chapter 7, we’ll dive into how you can actually build lineage for your
own data pipelines.

The truth is—in one way or another—your team is probably already investing in
data discovery, whether it’s through manual work your team is doing to verify data,
custom validation rules your engineers are writing, or simply the cost of decisions
made based on broken data or silent errors that went unnoticed. Modern data teams
have started leveraging automated approaches to ensure highly trustworthy data at
every stage of the pipeline, from data quality monitoring to more robust, end-to-end
data observability platforms that monitor and alert for issues in your data pipelines.
Such solutions notify you when data breaks so you can identify the root cause quickly
for fast resolution and prevent future downtime.

Data discovery empowers data teams to trust that their assumptions about data match
reality, enabling dynamic discovery and a high degree of reliability across your data
infrastructure, regardless of domain.
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Summary
To achieve truly discoverable data, it’s important that your data is not just “cataloged”
but also accurate, clean, and fully observable for ingestion to consumption—in other
words, reliable. Only by understanding your data, the state of your data, and how it’s
being used—at all stages of its life cycle, across domains—can we even begin to trust
it. In our next chapter, we’ll discuss how to manage data quality across the pipeline
and share the fundamentals of how to collect, clean, transform, and test your data at
scale.
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CHAPTER 3

Collecting, Cleaning, Transforming,
and Testing Data

With Ryan Kearns

Now that we have a better understanding of the various tools necessary to prioritize
data reliability, let’s discuss how to ready your data for production use cases with data
quality in mind.

In Chapter 2, we discussed some of the domain terminology and walked through a
taxonomy of where data quality nuggets (mostly metadata) are to be found. Still, to
get a thorough sense of data quality in your data pipeline, you need to look end to
end, at the entire life cycle of data as it persists at your organization.

In this chapter, we’ll walk through how to manage data before and while it’s in
the pipeline through four key steps that impact overall data quality: data collection,
cleaning, transformation, and testing. While data collection and cleaning concern the
first step of the production pipeline, transformation and testing tackle data quality
while it’s midway through its journey to becoming actionable analytics.

Collecting Data
When it comes to collecting data, perhaps no aspect of the pipeline is as important
as the entrypoint, the most upstream location in any data pipeline. We define an
entrypoint as an initial point of contact where data from the outside world enters
your pipeline. If you’re familiar with Docker containerization, you might be familiar
with the ENTRYPOINT keyword. This is the initial command run whenever we start a
container. Likewise, “entrypoint” in software engineering parlance often refers to the
initial point of execution in a program, like the main method. The spirit is similar in
data engineering.
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Data at your entrypoint is the most raw it will be, as it contains all of the noise
and irregularity typical of the outside world it’s modeling. Such data might be col‐
lected from application or service logs, clickstream sources, or live sensors. Your
data will probably be highly heterogeneous—meaning, it’ll be both structured and
unstructured, opening up the opportunity for issues down the (pipe)line.

The sources where we collect our data are rarely up to us as data engineers. Most
often they depend on some business objective or upstream tool, like an analytics
service or an API. The sources of data fall into three mostly exhaustive categories,
and we will go through each of them here. Understanding the unique advantages and
disadvantages of each type can be helpful when designing a processing solution.

Application Log Data
Application logs refer to data produced by actions within some software application.
The application can be client facing or internal, and the actions can be user initiated
or programmatic. Alongside descriptions of the events, which are often timestamped,
you might find error or warning messages produced by the application software.
Importantly, unlike in system logs—which might record the sequence of events as an
operating system boots—what is included or excluded from application logs is up to
the developers of the application. As a result, logs may not represent an exhaustive
history of the application’s use. Still, they remain a critical data source for many
business uses.

Here are a few examples to demonstrate this data collection use case:

• A user reading a blog spends 10 minutes on a webpage, clicks three outgoing•
links in the blog’s text, and scrolls all the way to the bottom of the document.

• An engineer creates a virtual machine instance on your cloud computing service.•
They select the instance type with six vCPUs, but that type is not available in
their region, so they have to navigate back and change the config.

• A machine learning model is fitting to a data set. Logs record the different•
training epochs, the current accuracy, and a link to the external dashboard where
the loss is plotted.

Your business will likely collect application logs from a variety of sources and in
plenty of different formats. Some elements to consider when dealing with log data:

Structure
You’re likely to consume application logs in ASCII or binary formats, since
they’re simply serializable text. This places very little constraint on how applica‐
tion logs are structured, though, or even on how long they are (and how large
your log files will be as a result). Since application programmers decide what goes
into logs, their structure can be highly variable.
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Timestamps
Most application log text will be discrete events, with descriptions, separated by
\n characters. If the programmers are doing their job right, these events will be
timestamped. Timestamps, unlike event descriptions, should be highly standard‐
ized, most often in the ISO standard format (yyyy-mm-ddThh:mm:ss[.mmm]) or
something similar.

Log levels
Good application logs use levels to codify, roughly, the type of log each event
is. Frequently used log levels are INFO: this log contains purely descriptive
information; WARN: this log is an application warning but not a failing error;
and ERROR: this log is a programmatic failure in the application.

Purpose
Application logs aren’t collected willy-nilly. Pushing around all that data costs
money, so the logs should surely be useful for something. In fact, you’re probably
collecting application logs for one of two reasons:

Diagnostics
How often does this request time out? Are page loads slowing down? Are we
using a deprecated library function? All of these questions address diagnostic
criteria and are answered by intelligently collecting and parsing logs. If
you are collecting log data for a diagnostic purpose, then answers to your
questions could be in very specific WARN- or ERROR-level logs. Also, the
vast majority of your collection will probably be unrelated to that one specific
question you have right now.

Auditing
Who issued that request? How many times? How did the system respond?
And does this behavior also occur on weekends, or is the pattern different?
Unlike diagnostic logging, audit logging is all about recording a history of
events within the application. Many INFO-level logs will be useful for this
task, and the power of auditing often comes from large aggregations of
application sessions.

API Responses
Your own application can’t do everything. That’s why you relegate certain functional‐
ities to different applications. The standard method for doing this is with an applica‐
tion programming interface, or API. APIs are intermediaries between two programs.
They require specifically formatted requests and they deliver responses, which for our
purposes are just semi-structured data.
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In addition to application logs, you may store data pulled from API endpoints. There
are some important differences in the format of these data types to be aware of. With
API data, pay attention to:

Structure
API response objects are objects—they may be serializable, like logs, but they
unpack into a structured or semi-structured format. One common object for‐
mat you will see, particularly with web APIs, is the JavaScript Object Notation
(JSON). JSON objects are highly flexible, but they’re constrained by structure in
important ways. Everything within a JSON object (or file) is either a key-value
pair or a list of values. This is significantly different from log data, which can be
just a stream of text! Other API response types have similar formats, for example
the HTTP response specifications, like HTTP/1.1, which may contain JSON or
XML in the HTTP request or response body as well.

Response codes
Since API requests can succeed or fail, most API specifications have codes for
different types of responses. The most famous you’ll hear about are HTTP status
codes (200 OK, 404 Not Found, 500 Internal Server Error), but there are other
code standards (for example, SOAP APIs, which can use HTTP or other trans‐
port protocols). These codes are meaningful—for example, the rate of HTTP 500
responses is a key indicator for whether a server is having an outage. If you store
API response data you should think about such code specifications if they exist.

Purpose
The world of possible API use cases is enormous, so we cannot predict all
the use cases one might run into. But APIs are used in myriad ways, and the
details of one’s particular use will affect what the data stored about it means.
For example, HTTP responses often include response codes, some key-value
pair information, and sometimes a long “body,” which is the content requested.
If we’re interested in, say, the rate of server errors, we will care fundamentally
about the response code. If instead we’re pulling data from an external server via
an API, the response code may be irrelevant. Instead, we’ll just want the body.
In short, the use case can affect which information in the API response object
is meaningful. Some information transferred may be useless in your specific
context.

Sensor Data
A third form of data you may collect come from sensors, such as Internet of Things
devices or research equipment. Sensors aren’t necessarily applications since their
internal logic may be brutally simple. For example, a temperature sensor just records
the temperature with some hardware and sends it off for collection—without the
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added benefit of INFO-level logs. If you work with sensor data there are some
important considerations to be aware of:

Noise
Data collected from real-world sensors will likely be incredibly noisy. This isn’t
necessarily something to focus on at the collection phase. However, it underlines
the importance of throughput when dealing with sensors. A little bit of sensor
data is, simply put, probably garbage. Downstream processing (which we’ll talk
about in the next section) will do lots of outlier removal, smoothing, and other
transformations on sensor data, so a steady and consistent stream is almost
always imperative.

Failure modes
Sensors aren’t smart like applications, which means they may not know to tell
you when they fail. For example, a temperature sensor that has broken won’t
send “ERROR: Device offline,” but may instead start sending crazy temperature
values—or just nothing at all. This makes dealing with sensors more challenging
than applications. You cannot rely on the goodwill of an application designer in
the same way and may have to be more clever checking things like the volume of
data received or the time delta between batches.

Purpose
Sensor data, like application logs and API responses, is used for lots of down‐
stream tasks. Much sensor data today is processed with machine learning sys‐
tems. For this purpose, the volume of data collected can be an important factor.
The best ML systems often consume and fit to the largest data sets. As a result,
the throughput of sensor data used for ML is extremely important. But also, pay
attention to when your sensor data is used for inference-based tasks: for example,
alerting a user when there’s movement at their doorstep. In these cases, latency
should be of utmost importance instead.

After you properly collect your data, the next step is to clean it.

Cleaning Data
Ask any data professional: one of the biggest hurdles to high data quality is data
cleaning—in other words, removing inaccurate or unrepresentative data from an
otherwise usable data set. There are many flavors of data cleaning, too, depending on
the type of data and state of data processing and data product development.

As we just saw with sensors, data at an entrypoint isn’t likely to be clean. After
all, your data only just arrived from the chaos of the outside world! There will be
omissions, error messages, extreme values, and incompatible formats, but with the
right approach to data cleaning, these issues can easily be prevented. Data cleaning is
a field of recent interest, especially in machine learning. There has been a lot of effort
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spent deciding how to do it right. The following explores some of the common ways
data needs to be cleaned, and what you can do about each case:

Outlier removal
The world is noisy, so your data will be noisy, too. But too noisy data often
causes ML pipelines to fail or business dashboards to look wildly inaccurate. In
some contexts, you’ll want to identify and remove outliers from your data as
early as possible. Obviously this doesn’t make sense if, say, your downstream
task is outlier detection. But consider something like sensor data again—a tem‐
perature reading of 99999° probably shouldn’t be passed along in good faith.
Consider statistical techniques like standard scoring, or more snazzy algorithmic
techniques like isolation forests, to remove your outliers. If your data set is large,
pay special attention to the time complexity of your detection procedure. We’ll
discuss anomaly detection in depth in Chapter 5.

Assessing data set features
Look at the structure of the data you’ve collected. Is everything (even remotely)
relevant? As we talked about with HTTP status codes, sometimes whole sections
of your data are irrelevant for a downstream task. Throw them out! Granted, the
cost of cloud storage is decreasing, but storing meaningless data is more than
just a storage problem. Other engineers might get confused why a certain field is
present. In general, more features means more documentation or more domain
knowledge necessary to understand your system, both of which can complicate
your analysis and impact data quality. Think hard about what data set features
are required to solve your problem.

Normalization
Some data points can be examined in isolation, and that’s OK. Other data is most
meaningful when compared to other data of the same type. In those cases, it
often helps you (and your ML system) to normalize the data during a cleaning or
transformation step. Popular choices for normalization include L1 (“Manhattan”)
Norm, L2 (“Unit”) Norm, demeaning, and unit variance, and the best choice will
depend on the use case for the data.

Data reconstruction
Sometimes, certain fields from your collected data are missing. This is bound
to happen with things like error-prone API calls or sensors that can go offline.
In many cases these omissions can be fine, but sometimes you might require all
fields to have some value associated with them. In these cases it is often possible
to recover missing values, with a bit of noise, using techniques like interpolation,
extrapolation, or categorizing/labeling similar data.
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Time zone conversion
You might consider time zone conversion as a kind of normalization. But this
step is so important for many data cleaning tasks that it deserves its own entry.
Your application users or sensors may be worldwide, meaning they will be
recording local timestamps that differ from each other. Comparing timestamps
to one another is possible only with some standard of truth. Often, this is
Coordinated Universal Time (UTC). UTC is not a time zone, but a time standard
(countries using Greenwich Mean Time [GMT] happen to always agree with
UTC, but they don’t use UTC). If you don’t do this, and snap off time zone
information at collection like some kind of maniac, then you can never know
when two international events happened relative to one another. Also, many
software bugs can be traced back to time zone confusions (Y2K being maybe the
most famous example), so check your time zones carefully to ensure that they
convert/capture time as UTC.

Type coercions
Most structured data is typed, meaning it has to obey a certain format. Frequently
in computing, we need to blur the line between these formats for applications
to function. Floating-point numbers might be truncated to integers, characters
might become strings, and so on. If a downstream application requires data in
a certain type, consider coercing it, in other words, the automatic or implicit
conversion of values from one data type to another, to that type as part of the
cleaning process. Type coercion is also essential if you’re combining data from
different formats. Many libraries and applications have their own data types for
different things, and often they need to be explicitly cast to a new, more agreeable
format.

And the list of ways you can (and often should) clean data goes on. The next step?
Data processing.

Batch Versus Stream Processing
It’s a debate as old as time (well, at least in data engineering): whether to process data
in batches or to stream data in real time.

There are two primary ways of collecting analytical data: batch processing versus
stream processing. Fundamentally, batch processing collects data over a period of
time, “batching” large quantities of data in discrete packets, while stream processing
is a lengthier process and processes data almost immediately.

Up until the mid-2010s, batch processing was the most common approach to pro‐
cessing analytical data. Significantly cheaper than stream processing, batch was suf‐
ficient for even the most timely processing needs. As companies across industries
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become increasingly reliant on real-time data, technologies like Apache Kafka and
Amazon Kinesis make streaming data more accessible and affordable at scale.

Batch processing is the time-tested standard and is still a popular and common way
for companies to ingest large amounts of data. But when organizations want to gain
real-time insights, batch processing falls short.

That’s where stream processing fills the gap. It’s a game-changer to have access to
data in real time and can lead to an increased return on investment for products and
services that rely on data to be constantly updated.

A simple example of batch versus stream processing is credit card processing. On
the vendor side, it may take several hours or even days to process payments over
a certain period of time, an activity often handled in batch. For instance, you may
have purchased a new scarf at your local boutique on Monday, but the charge doesn’t
settle until Wednesday evening. On the credit card provider side, once transactions
are authorized, potentially fraudulent transactions can be immediately identified and
alerts triggered to the credit card holder. However, if the data about these transactions
isn’t accurate and up-to-date (i.e., in the case of using batch streaming), fraud detec‐
tion can be delayed or missed altogether.

Apache Hadoop is one of the most popular open source batch processing frameworks
for distributed storage and processing of large data sets. Hadoop operates by splitting
files into smaller packets of data and then distributing these more manageable chunks
across nodes in a cluster. Managed alternatives to Hadoop include Google BigQuery,
Snowflake (as described in Chapter 2), Microsoft Azure, and Amazon Redshift.

Stream processing refers to real-time ride-sharing app requests, for example, when
someone requests an Uber or Lyft through the app and is connected with an available
driver in real time (or rather, as quickly as a driver becomes available!). Using
real-time streaming data, these ridesharing applications can piece together real-time
location, pricing, and driver data to instantly connect a user with a ride.

For stream processing, some of the most common open source technologies include
solutions from Apache such as Spark, Kafka, Flink, Storm, Samza, and Flume. While
there are many solutions available, one of the most widely used options is Apache
Spark and Kafka. Apache Spark employs a micro-batch processing approach, which
splits incoming streams into smaller packets; Apache Kafka analyzes events as they
unfold in closer to near real time. Managed alternatives include Databricks, Cloudera,
and Azure. For more information, we recommend you read Streaming Systems: The
What, Where, When, and How of Large-Scale Data Processing (O’Reilly), which goes
into much more detail about these approaches, technologies, and use cases.
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Data Quality for Stream Processing
When you boil it down, the major difference between batch and stream processing
is the amount of data being processed per batch and the speed at which it’s being
processed. While batch processing is concerned with gathering as much data as
possible—even if it means there are lags—stream processing is concerned with col‐
lecting data as quickly as possible, leading to some lossiness. As a result, data quality
(meaning, the health of data at a given stage in the pipeline) tends to be higher for
batch streaming systems, but when data is streamed in real time, the margin for error
(and low data quality) increases.

For example, marketing teams position ads based on users’ behavior, using data that
flows in real time between a brand’s products, CRMs, and advertising platforms. One
small schema change to an API can lead to erroneous data, causing companies to
overspend, miss out on potential revenue, or serve irrelevant ads that create a poor
user experience.

This scenario and the credit card fraud monitoring example from earlier just scratch
the surface of what’s possible when bad data powers your perfectly good pipelines. So,
how do you solve for data quality with stream processing?

Traditionally, data quality was enforced through testing: you were ingesting data in
batches and would expect the data to arrive in the interval that you deemed necessary
(i.e., every 12 hours or every 24 hours). Your team would write tests based on their
assumptions about the data, but it’s not possible to write tests to account for all
possible outcomes.

A new error in data quality would arise, and engineers would rush to conduct root
cause analysis before the issue affected downstream tables and users. Data engineers
would eventually fix the problem and write a test to prevent it from happening again.

In short, testing was hard to scale and, as we found after talking to hundreds of
data teams, only covered about 20% of possible data quality issues—your known
unknowns. With increasing complexity in today’s modern data ecosystem—where
companies ingest anywhere from dozens to hundreds of internal and external data
sources—traditional methods of processing and testing have begun to look outdated.

Even so, in the mid-2010s, when organizations began ingesting data in real time
with Amazon Kinesis, Apache Kafka, Spark Streaming, and other tools, they followed
this same approach. While this move to real-time insights was great for business, it
opened up a whole new can of worms for dealing with data quality.

If ensuring reliability for batch data is difficult, imagine running and scaling tests for
data that evolves by the minute—or second! Missing, inaccurate, or late fields can
have a detrimental impact on downstream systems, and without a way to catch data
issues in real time, the effects can magnify across the business.
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While traditional data quality frameworks such as unit testing, functional testing, and
integration testing might cover the fundamentals, they cannot scale alongside data
sets that are hard to predict and evolve in real time. In order to ensure that the data
feeding these real-time use cases is reliable, data teams need to rethink their approach
to data quality when dealing with stream processing.

Now that we know the challenges, in the following sections, we share how to manage
data quality for stream processing systems, specifically through utilizing AWS Kinesis
and Apache Kafka.

AWS Kinesis
Amazon’s Kinesis service, as depicted in Figure 3-1, is a popular serverless stream‐
ing tool for applications reliant on real-time data. Capacity for Kinesis scales “on-
demand,” reducing the need to provision and scale resources before data volume
increases.

Figure 3-1. AWS Kinesis streams data to various structured consumers, including data
warehouses, databases, and bespoke big data platforms

Kinesis (and other streaming services) can be configured to capture data from other
AWS services, microservices, application logs, mobile data, and sensor data, among
others. The service can scale to stream gigabytes of data per second.
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Working with Amazon Kinesis has several advantages:

On-demand availability
AWS sets an industry standard for on-demand provisioning, meaning resource
groups can scale up when loads increase. This makes the service more reliable
and robust against unexpected spikes in data volume, and eliminates the need for
an experienced data engineer to handle cluster and partition management.

Cost efficiency
Kinesis’s payment plan scales in proportion to resource usage. This is a general
benefit to serverless architectures of other kinds as well but is of special interest
for a streaming service, where the volume of data throughput might change
drastically as a function of time.

Thorough SDK
Kinesis supports development in Java, Android, .NET, and Go, significantly more
languages than some competitors (for comparison, Kafka supports only Java).

Integration to AWS infrastructure
One of the key reasons to prefer Kinesis to alternatives is if you already have
existing integration into the AWS stack. Amazon’s hegemony has its advantages;
for example, Kinesis is dramatically easier to integrate with S3, Redshift, and
other Amazon data services than third-party or open source alternatives.

Apache Kafka
Apache Kafka is an open source event streaming platform. Kafka Streams, specifi‐
cally, is the client library supporting streaming data to and from Kafka clusters. The
service provides a data streaming and integration layer as well as streaming analytics.
Kafka streaming services are optimized for low latency—the service touts latencies as
low as 2 milliseconds, subject to network-limited throughput.

Kafka Streams offers several advantages:

Open source community
Kafka is open source software, meaning the tool is free to use. Moreover, a
vibrant online community exists to share best practices and learnings via forums,
meetups, and online reference materials.

Increased customizability
While Kafka has a higher learning curve than more integrated streaming solu‐
tions like Kinesis, users have greater configurability including manually specify‐
ing the data retention period (Kinesis keeps this fixed at 7 days).

High throughput
In testing, Kafka has been shown to support throughput of up to 30,000 records
per second, where Kinesis supports only single thousands of records per second.
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Streaming solutions like AWS Kinesis and Apache Kafka can port data directly to
analytical systems in real time or to the warehouse for storage, processing, and trans‐
formation. Sometimes, data teams will choose to “stream” these inputs directly to
downstream systems, i.e., in the case of a ridesharing app or real-time fraud detection
tool. Given the high latency of streaming systems, however, this type of analytical
data is often prone to more errors, and it can be much more difficult to make sense of
it in real or near real time. This is why batch processing is often the method of choice
for analytical use cases.

When it comes to choosing between AWS Kinesis and Apache Kafka, it really boils
down to your data team’s needs. Given the ease of setup for a managed solution
like AWS Kinesis, smaller data teams looking for quick time-to-value will benefit
from a software as a service (SaaS) product, while larger teams with more specific
requirements may find that leveraging open source Apache Kafka will fit the bill.

Whether you choose to collect your data in batch or streaming, it’s time to actually
make sense of it through transformations. When it comes to managing data quality,
often the first step in this journey is data normalization.

Normalizing Data
We call the first operational data transformation layer the data normalization stage,
though this nomenclature may vary at your organization. In general, a data trans‐
formation is a program for moving data from one or more source formats to a
destination format. Normalization is often the first of many such transformations
your data will go through on its way down the pipeline. Since normalization occurs
on entrypoint data, where noise, ambiguity, and heterogeneity are at their maximum,
there are special challenges to consider at this step.

Handling Heterogeneous Data Sources
More often than not, data practitioners are gathering data from disparate sources in
an attempt to paint a holistic picture of their user, product, or application—some of it
useful, but much of it useless.

Here are several key features that most likely describe your data at the normalization
point in the pipeline:

Optimized for latency
Data from streaming endpoints is optimized to be available immediately upon
creation. As we discussed earlier, this comes at the expense of throughput given
fixed network performance, which in practice determines the completeness of
your data. This means to expect data batches that are incomplete, as they’ll be
pushed through the pipeline immediately regardless of their terminal status.
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Nonhierarchical format
Data heading into data normalization will probably reside in a nonhierarchical,
“flat” storage format for efficiency and ease of use. Rather than a clean warehouse
+ schema + table storage regimen, you’re more likely to have data “dumped” in
some central repository like an S3 bucket for transformation.

Raw file format
In addition to being stored “flat,” entrypoint data likely reflects the original file
format from wherever it was streamed. We don’t bother converting application
log data and sensor data into tabular form; this would be much too expensive,
and most of this data doesn’t need such conversion to be useful.

Optional data fields
Unlike warehouse data, where schemas require a value for every field, raw file
data like JSON can have optional fields. You may need to infer what the absence
of that field means—NULL? 0? The current timestamp, or a time delta of 0?
Depending on the field in question anything might be the default, and its absence
may or may not be a problem for upstream processing.

Heterogeneity
All of the preceding features point to a certain kind of heterogeneity. Data will
come from various sources, in those various original file formats, and may be
different amounts complete compared to previous data of the same form.

Learning to make sense of your data against a predictable kind of heterogeneity is key
at this stage in the pipeline and ensures that once data is stored and processed, it can
easily be transformed for maximal impact.

Warehouse data versus lake data: heterogeneity edition
You may notice that a lot of the preceding features describe data in lake format. Recall
from Chapter 2 our discussion on the difference between data warehouses and data
lakes. Lakes are often the preferred storage solution for entrypoint data because they
have much less rigid constraints on the type of data they can accept. This is why you
will often see a separation where streaming services (AWS Kinesis, Apache Kafka,
etc.) collect unstructured and semi-structured data from different source locations,
dump said data into a lake format, and then rely on an initial level of operational
transformations to lift pieces of this data into structured form on a warehouse. AWS
Lambda functions for AWS Kinesis, or Apache Kafka consumers for Kafka Streams,
are the typical ways to apply this kind of normalization. Also, a transformation layer
like AWS Glue becomes helpful at this stage if you’re moving data across to your
warehouse at regular intervals.
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Schema Checking and Type Coercion
Schema checking and type coercion are two more techniques you’ll want to apply in
data normalization. Schema checking refers to the process where we validate that the
structure of data is as we expect. Are the requisite fields present, and do they contain
data in the format we require? Type coercion is something that happens—sometimes
explicitly, sometimes implicitly—when data is not in the format required and must
be “coerced” into a new format. In some programming languages this behavior is
referred to as “casting.”

Why should you check your schemas? More often than not, data arrives in some
packaged format—JSON, comma separated values, and so on. Schemas let us know
what to expect when we “unpackage” our data for the first time. Changing schemas
are a major source of data breakage. Maybe a field you learned to rely on is no longer
present in that one API call due to a versioning update. Maybe your engineering team
renamed a field for consistency—the data presented is “the same,” but your custom
scripts are no longer working. We need to check for these sorts of errors proactively,
which often means keeping records of expected schemas and recording when they
change in some way that’s visible.

Type coercion can be a more sinister form of data failure. In some applications, types
can be coerced or cast implicitly without throwing errors. Casting a string “4” to an
integer 4 is no big deal—but what about casting floating point number 4.00 to integer
4? Now we’re throwing out significant digits, which seems bad. Even worse would
be integer casting float 4.99 to integer 4 (this is called integer rounding and it doesn’t
round like you learned in math class—it just truncates everything after the decimal
place). In some data applications one may need to look out for type coercion and
conversion problems—they sound basic but are definitely capable of producing some
malicious bugs.

Syntactic Versus Semantic Ambiguity in Data
This discussion leads us to a distinction that’s not so technical in nature but deserves
mention to anyone data-literate. Data can be ambiguous—everyone knows that—
but this ambiguity comes in importantly different flavors. Syntactic ambiguity refers
to confusion in the way data is presented. Maybe the same metric appears in
multiple places under different field names in a data warehouse. Your colleague’s
“clickthrough_annual” might be your “clickthrough_rate_yr,” just renamed in some
operational transformation. Likewise, the same metric might appear as an integer in
your data lake but a float in your warehouse—say, always ending with “.00” so the
value of the data isn’t changed, just its type. These are syntactic ambiguities in data
and can present friction to data teams.

More pernicious are semantic ambiguities, which refer to confusions in the purpose
of data in a system. A data engineer might think field X is present in a table because

52 | Chapter 3: Collecting, Cleaning, Transforming, and Testing Data



it tracks a pipeline performance metric. A business analyst might look at the same
field, decide by its vague-sounding name that it tracks the business objective they’re
interested in, and add it to a dashboard. This field is semantically ambiguous because
employees cannot agree on the field’s purpose. Worse than presenting friction, some‐
thing like this case might lead to data misrepresenting key metrics for the organiza‐
tion. Documentation is a key tool for avoiding situations like these and should also be
proactive in nature. Ambiguity can creep up quickly in a way that’s hard to root out,
especially as teams scale quickly.

Managing Operational Data Transformations
Across AWS Kinesis and Apache Kafka
While operational data transforms handle data in a raw state, this doesn’t mean you
need to run totally blind. Many data streaming and processing applications provide
built-in alerting and the ability to configure more complex alerting as needed. In
the following sections we’ll go through some concrete technical examples of popular
built-in data quality checks.

AWS Kinesis
AWS Kinesis streams are managed via AWS Lambda functions. You can configure
Lambdas for various preprocessing tasks, and their ubiquity allows for some data
quality assurance to be built into that preprocessing. AWS Lambda functions can be
written in .NET (PowerShell, C#), Go, Java, Node.js, Python, and Ruby, and need only
to be uploaded to your AWS console to be invoked.

To connect AWS Lambda to a running instance of AWS Kinesis, you’ll select
“Connect to a Source” in the Kinesis application page and then select “Record
pre-processing with AWS Lambda.” There you’ll have the opportunity to create a new
Lambda function that runs before any application SQL code is executed or Amazon
creates schema snapshots of the incoming data.

Apache Kafka
Apache Kafka is an application with a high learning curve, meaning it exposes lots
of granular settings for the Kafka Streams, Producers, and Consumers in a given
application. Confluent, Instacluster, and AWS offer fully managed versions of Apache
Kafka that make it easier for teams to get up and running with the powerful stream‐
ing framework and that often handle some necessary data downtime prevention out
of the box.

It would take too long for us to go through these exhaustively, but suffice it to say
that Apache Kafka presents plenty of configurability for data quality purposes (in
fact, as a managed solution with Confluent, Apache Kafka offers a schema registry,
which enables schema checking and evolution to prevent data quality issues). For
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more information on how to optimize Apache Kafka for improved data quality, check
out the project’s docs.

By default, Apache Kafka streams report streaming metrics through JMX, the Java
Management Extensions specification. You can visualize JMX data with graphical
tools like JConsole. Or, you can opt to go directly to the KafkaStreams Java class
instance and access metrics with the KafkaStreams#metrics() method.

In general, the checks you’ll be doing at the operational transformation step align
with the priority for latency over throughput at this step. In other words, you might
avoid the kinds of throughput-intensive aggregation checks, like data drift, at this
stage. Instead, set your monitoring sights on lower latency verifications, like compar‐
ing historical schemas to incoming ones or tracking the volume of bytes scanned
as they vary over time. A lot of the operational “monitoring” done here won’t even
ensure data quality at all, since it will be focused on ensuring that incoming data
doesn’t overwhelm the existing capacity, storage, and memory constraints.

Running Analytical Data Transformations
We use the phrase analytical data transformations to designate data transformations
done on analytical data. This can also apply to the data integration layer between
operational and analytical sources, such as AWS Glue configured between an S3 data
lake and a Redshift data warehouse. Since analytical data differs from operational
data in several key ways, there will be corresponding differences to look out for when
transforming this data.

Ensuring Data Quality During ETL
In many contexts you may hear the phrase “ETL” used as synonymous with analytical
data transformations. ETL stands for “extract-transform-load” and describes a three-
step process that’s becoming more ubiquitous for organizations with complex data:

1. In the extract step, raw data is exported from some number of upstream sources1.
and moved into a staging area. Examples of such sources might include MySQL
and NoSQL servers, CRM systems, or raw files in a data lake.

2. Next, in the transform step, the meatiest component of ETL, data in the staging2.
area is combined and processed per the specification of a data engineer. In some
cases, the transform step may be menial and virtually consist of copying the
source data. In other cases, transformations might be quite intensive. We’ll talk
about what these transformations can consist of in the next section.

3. Finally, in the load step, we move the transformed data out of the staging area3.
and into the destination, often a specific table in a data warehouse.
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Ensuring Data Quality During Transformation
As we said earlier, the “transform” step in either ETL or ELT can be the most
intensive and varies between different applications. ETL refers to the process of
loading data first into the staging server and then the target system, while ELT
(extract-load-transform) requires that data is loaded directly into the target system.
While ETL offers data engineers the opportunity to validate data before it’s pushed
to production, ELT makes for quicker processing—and if you’re not appropriating
testing and monitoring, lower data quality.

There can be several reasons for transforming source data:

• You may simply be renaming fields to fit the target location’s schema•
requirements.

• You may want to filter, aggregate and summarize, deduplicate, or otherwise clean•
and consolidate source data.

• You may need to perform both type and unit conversions, for example, standard‐•
izing different currency fields to all be US dollars and float types.

• You may perform encryption at this step for sensitive data fields or to meet•
industry or government regulations.

• Most important for our purposes, you may conduct data governance audits or•
data quality checks at this step.

Alerting and Testing
Like all software and data applications, ETL systems like dbt, WhereScape, or Infor‐
matica are prone to failure. You need a robust testing and alerting system to run
such applications in high-volume production environments. In this section, we’ll talk
about the type of alerting that’s typical for ETL/ELT systems and some best practices
for data quality. Many data transforming systems have built-in mechanisms for data
quality. These may take the form of unit tests, visibility metrics into pipeline health,
alerting, or others. In the next sections we’ll go through some of the built-in tools to
popular transforming tools, as well as some add-on tools that provide data quality.

Testing your data plays a crucial role in discovering data quality issues before it even
enters a production data pipeline. With testing, engineers anticipate something might
break and write logic to detect the issue preemptively.

Data testing is the process of validating your organization’s assumptions about the
data, either before or during production. Writing basic tests that check for things
such as uniqueness and not null are ways organizations can test out the basic assump‐
tions they make about their source data. It is also common for organizations to
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ensure that data is in the correct format for their team to work with and that the data
meets their business needs.

Some of the most common data quality tests include:

Null values
Are any values unknown (NULL)?

Volume
Did I get any data at all? Did I get too much or too little?

Distribution
Is my data within an accepted range? Are my values in range within a given
column?

Uniqueness
Are any values duplicated?

Known invariants
Are these two objects fundamentally different from each other—e.g., is profit
always the difference between revenue and cost?

From our own experience, two of the best tools out there to test your data are dbt
tests and Great Expectations (as a more general-purpose tool). Both tools are open
source and allow you to discover data quality issues before they end up in the hands
of stakeholders. While dbt is not a testing solution per se, their out-of-the-box tests
work well if you’re already using the framework to model and transform your data.

To run data quality tests, you need to do two simple things:

• Load the transformed data into a temporary staging table/data set.•
• Run tests to ensure that the data in the staging table falls within the thresholds•

demanded of production (i.e., you need to answer “yes” to the question: is this
what reliable data looks like?).

If a data quality test fails, an alert is sent to the data engineer or analyst responsible
for that asset, and the pipeline is not run. This allows data engineers to catch unex‐
pected data quality issues before impacting end users/systems. Data testing can be
done before transformation and after each step in the transformation process.

dbt Unit Testing
dbt is one of the most popular choices for modern ELT, and its tool extends the
ability to add unit tests to transformed tables. The dbt run command executes model
transformations using SQL, and dbt test runs unit tests on transformed models. dbt
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unit tests can be defined in custom SQL queries and assigned to individual models
within .yml schema files.

A dbt unit test in SQL is designed to fetch “failing” rows, e.g., records that do not
match the tester’s assertion. This is a common testing paradigm with SQL where you
produce a query identifying the condition you want to avoid and basically “assert”
it is empty. This is a flexible and effective testing technique, though it does have its
limitations, which we’ll discuss at the end of this section.

In our opinion, the notion of a “unit test” versus an “integration test” is a little
blurry in dbt. On one hand, dbt models are standalone SQL statements—they take
input data, apply transformations, and load some result of the transformations into
a destination table. Since this transformation logic can fail in a standalone fashion, it
makes sense to define “unit tests” assessing the quality of each dbt model individually.
At the same time, dbt (and really any ELT) models sit within long sequences of trans‐
formations, so it also makes sense to test their integration into the whole pipeline.
This is why you may find yourself writing both unit and integration tests for dbt
models, often side by side in the same tests repository. That’s OK! Documentation is
key.

There are two kinds of dbt tests:

Singular tests
These are standalone SQL tests referencing particular models. If you write a sin‐
gular test in SQL and save it to a testing directory (indicated by your test-paths
config variable), it will be run whenever you call dbt test. Example 3-1 checks
a single dbt model ('fct_payments') to verify that no payment records have
negative values.

Example 3-1. Singular test to verify payment records. Source: dbt documentation

tests/assert_total_payment_amount_is_positive.sql
—------------------------------------------------
-- Refunds have a negative amount, so the total amount should  
-- always be >= 0.
-- Therefore, return records where this isn't true to make the test fail.
select
    order_id,
    sum(amount) as total_amount
from {{ ref('fct_payments' )}}
group by 1
having not(total_amount >= 0)
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Generic tests
These are “templatized” tests that can be reused on different models. They take
the form of parameterized SQL queries, which can take arguments. In your .yml
schema files, you can apply generic tests to particular models and also feed in
parameters like column names or thresholds/SLAs. Example 3-2 takes a model
and column name, and fails whenever values from that column are NULL after
the model runs.

Example 3-2. Generic test checking for NULLs. Source: dbt documentation

tests/test_not_null.sql
—----------------------
{% test not_null(model, column_name) %}
  
    select *
    from {{ model }}
    where {{ column_name }} is null
  
{% endtest %}

dbt ships with four default generic tests: unique, not_null, accepted_values,
and relationships. unique tests that no two rows have the same value for a
particular column. not_null tests that no values for a particular column are
NULL. accepted_values ensures that all values for a column are one of a finite
set, and relationships checks “referential integrity” between tables, basically
ensuring one-to-one correspondence for critical fields like ids.

While generally great as testing standards for ELT go, dbt tests are not a magic bullet
(like all testing software). Some limitations you may note with dbt testing are:

Technical debt and upkeep
dbt tests are maintained manually as code, by developers at your organization.
ELT models have a tendency to “drift” as business and data needs evolve, and
updates to the models themselves mean updates to the tests on them. Complex
tests may ensure high-quality data, but they’ll become a time sink on engineering
resources, costing close to the time required developing the models themselves.

Test fatigue and tacit knowledge
A test failure has to be meaningful to be effective. A developer might add a test
to a model that is not well-founded, thinking that tested code is “better” than
untested code. Another dev may come along (months later) and push changes
that break the test. If they can’t understand why the test was there, they might
go ahead and remove it just so their CI build completes and they can get on
with the ticket. In this engineering culture, tests are a roadblock to get over

58 | Chapter 3: Collecting, Cleaning, Transforming, and Testing Data

https://oreil.ly/huapD


to get development done, rather than serving as insights into the performance
of models. If you catch yourself viewing tests in this way, be careful—such
ill-conceived tests add nothing to data quality and simply slow developers down.
It would honestly be better to do no testing at all, if there’s no intention of taking
them seriously.

Limited visibility
A dbt test might fail due to upstream problems. For example, a schema mismatch
in the operational data store, like a misconfigured AWS Glue Lambda function,
could break data well before it reaches your data warehouse. In this case, your
failing test is a good indicator something is wrong, but it doesn’t quite afford a
quick fix. You’ll still need to drill into your stack to get rid of the bug, because
your ELT testing scheme is not properly end to end.

Great Expectations Unit Testing
Great Expectations is an open source tool, providing another way to “assert what you
expect” from your data in the form of unit tests. It is more extensible than dbt testing
as tests are written in Python, and it can be applied to various ETL/ELT solutions.

Great Expectations provides a library of common “unit tests” you can apply to data
and makes it easy to apply these tests in flexible ways. For example, here’s how you
might ensure the zip_code column represents a valid zip code:

expect_column_values_to_be_between(
    column="zip_code",
    min_value=1,
    max_value=99999
)

Great Expectations allows unit tests to be run on a range of different data volumes,
from single small batches of data to complete transformations. After applying tests,
the tool can render a human-readable results page called a “Data Doc,” which
presents helpful analytics on the rates of failure of different tests and allows random
sampling of failing rows. An example is shown in Figure 3-2.

Great Expectations has a number of advantages compared to competitors in data unit
testing:

General ease of use
Great Expectations ships as a Python package, extends a useful command-line
interface, and uses tools like Jupyter for data validation. The software is quite
easy to use and natural for data scientists most familiar with the Python ecosys‐
tem. Also, while the number of data sources Great Expectations integrates with
is immense, you can indicate all sources in a single .yaml configuration file and
abstract away information about data ingestion.
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Slack integration
Great Expectations explains in their docs how to set up highly configurable Slack
alerts when validation steps are completed. The same configuration can send
emails as well, and in general the Great Expectations notification scheme seems
to be well-conceived and not fatiguing.

Figure 3-2. An example Data Doc from Great Expectations, showcasing a failing test
and analytics describing the failure

Yet, as with any tool, there are some limitations of the Great Expectations tool to be
aware of:

Limited to Python
Great Expectations is a Python tool, meaning if your data environment uses
predominantly SQL, R, or some other language, you may be out of luck.

Separate from transformation / job orchestration tool
Unlike dbt unit tests, which are intimately linked to both the transformation
(dbt models) and orchestration (dbt Cloud) pieces of the data engineering stack,
Great Expectations is a wholly separate tool with a different learning curve. This
slight distance might be a reason to prefer something integrated like dbt tests,
should your organization have limited use for the analytics in Data Docs or
extensive customization in testing.

Deequ Unit Testing
Deequ is an open source library built by AWS that runs unit tests for data. The
software is built atop Apache Spark, so it has a lot of format flexibility. Anything that
can fit into a Spark DataFrame—CSV data, JSON, warehouse table data, application
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log data—can be unit tested in Deequ. The developers also ship a PyDeequ package
for use in Python, which can be found on GitHub and PyPI.

Like dbt testing and Great Expectations, Deequ works by asserting test conditions
and returning failing rows, or batches, of data. Since Deequ can be integrated within
a transformation and streaming environment in AWS, the application is designed to
“quarantine” bad data before feeding it to upstream sources. This can make Deequ a
better integrated tool for deployment in addition to testing.

Technically, the entrypoint for a Deequ testing suite is the VerificationSuite class,
as depicted in Example 3-3. With a VerificationSuite object, you can assign data to
be tested with .onData(data) and add individual unit test Checks with addCheck().
For example, you can test that the data tested has a particular size, has unique and
non-NULL columns, and has quantiles within respected ranges. When called, Deequ
turns the VerificationSuite into a series of Spark jobs to run and report errors
when assumptions are violated.

Example 3-3. Some example Deequ code (in Scala) defining simple unit tests on a
dummy data set

import com.amazon.deequ.VerificationSuite
import com.amazon.deequ.checks.{Check, CheckLevel, CheckStatus}
  
val verificationResult = VerificationSuite()
  .onData(data)
  .addCheck(
    Check(CheckLevel.Error, "unit testing my data")
      .hasSize(_ == 5) // we expect 5 rows
      .isComplete("id") // should never be NULL
      .isUnique("id") // should not contain duplicates
      .isComplete("productName") // should never be NULL
      // should only contain the values "high" and "low"
      .isContainedIn("priority", Array("high", "low"))
      .isNonNegative("numViews") // should not contain negative values
      // at least half of the descriptions should contain a url
      .containsURL("description", _ >= 0.5)
      // half of the items should have less than 10 views
      .hasApproxQuantile("numViews", 0.5, _ <= 10))
    .run()

Choosing to run Deequ over other unit testing software like dbt tests and Great
Expectations has the following advantages:

Integration with AWS
If you’re an AWS shop and keep the majority of your data engineering within the
AWS stack, then Deequ could be for you. Deequ integration with AWS Glue is
easy and extensively well documented online in technical blogs.
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High scalability
Running on top of Scala allows Deequ to take advantage of Scala job orches‐
tration and parallelism, making it highly efficient. Data is stored in Scala Data‐
Frames, which are already purpose-built for the big data ecosystem and its
challenges.

Stateful calculation
Deequ can calculate metric metadata, store said metadata in place, and then
recalculate key metrics as more data is ingested. This incremental approach to
metric calculation makes the library capable of working with data sets it could
not afford to recalculate in their entirety, which is a useful feature with massive
streaming data sets that tend to be common in data engineering workflows.

Built-in anomaly detection
One place Deequ particularly stands out is its built-in capacity for advanced
anomaly detection. Great Expectations can be configured to “detect” anomalies
based on rates of change or simple thresholding. However, Deequ’s anomaly
detection runs a bit deeper, allowing detection on running metric averages and
deviations. It’s not as high powered as something a data scientist could build
in-house, but it provides an additional layer of sophistication to an already
well-integrated tool.

Of course, Deequ has some disadvantages worth mentioning:

Scala’s learning curve
Scala is not a friendly language for those immediately outside the data engineer‐
ing community. For your org, this may be no problem whatsoever. Yet it is
relevant to consider that data scientists and other Python-happy folks would find
more ease of use from Great Expectations or PyDeequ.

Limited applicability to integration testing
Unlike dbt testing, which runs per model and naturally integrates testing asser‐
tions across an ELT pipeline, Deequ runs flexibly on any batch of data you give it.
Deequ indeed doesn’t claim to be integration testing software at all. If you wanted
to leverage Deequ for testing that looks more like integration testing, you may
have to dedicate considerably more development time compared with dbt testing.

Lack of intuitive UI
The authors of Deequ don’t pride their software on a snazzy looking interface.
The software is very no frills and functional for data engineering purposes. If
your organization derives a lot of benefit from a digestible report like the Data
Doc from Great Expectations or Slack notification routing, then Deequ may be a
bit barebones for this purpose.
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Testing is an important part of the data quality workflow, but it’s not the only
proactive measure teams should be taking when solving for data quality. Next, we’ll
discuss how to leverage Apache Airflow to build circuit breakers and other checks at
the orchestration layer.

Managing Data Quality with Apache Airflow
Tools like Apache Airflow, Luigi, Matillion, and Stitch give teams the ability to better
manage data quality at the orchestration layer, which programmatically authors,
schedules, and monitors workflows across your data pipelines. Given the multiple
“checkpoints” in a workflow (often referred to as a DAG, or directed acyclic graph),
opportunities for failures or errant changes to the structure of the data are not
uncommon.

For the purposes of this chapter, we’ll focus on how to improve data quality with
Apache Airflow, one of the most popular data engineering orchestration tools avail‐
able today.

The most common types of data downtime for Apache Airflow (and other orchestra‐
tion) DAGs are deteriorating queries and errant Python code. Buggy code is probably
caused by human error (pesky indenting!), while deteriorating queries happen when
Apache Airflow jobs run but take longer than expected; these are usually an indica‐
tion that the pipeline isn’t scaling.

Apache Airflow users can schedule service-level agreements (SLAs) for the maximum
amount of time a task should take; if the task runs longer, it is visible as an “SLA
missed” in the Apache Airflow UI or can be communicated via Slack, Microsoft
Teams, email, or your preferred channels with a little bit of custom Python.

Scheduler SLAs
To set an SLA for an Apache Airflow task, users must pass a datetime.timedelta
object to the Task/Operator’s SLA parameter. If you want to run your own logic for
the SLA, you can include an sla_miss_callback to be triggered when an SLA is
missed.

The function signature of an sla_miss_callback requires five parameters:

dag

Parent DAG object for the DAG run in which tasks missed their SLA

task_list

List of all tasks that missed their SLA since the last time the sla_miss_callback
ran
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blocking_task_list

Any task in the DAG run that is not in a SUCCESS state at the time that the
sla_miss_callback runs, i.e., runs that failed

slas

List of SlaMiss objects associated with the tasks in the task list

blocking_tis

List of the TaskInstance objects associated with the tasks in the blocking
_task_list thresholds

Example 3-4 presents an sla_callback query, as pulled from the Apache Airflow
docs. An Airflow callback query can pause data pipelines if they don’t meet certain
SLAs.

Example 3-4. sla_callback query

def sla_callback(dag, task_list, blocking_task_list, slas, blocking_tis):
    print(
        "The callback arguments are: ",
        {
            "dag": dag,
            "task_list": task_list,
            "blocking_task_list": blocking_task_list,
            "slas": slas,
            "blocking_tis": blocking_tis,
        },
    )
  
@dag(
    schedule_interval="*/2 * * * *",
    start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
    catchup=False,
    sla_miss_callback=sla_callback,
    default_args={'email': "email@example.com"},
)
def example_sla_dag():
    @task(sla=datetime.timedelta(seconds=10))
    def sleep_20():
        """Sleep for 20 seconds"""
        time.sleep(20)
  
    @task
    def sleep_30():
        """Sleep for 30 seconds"""
        time.sleep(30)
  
    sleep_20() >> sleep_30()
  
dag = example_sla_dag()
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Another increasingly popular approach to preventing data incidents at the orchestra‐
tion layer is to apply a “circuit breaker” methodology to running data pipelines. In
short, circuit breaking entails that pipelines stop running when data does not meet a
set of quality thresholds.

Circuit breakers are common practice in CI/CD workflows as a means of preventing
systems from breaking due to new software deployments, and many of the same
concepts can be applied to data pipelines, too. In data ecosystems, teams can inte‐
grate circuit breakers on top of testing and other steps in the CI/CD process, like
versioning.

For instance, a useful circuit breaker could be implemented after a metrics update
completes to run integrity tests before allowing any downstream jobs to execute, as
depicted in Figure 3-3. This could prevent false positive notifications from being
sent to data analysts or data scientists if recent metrics are experiencing any data
downtime. Another common use case for circuit breakers is to pause data workflows
in the middle of a pipeline if upstream data feeding the pipeline is found to be
inaccurate.

Figure 3-3. Circuit breakers prevent unreliable data in batch or real time from flowing
into production data pipelines if certain data quality thresholds are not met

Circuit breakers prevent data products from mixing high- and low-quality data,
ensuring an implicit guarantee that the available data will be reliable. There are two
states in the data circuit breaker pattern (Figure 3-3):

• Circuit closed: data is flowing through the pipeline.•
• Circuit open: data is not flowing through the pipeline.•
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According to Sandeep Uttamchandi, a former Chief Data Architect at Intuit, using
circuit breakers requires three core solutions:

• Data lineage•
• Data profiling across the pipeline•
• Ability to automatically trigger the circuit via issues unearthed through profiling•

In the wild, we’ve seen circuit breakers used to prevent freshness, volume, and
distribution issues across siloed data pipelines, but similar principles can be applied
with automation at scale.

Installing Circuit Breakers with Apache Airflow
Installing circuit breakers for your Apache Airflow DAGs is a more proactive way to
prevent data quality issues by actually stopping the data pipelines at the orchestration
layer if data doesn’t meet requirements for freshness, volume, and schema thresholds.
Not only does circuit breaking prevent bad data from corrupting your otherwise
perfectly good pipelines, but it also ensures you don’t run into backfilling costs when
DAGs with (silent) data quality issues are run. An example is shown in Figure 3-4.

Figure 3-4. Installing a custom Python circuit breaker is one way to pause a broken data
pipeline and prevent data quality issues from migrating downstream

There are a few ways to “circuit break” your Apache Airflow DAGs:

• Set the catchup parameter of a DAG to False.•
• Include the LatestOnlyOperator operator inside the DAG, stopping the DAG•

from running.
• Insert custom Python code into the orchestration layer to trigger “breaks” and•

surface relevant metadata related to root cause analysis directly in a data observa‐
bility platform or data catalog.
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Circuit breaking is a valuable—and potentially cost-saving—tool for fast-moving data
teams, but it is often used only for the most critical of data downtime incidents.
Next, we’ll discuss SQL check operators, a more commonly used and proactive way to
manage data quality using Apache Airflow.

SQL Check Operators
SQL check operators are another way to manually check data quality across an
Apache Airflow DAG or even the entire data pipeline. Functioning the same way
as Great Expectations, dbt, or other data quality tests, SQL check operators validate
that the content of a given DAG matches expectations across several key elements,
including values, intervals, and thresholds. Additionally, Apache Airflow will let you
run custom SQL check operators that return a single row from a given SQL query to
check and see if any of the returned values in that row are False.

The following is an example of a SQL check operator that you can apply to your own
Apache Airflow DAGs:

SQLCheckOperator(
    task_id="orange_carddata_row_quality_check",
    sql="row_quality_blue_bankdata_check.sql",
    params={"dropoff_datetime": "2021-01-01"},
)

As with a circuit breaker, you can configure custom Python code to stop the pipeline
if the check doesn’t pass.

Still, “pipeline stopping” should only be used for data incidents that can have serious
ramifications for your company. If not implemented strategically and prudentially,
circuit breaking and SQL check operators can stop entire pipelines from running
unrelated—and perfectly high-quality—jobs, preventing the flow of analytical data to
downstream systems.

Summary
Tackling data downtime isn’t just about responding to stakeholders when null values
surface in downstream dashboards or revisiting your Snowflake queries when you
receive a frantic email from your CEO about “missing data.” Data downtime can—
and should!—be prevented proactively by integrating data quality checks at each
stage in the data pipeline, from ingestion in the warehouse or lake down to the
business intelligence layer.

While data quality can’t be solved by technology alone, collecting, cleaning, ingest‐
ing, processing, and orchestrating data with reliability in mind can certainly help.
Fortunately, many of the technologies listed in this chapter can proactively identify
when assumptions about your data don’t meet reality and, with the right integrations
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and customizations, send alerts about these incidents to the proper communication
channels.

Still, even with the most ironclad SQL checks in place, unknown unknowns can fall
through the cracks. As with many things in life, data will never be perfectly reliable,
and the sooner we accept this fact, the better. Here is where anomaly detection comes
into the picture. In Chapter 4, we’ll dive into these critical technologies and end-to-
end processes, and share how to build your own data quality monitors that extend
beyond the traditional capabilities of anomaly detection. Then, in Chapter 5, we’ll
highlight how to architect for greater data reliability by engineering more reliable
data workflows, including CI/CD, alerting and triaging, and incident management.
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CHAPTER 4

Monitoring and Anomaly Detection
for Your Data Pipelines

With Ryan Kearns

Imagine that you’ve just purchased a new car. Based on the routine prepurchase
check, all systems are working according to the manual, the oil and brake fluid tanks
are filled nearly to the brim, and the parts are good as new—because, well, they are.

After grabbing the keys from your dealer, you hit the road. “There’s nothing like
that new car smell!” you think as you pull onto the highway. Everything is fine and
dandy until you hear a loud pop. Yikes. And your car starts to wobble. You pull
onto the shoulder, turn on your hazard lights, and jump out of the car. After a brief
investigation, you’ve identified the alleged culprit of the loud sound—a flat tire. No
matter how many tests or checks your dealership could have done to validate the
health of your car, there’s no accounting for unknown unknowns (i.e, nails or debris
on the highway) that might affect your vehicle.

Similarly, in data, all of the testing and data quality checks under the sun can’t fully
protect you from data downtime, which can manifest at all stages of the pipeline and
surface for a variety of reasons that are often unaffiliated with the data itself.

When it comes to understanding when data breaks, your best course of action is
to lean on monitoring, specifically anomaly detection techniques that identify when
your expected thresholds for volume, freshness, distribution, and other values don’t
meet expectations.

Anomaly detection refers to the identification of events or observations that deviate
from the norm—for instance, fraudulent credit card behavior or a technical glitch,
like a website crash. Assuming your website is normally up and running, of course.
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A number of techniques, algorithms, and frameworks exist and are used (and devel‐
oped) by industry giants like Meta, Google, Uber, and others. For a technical deep
dive, we recommend Preetam Jinka and Baron Schwartz’s report Anomaly Detection
for Monitoring (O’Reilly).

Up until recently, anomaly detection was considered a nice-to-have—not a need-to-
have—for many data teams. Now, as data systems become increasingly complex and
companies empower employees across functions to use data, it’s imperative that teams
take both proactive and reactive approaches to solving for data quality.

While automobiles are vastly different from data pipelines, cars and other mechanical
systems have their own monitoring and anomaly detection capabilities, too. Most
contemporary vehicles alert you when oil, brake fluid, gas, tire pressure, and other
vital entities are lower than they should be and encourage you to take action. Data
monitoring and anomaly detection function in much the same way.

In this chapter, we’ll walk through how to build your own data quality monitors for a
data warehouse environment to monitor and alert to the pillars of data observability:
freshness, volume, distribution, and schema. In the process, we’ll introduce important
concepts and terms necessary to bulk up your understanding of important anomaly
detection techniques.

Knowing Your Known Unknowns
and Unknown Unknowns
There are two types of data quality issues in this world: those you can predict (known
unknowns) and those you can’t (unknown unknowns). Known unknowns are issues
that you can easily predict, i.e., null values, specific freshness issues, or schema
changes triggered by a system that updates regularly. These issues may not happen,
but with a healthy dose of testing, you can often account for them before they cause
issues downstream. In Figure 4-1, we highlight popular examples of both.

Unknown unknowns refer to data downtime that even the most comprehensive
testing can’t account for, issues that arise across your entire data pipeline, not just the
sections covered by specific tests. Unknown unknowns might include:

• A distribution anomaly in a critical field that causes your Tableau dashboard to•
malfunction

• A JSON schema change made by another team that turns 6 columns into 600•
• An unintended change to ETL (or reverse ETL, if you fancy) leading to tests not•

running and bad data being missed
• Incomplete or stale data that goes unnoticed until several weeks later, affecting•

key marketing metrics
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• A code change that causes an API to stop collecting data feeding an important•
new product

• Data drift over time, which can be challenging to catch, particularly if your tests•
look only at the data being written at the time of your ETL jobs, which don’t
normally take into account data that is already in a given table

Figure 4-1. Examples of known unknowns and unknown unknowns

While testing and circuit breakers can handle many of your known unknowns,
monitoring and anomaly detection can cover your bases when it comes to unknown
unknowns.

Frequently, data teams leverage monitoring and anomaly detection to identify and
alert to data behavior that deviates from what’s historically expected of a given data
pipeline. By understanding what “good” data looks like, it’s easier to proactively
identify “bad” data.

Now that we’ve outlined the differences between these two types of data issues, let’s
dive into what anomaly detection for unknown unknowns looks like in practice.
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Building an Anomaly Detection Algorithm
To crystalize how anomaly detection works, let’s walk through a real-world tutorial in
building an anomaly detector for a very anomalous data set.

Keep in mind that there are any number of technologies and approaches you can use
to build data quality monitors, and the choices you make will depend on your tech
stack. In this example, we leverage the following languages and tools:

• SQLite and SQL•
• Jupyter Notebooks•
• Python•

Our sample data ecosystem uses mock astronomical data about habitable exoplanets.
For the purpose of this exercise, we generated the data set with Python, modeling
anomalies from real incidents we’ve come across in production environments. This
data set is entirely free to use, and the utils folder in the repository contains the
code that generated the data, if you’re interested in learning more about how it was
assembled.

We’ll use SQLite 3.32.3, which should make the database accessible from either the
command prompt or SQL files with minimal setup. The concepts extend to really any
query language, and these implementations can be extended to MySQL, Snowflake,
and other database environments with minimal changes.

In the following, we share table information about our EXOPLANETS data set, including
five specific database entries:

$ sqlite3 EXOPLANETS.db
sqlite> PRAGMA TABLE_INFO(EXOPLANETS);
_id            | TEXT | 0 | | 0  
distance       | REAL | 0 | | 0  
g              | REAL | 0 | | 0  
orbital_period | REAL | 0 | | 0  
avg_temp       | REAL | 0 | | 0  
date_added     | TEXT | 0 | | 0  

A database entry in EXOPLANETS contains the following info:

_id: a UUID corresponding to the planet

distance: distance from Earth, in light-years

g: surface gravity as a multiple of g, the gravitational force constant

orbital_period: length of a single orbital cycle in days

72 | Chapter 4: Monitoring and Anomaly Detection for Your Data Pipelines

https://oreil.ly/gLO5n
https://oreil.ly/VZEgg
https://oreil.ly/zz0wR
https://oreil.ly/zNocO


avg_temp: average surface temperature in degrees Kelvin

date_added: the date our system discovered the planet and added it automatically
to our databases

Note that one or more of distance, g, orbital_period, and avg_temp may be NULL
for a given planet as a result of missing or erroneous data.

If we query sqlite> SELECT * FROM EXOPLANETS LIMIT 5; we can pull five rows
from our database. In Example 4-1, we share five database entries in our EXOPLANETS
data set, to highlight the format and distribution of the data.

Example 4-1. Five rows from the EXOPLANETS data set

_id,distance,g,orbital_period,avg_temp,date_added
c168b188-ef0c-4d6a-8cb2-f473d4154bdb,34.6273036348341,,476.480044083599, ...
e7b56e84-41f4-4e62-b078-01b076cea369,110.196919810563,2.52507362359066, ...
a27030a0-e4b4-4bd7-8d24-5435ed86b395,26.6957950454452,10.2764970016067, ...
54f9cf85-eae9-4f29-b665-855357a14375,54.8883521129783,,173.788967912197, ...
4d06ec88-f5c8-4d03-91ef-7493a12cd89e,153.264217159834,0.922874568459221, ...

Note that this exercise is retroactive—we’re looking at historical data. In a production
data environment, anomaly detection is real time and applied at each stage of the data
life cycle, and thus will involve a slightly different implementation than what is done
here.

For the purpose of this exercise, we’ll be building data observability algorithms for
freshness and distribution, but in future articles, we’ll address the rest of our five
pillars—and more.

Monitoring for Freshness
The first pillar of data observability we monitor for is freshness, which can give us
a strong indicator of when critical data assets were last updated. If a report that is
regularly updated on the hour suddenly looks very stale, this type of anomaly should
give us a strong indication that something is inaccurate or otherwise wrong.

First, note the DATE_ADDED column. SQL doesn’t store metadata on when individual
records are added. So, to visualize freshness in this retroactive setting, we need to
track that information ourselves. Grouping by the DATE_ADDED column can give us
insight into how EXOPLANETS updates daily. As depicted in Example 4-2, we can query
for the number of new IDs added per day.
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Example 4-2. A query about the number of new exoplanets added to our data set
per day

SELECT
  DATE_ADDED,
  COUNT(*) AS ROWS_ADDED
FROM
  EXOPLANETS
GROUP BY
  DATE_ADDED;

You can run this yourself with $ sqlite3 EXOPLANETS.db < queries/freshness/
rows-added.sql in the repository. We get the data in Example 4-3 back.

Example 4-3. Data pulled from Example 4-2

date_added     ROWS_ADDED
2020-01-01     84
2020-01-02     92
2020-01-03     101
2020-01-04     102
2020-01-05     100
... ...
2020-07-14     104
2020-07-15     110
2020-07-16     103
2020-07-17     89
2020-07-18     104

Based on this graphical representation of our data set, it looks like EXOPLANETS
consistently updates with around 100 new entries each day, though there are gaps
where no data comes in for multiple days.

Recall that with freshness, we want to ask the question “Is my data up to date?”—thus,
knowing about those gaps in table updates is essential to understanding the reliability
of our data. The following query, Example 4-4, operationalizes freshness (as depicted
in Figure 4-2) by introducing a metric for DAYS_SINCE_LAST_UPDATE. (Note: since this
tutorial uses SQLite3, the SQL syntax for calculating time differences will be different
in MySQL, Snowflake, and other environments.)

Example 4-4. Query that pulls the number of days since the data set was updated

WITH UPDATES AS(
  SELECT
    DATE_ADDED,
    COUNT(*) AS ROWS_ADDED
  FROM
    EXOPLANETS
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  GROUP BY
    DATE_ADDED
)
  
SELECT
  DATE_ADDED,
  JULIANDAY(DATE_ADDED) - JULIANDAY(LAG(DATE_ADDED) OVER(
    ORDER BY DATE_ADDED
  )) AS DAYS_SINCE_LAST_UPDATE
FROM
  UPDATES;

Figure 4-2. Rendering freshness patterns within our data set using a Jupyter Notebook

The resulting table, Example 4-5, says, “On date X, the most recent data in
EXOPLANETS was Y days old.” This is information not explicitly available from the
DATE_ADDED column in the table—but applying data observability gives us the tools to
uncover it. This is visualized in Figure 4-3, where freshness anomalies are depicted
by the high Y values. This denotes table update lags, which we can query for with a
simple detector.

Example 4-5. Exoplanet data freshness table from query in Example 4-4

DATE_ADDED     DAYS_SINCE_LAST_UPDATE
2020–01–01     
2020–01–02     1
2020–01–03     1
2020–01–04     1
2020–01–05     1
...            ...
2020–07–14     1
2020–07–15     1
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2020–07–16     1
2020–07–17     1
2020–07–18     1

Figure 4-3. Visualization of freshness anomalies depicted by high Y values

Now, we have the data we need to detect freshness anomalies. All that’s left to do is
to set a threshold parameter for Y—how many days old is too many? A parameter
turns a query, Example 4-6, into a detector, since it decides what counts as anomalous
(read: worth alerting) and what doesn’t.

Example 4-6. Modified query to alert to data that sits beyond expected freshness for
exoplanet data

WITH UPDATES AS(
  SELECT
    DATE_ADDED,
    COUNT(*) AS ROWS_ADDED
  FROM
    EXOPLANETS
  GROUP BY
    DATE_ADDED
),
  
NUM_DAYS_UPDATES AS (
  SELECT
    DATE_ADDED,
    JULIANDAY(DATE_ADDED) - JULIANDAY(LAG(DATE_ADDED)
      OVER(
        ORDER BY DATE_ADDED
      )
    ) AS DAYS_SINCE_LAST_UPDATE
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  FROM
    UPDATES
)
  
SELECT
  *
FROM
  NUM_DAYS_UPDATES
WHERE
  DAYS_SINCE_LAST_UPDATE > 1;

The data returned to us, Example 4-7, represents dates where freshness incidents
occurred.

Example 4-7. Data returned from Example 4-6 query

DATE_ADDED     DAYS_SINCE_LAST_UPDATE
2020–02–08     8
2020–03–30     4
2020–05–14     8
2020–06–07     3
2020–06–17     5
2020–06–30     3

On 2020–05–14, the most recent data in the table was 8 days old! Such an outage may
represent a breakage in our data pipeline and would be good to know about if we’re
using this data for anything high impact (and if we’re using this in a production envi‐
ronment, chances are, we are). As illustrated in Figure 4-4, we can render freshness
anomalies by setting thresholds for what is an acceptable amount of time since the
last update.

Figure 4-4. Visualization of freshness anomalies using thresholds
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Note in particular the last line of the query: DAYS_SINCE_LAST_UPDATE > 1;.

Here, 1 is a model parameter—there’s nothing “correct” about this number, though
changing it will impact what dates we consider to be incidents. The smaller the
number, the more genuine anomalies we’ll catch (high recall), but chances are, several
of these “anomalies” will not reflect real outages. The larger the number, the greater
the likelihood all anomalies we catch will reflect true anomalies (high precision), but
it’s possible we may miss some.

For the purpose of this example, we could change 1 to 7 and thus catch only the
two worst outages (on 2020–02–08 and 2020–05–14). Any choice here will reflect
the particular use case and objectives; it is an important balance to strike that
comes up again and again when applying data observability at scale to production
environments.

In Figure 4-5, we leverage the same freshness detector but with the SQLite query
DAYS_SINCE_LAST_UPDATE > 3; serving as the threshold. Two of the smaller outages
now go undetected.

Figure 4-5. Narrowing the search for anomalies (DAYS_SINCE_LAST_UPDATE > 3)

Now, we visualize the same freshness detector, but with DAYS_SINCE_LAST_UPDATE
> 7; now serving as the threshold. All but the two largest outages now go undetected
(Figure 4-6).

Just like planets, optimal model parameters sit in a “Goldilocks Zone” or “sweet spot”
between values considered too low and too high.
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Figure 4-6. Further narrowing the search for anomalies
(DAYS_SINCE_LAST_UPDATE > 7)

Understanding Distribution
Next, we want to assess the field-level, distributional health of our data. Distribution
tells us all of the expected values of our data, as well as how frequently each value
occurs. One of the simplest questions is, “How often is my data NULL?” In many
cases, some level of incomplete data is acceptable—but if a 10% null rate turns into
90%, we’ll want to know.

In statistics, we like to assume that sets of observations are drawn from baseline
distributions that obey mathematical rules. Call the former “sample distributions”
and the latter “true distributions.” Statistics has an observation about natural pro‐
cesses, called the central limit theorem, that states that distributions of independently
generated random samples approach a certain distribution as the number of samples
gets large.

Central Limit Theorem
The central limit theorem suggests that if you have a sufficiently randomized sample
from a given data set with mean μ and standard deviation σ, then the distribution of
the sample means will be approximately normally distributed.

The normal distribution, or Gaussian distribution—the famous bell curve everyone
is familiar with from statistics class, shown in Figure 4-7—can tell us what normal
behavior is for a given data set. Gaussians can be nicely summarized with two vari‐
ables—their mean, μ, and variance, σ—which makes them powerful and ubiquitous in
statistical analysis.
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Figure 4-7. A normal (Gaussian) distribution represents the most basic form of anomaly
detection (if only it were this easy)

Applying the Gaussian distribution may prompt an initial approach to anomaly
detection that’s quite naive but surprisingly effective: calculating the standard score
for each observation. That is, subtract μ, and then divide by σ. This score (also called
the z-score) gives a quantifiable metric for how “far out” (on the bell curve) each
observation is. Anomaly detection: solved! Just draw a line at some point out from
the center of the bell and call everything outside that line “anomalous.” From a statis‐
tical standpoint, you’ll be correct. Unfortunately, statistical theory isn’t a compelling
approach to anomaly detection in the very concrete field of data quality, for two
reasons.

First, the central limit theorem states a key characteristic of the data generating
process that many people overlook: independent, random observations yield normal
distributions in the limit. This is a great assumption to make when measuring the
volume of wind through grass, or the stride length of the average New Yorker. It’s
not so great for business intelligence data, where observations tend to be highly
correlated and confounded with other variables. For example, “daily customers” will
not be normally distributed at Chick-Fil-A, which closes on Sundays, since 1/7th of
all observations will be 0. These observations are not generated randomly but are
instead impacted by the day of the week.

Second, there’s a distinction between “anomalous” and “interesting” observations that
can’t be quite captured with purely statistical thinking. To illustrate this, consider the
z-score, as discussed a few paragraphs earlier. We said (in jest) that anomaly detection
can be solved with a simple z-score; unfortunately, that’s rarely the case.
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If we choose to define “anomaly” as anything, say, three standard deviations from
the distribution’s mean, we can be guaranteed to get that “correct” for any data. But
we’re not just in the business of identifying simply anomalous metrics. For one, our
time series contain important contextual information (What day of the week was it?
Does the pattern repeat?). More importantly, though, is that not all anomalous obser‐
vations are interesting—they don’t help us identify and correct for data downtime.
Example 4-8 queries data with an anomalous distribution.

Example 4-8. Query to pull data about anomalous distributions

SELECT
  DATE_ADDED,
  CAST(
    SUM(
      CASE
        WHEN DISTANCE IS NULL THEN 1
        ELSE 0
      END
    ) AS FLOAT) / COUNT(*) AS DISTANCE_NULL_RATE,
  CAST(
    SUM(
      CASE
        WHEN G IS NULL THEN 1
        ELSE 0
      END
    ) AS FLOAT) / COUNT(*) AS G_NULL_RATE,
  CAST(
    SUM(
      CASE
        WHEN ORBITAL_PERIOD IS NULL THEN 1
        ELSE 0
      END
    ) AS FLOAT) / COUNT(*) AS ORBITAL_PERIOD_NULL_RATE,
  CAST(
    SUM(
      CASE
        WHEN AVG_TEMP IS NULL THEN 1
        ELSE 0
      END
    ) AS FLOAT) / COUNT(*) AS AVG_TEMP_NULL_RATE
FROM
  EXOPLANETS
GROUP BY
  DATE_ADDED;

This query returns a lot of data, as depicted in Example 4-9.
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Example 4-9. Data from Example 4-8 query

date_added     DISTANCE_NULL_RATE    G_NULL_RATE          ORBITAL_PERIOD_NULL_RATE
2020-01-01     0.0833333333333333    0.178571428571429    0.214285714285714
2020-01-02     0.0                   0.152173913043478    0.326086956521739
2020-01-03     0.0594059405940594    0.188118811881188    0.237623762376238
2020-01-04     0.0490196078431373    0.117647058823529    0.264705882352941
...            ...                   ...                  ...
2020-07-13     0.0892857142857143    0.160714285714286    0.285714285714286
2020-07-14     0.0673076923076923    0.125                0.269230769230769
2020-07-15     0.0636363636363636    0.118181818181818    0.245454545454545
2020-07-16     0.058252427184466     0.145631067961165    0.262135922330097
2020-07-17     0.101123595505618     0.0898876404494382   0.247191011235955
2020-07-18     0.0673076923076923    0.201923076923077    0.317307692307692

The general formula CAST(SUM(CASE WHEN SOME_METRIC IS NULL THEN 1 ELSE 0
END) AS FLOAT) / COUNT(*), when grouped by the DATE_ADDED column, is telling
us the rate of NULL values for SOME_METRIC in the daily batches of new data in
EXOPLANETS. It’s hard to get a sense by looking at the raw output, but a visual
(Figure 4-8) can help illuminate this anomaly.

Figure 4-8. By rendering various events triggered by null rates, we can clearly see which
dates were anomalous

The visuals make it clear that there are null rate “spike” events we should be detecting.
Let’s focus on just the last metric, AVG_TEMP, for now. We can detect null spikes most
basically with a simple threshold via the query in Example 4-10.
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Example 4-10. Detecting null values in the AVG_TEMP column of the EXOPLANETS data set

WITH NULL_RATES AS(
  SELECT
    DATE_ADDED,
    CAST(
      SUM(
        CASE
          WHEN AVG_TEMP IS NULL THEN 1
          ELSE 0
        END
      ) AS FLOAT) / COUNT(*) AS AVG_TEMP_NULL_RATE 
  FROM
    EXOPLANETS
  GROUP BY
    DATE_ADDED
)
  
SELECT
  *
FROM
  NULL_RATES
WHERE
  AVG_TEMP_NULL_RATE  > 0.9;

In Example 4-11, we share the corresponding data pulled in its raw form, illustrating
the rows with null values in the AVG_TEMP column of the data set.

Example 4-11. AVG_TEMP rows with null values

DATE_ADDED     AVG_TEMP_NULL_RATE
2020-03-09     0.967391304347826
2020-06-02     0.929411764705882
2020-06-03     0.977011494252874
2020-06-04     0.989690721649485
2020-06-07     0.987804878048781
2020-06-08     0.961904761904762

In Figure 4-9, we highlight where the anomalous spikes were, correlating to the rate
of null values in the temperature column of our EXOPLANETS data set.

As detection algorithms go, this approach to identifying null values is something
of a blunt instrument. Sometimes, patterns in our data will be simple enough for a
threshold like this to do the trick. In other cases, though, data will be noisy or have
other complications, like seasonality, requiring us to change our approach.
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Figure 4-9. Detecting null spikes in the average temperature

Seasonality refers to the tendency of a time series to observe pre‐
dictable fluctuations over certain intervals. For example, data for
“church attendees” might observe a weekly seasonality with a high
bias toward Sunday, and data for a department store’s coat sales
would likely observe yearly seasonality with a high in fall and a low
in spring.

For example, detecting 2020–06–02, 2020–06–03, and 2020–06–04 seems redundant.
We can filter out dates that occur immediately after other alerts to reduce duplication
via the query in Example 4-12.

Example 4-12. Query to filter out dates that occur immediately after other alerts

WITH NULL_RATES AS(
  SELECT
    DATE_ADDED,
    CAST(
      SUM(
        CASE
          WHEN AVG_TEMP IS NULL THEN 1
          ELSE 0
        END
      ) AS FLOAT
    ) / COUNT(*) AS AVG_TEMP_NULL_RATE
  FROM
    EXOPLANETS
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  GROUP BY
    DATE_ADDED
),
  
ALL_DATES AS (
  SELECT
    *,
    JULIANDAY(DATE_ADDED) - JULIANDAY(LAG(DATE_ADDED)
      OVER(
        ORDER BY DATE_ADDED
      )
    ) AS DAYS_SINCE_LAST_ALERT
  FROM
    NULL_RATES
  WHERE
    AVG_TEMP_NULL_RATE > 0.9
)
  
SELECT
  DATE_ADDED,
  AVG_TEMP_NULL_RATE
FROM
  ALL_DATES
WHERE
  DAYS_SINCE_LAST_ALERT IS NULL OR DAYS_SINCE_LAST_ALERT > 1;

The corresponding data set is listed in Example 4-13. These results highlight dates
that don’t need to be taken into account in our null value anomaly detector, per the
query in Example 4-12.

Example 4-13. Results of Example 4-12 query

DATE_ADDED     AVG_TEMP_NULL_RATE
2020-03-09     0.967391304347826
2020-06-02     0.929411764705882
2020-06-07     0.987804878048781

Note that in both of these queries, the key parameter is 0.9. We’re effectively saying,
“Any null rate higher than 90% is a problem, and I need to know about it.” We
visualize these results in Figure 4-10. This helps us reduce white noise and generate
more accurate results.

In this instance, we can (and should) be a bit more intelligent by applying the concept
of rolling average with a more intelligent parameter using the query in Example 4-14
to improve precision further.
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Figure 4-10. Visualizing any null rates higher than 90%

Example 4-14. Query to apply a rolling average to the null rate

WITH NULL_RATES AS(
  SELECT
    DATE_ADDED,
    CAST(SUM(CASE WHEN AVG_TEMP IS NULL THEN 1 ELSE 0 END) AS FLOAT) / 
      COUNT(*) AS AVG_TEMP_NULL_RATE
  FROM
    EXOPLANETS
  GROUP BY
    DATE_ADDED
),
  
NULL_WITH_AVG AS(
  SELECT
    *,
    AVG(AVG_TEMP_NULL_RATE) OVER (
      ORDER BY DATE_ADDED ASC
      ROWS BETWEEN 14 PRECEDING AND CURRENT ROW) AS TWO_WEEK_ROLLING_AVG
  FROM
    NULL_RATES
  GROUP BY
    DATE_ADDED
)
  
SELECT
  *
FROM
  NULL_WITH_AVG
WHERE
  AVG_TEMP_NULL_RATE - TWO_WEEK_ROLLING_AVG > 0.3;
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The query’s results are shown in Example 4-15 and depicted in Figure 4-11. We see
null values that might raise bigger alarms (i.e., with a null rate higher than 90%).

Example 4-15. Results from Example 4-14 query

DATE_ADDED     AVG_TEMP_NULL_RATE    TWO_WEEK_ROLLING_AVG
2020-03-09     0.967391304347826     0.436077995611105
2020-06-02     0.929411764705882     0.441299602441599
2020-06-03     0.977011494252874     0.47913211475687
2020-06-04     0.989690721649485     0.515566041654715
2020-06-07     0.987804878048781     0.554753033524633
2020-06-08     0.961904761904762     0.594966974173356

Figure 4-11. Using the query AVG_TEMP_NULL_RATE — TWO_WEEK_ROLLING_AVG to get
even more specific when identifying the null value rate

One clarification: notice that we filter using the quantity AVG_TEMP_NULL_RATE —
TWO_WEEK_ROLLING_AVG. In other instances, we might want to take the ABS() of
this error quantity, but not here—the reason being that a null rate “spike” is much
more alarming if it represents an increase from the previous average. It may not be
worthwhile to monitor whenever nulls abruptly decrease in frequency, while the value
in detecting a null rate increase is clear.

Building Monitors for Schema and Lineage
In the previous section, we looked at the first two pillars of data observability,
freshness and distribution, and showed how a little SQL code can operationalize
these concepts. These are what I would call more “classic” data anomaly detection
problems—given a steady stream of data, does anything look out of whack?
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Good anomaly detection is certainly part of the data observability puzzle, but it’s
not everything. Equally important is context. If a data anomaly occurred, great. But
where? What upstream pipelines may be the cause? What downstream dashboards
will be affected by a data anomaly? And has the formal structure of my data changed?
Good data observability hinges on our ability to properly leverage metadata to answer
these data anomaly questions.

In our next section, we’ll look at the two data observability pillars designed to answer
these questions—schema and lineage. Once again, we’ll use lightweight tools like
Jupyter and SQLite, so you can easily spin up our environment and try these data
anomaly exercises yourself. Let’s get started.

Anomaly Detection for Schema Changes and Lineage
As before, we’ll work with mock astronomical data about habitable exoplanets. It
looks like our oldest data is dated 2020-01-01 (note: most databases will not store
timestamps for individual records, so our DATE_ADDED column is keeping track for
us). Our newest data looks to be from 2020-07-18:

sqlite> SELECT DATE_ADDED FROM EXOPLANETS ORDER BY DATE_ADDED DESC LIMIT 1; 
    2020-07-18

Of course, this is the same table we used in the previous section. If we want to
explore the more context-laden pillars of schema and lineage, we’ll need to expand
our environment.

Now, in addition to EXOPLANETS, we have a table called EXOPLANETS_EXTENDED, which
is a superset of our past table. It’s useful to think of these as the same table at different
moments in time. In fact, EXOPLANETS_EXTENDED has data dating back to 2020-01-01:

sqlite> SELECT DATE_ADDED FROM EXOPLANETS_EXTENDED ORDER BY DATE_ADDED ASC 
    LIMIT 1; 2020-01-01

But it also contains data up to 2020-09-06, further than EXOPLANETS:

sqlite> SELECT DATE_ADDED FROM EXOPLANETS_EXTENDED ORDER BY DATE_ADDED DESC 
    LIMIT 1; 2020-09-0

Something else is different between these tables, as depicted in Example 4-16. There
are two additional fields, making the opportunity for anomalies even higher.

Example 4-16. Two additional fields in EXOPLANETS_EXTENDED data set

sqlite> PRAGMA TABLE_INFO(EXOPLANETS_EXTENDED);
_ID             | VARCHAR(16777216)  | 1 | | 0
DISTANCE        | FLOAT              | 0 | | 0
G               | FLOAT              | 0 | | 0
ORBITAL_PERIOD  | FLOAT              | 0 | | 0
AVG_TEMP        | FLOAT              | 0 | | 0
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DATE_ADDED      | TIMESTAMP_NTZ(6)   | 1 | | 0
ECCENTRICITY    | FLOAT              | 0 | | 0  
ATMOSPHERE      | VARCHAR(16777216)  | 0 | | 0  

In addition to the six fields in EXOPLANETS, the EXOPLANETS_EXTENDED table contains
two additional fields:

ECCENTRICITY: the orbital eccentricity of the planet around its host star

ATMOSPHERE: the dominant chemical makeup of the planet’s atmosphere

Note that like DISTANCE, G, ORBITAL_PERIOD, and AVG_TEMP, both ECCENTRICITY and
ATMOSPHERE may be NULL for a given planet as a result of missing or erroneous data.
For example, rogue planets have undefined orbital eccentricity, and many planets
don’t have atmospheres at all.

Note also that data is not backfilled, meaning data entries from the beginning of the
table (data contained also in the EXOPLANETS table) will not have eccentricity and
atmosphere information. In Example 4-17, we share a query to highlight that older
data is not backfilled; this will hopefully show the schema change that ensued.

Example 4-17. Query highlighting that older data is not backfilled

SELECT
 DATE_ADDED,
 ECCENTRICITY,
 ATMOSPHERE
FROM
 EXOPLANETS_EXTENDED
ORDER BY
 DATE_ADDED ASC
LIMIT 10;

We can make this file beautiful and searchable if this error is corrected: no commas
found in this CSV file in line 0 (depicted in Example 4-18).

Example 4-18. Addition of two new columns, signaling a schema change in our
EXOPLANETS data set

2020-01-01 | |
2020-01-01 | |
2020-01-01 | |
2020-01-01 | |
2020-01-01 | |
2020-01-01 | |
2020-01-01 | |
2020-01-01 | |
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2020-01-01 | |
2020-01-01 | |

The addition of two fields is an example of a schema change—our data’s formal
blueprint has been modified. Schema changes occur when an alteration is made
to the structure of your data, and it’s a data anomaly that can be frustrating to
manually debug. Schema changes can indicate any number of things about your data,
including:

• The addition of new API endpoints•
• Supposedly deprecated fields that are not yet deprecated•
• The addition or subtraction of columns, rows, or entire tables•

In an ideal world, we’d like a record of this change, as it represents a vector for
possible issues with our pipeline. Unfortunately, our database is not naturally config‐
ured to keep track of such changes. It has no versioning history, as depicted in
Example 4-19. A schema change can easily sneak up on us.

Example 4-19. No versioning history in data set

sqlite> PRAGMA TABLE_INFO(EXOPLANETS_COLUMNS);
 
DATE    | TEXT | 0 | | 0
 
COLUMNS | TEXT | 0 | | 0

We ran into this issue when querying for the age of individual records and added the
DATE_ADDED column to cope. In this case, we’ll do something similar, except with the
addition of an entire table.

The EXOPLANETS_COLUMNS table “versions” our schema by recording the columns in
EXOPLANETS_EXTENDED at any given date. Looking at the very first and last entries,
we see that the columns definitely changed at some point, as highlighted by Exam‐
ple 4-20. The two entries in Example 4-20 highlight that there was an addition of two
new columns in our EXOPLANETS data set—in other words, a schema change.

Example 4-20. Two entries highlighting a schema change

sqlite> SELECT * FROM EXOPLANETS_COLUMNS ORDER BY DATE ASC LIMIT 1;
2020-01-01 | [
   (0, '_id', 'TEXT', 0, None, 0),
   (1, 'distance', 'REAL', 0, None, 0),
   (2, 'g', 'REAL', 0, None, 0),
   (3, 'orbital_period', 'REAL', 0, None, 0),
   (4, 'avg_temp', 'REAL', 0, None, 0),
   (5, 'date_added', 'TEXT', 0, None, 0)
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 ]
 
sqlite> SELECT * FROM EXOPLANETS_COLUMNS ORDER BY DATE DESC LIMIT 1;
2020-09-06 | [
   (0, '_id', 'TEXT', 0, None, 0),
   (1, 'distance', 'REAL', 0, None, 0),
   (2, 'g', 'REAL', 0, None, 0),
   (3, 'orbital_period', 'REAL', 0, None, 0),
   (4, 'avg_temp', 'REAL', 0, None, 0),
   (5, 'date_added', 'TEXT', 0, None, 0),
   (6, 'eccentricity', 'REAL', 0, None, 0),
   (7, 'atmosphere', 'TEXT', 0, None, 0)
 ]

Now, returning to our original question: when, exactly, did the schema change? Since
our column lists are indexed by dates, we can find the date of the change and a good
clue for where anomalies lie with a quick SQL script, as depicted in Example 4-21.

Example 4-21. A query of the extended EXOPLANETS table to showcase when schema for
the data set changed

WITH CHANGES AS(
 SELECT
   DATE,
   COLUMNS AS NEW_COLUMNS,
   LAG(COLUMNS) OVER(ORDER BY DATE) AS PAST_COLUMNS
 FROM
   EXOPLANETS_COLUMNS
)
 
SELECT
   *
FROM
   CHANGES
WHERE
   NEW_COLUMNS != PAST_COLUMNS
ORDER BY
   DATE ASC;

Example 4-22 includes the data returned, which we’ve reformatted for legibility.
Looking at the data, we see that the schema changed on 2022-07-19.

Example 4-22. Results pulled from the query in Example 4-21

DATE:          2020–07–19
NEW_COLUMNS:  [
               (0, '_id', 'TEXT', 0, None, 0),
               (1, 'distance', 'REAL', 0, None, 0),
               (2, 'g', 'REAL', 0, None, 0),
               (3, 'orbital_period', 'REAL', 0, None, 0),
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               (4, 'avg_temp', 'REAL', 0, None, 0),
               (5, 'date_added', 'TEXT', 0, None, 0),
               (6, 'eccentricity', 'REAL', 0, None, 0),
               (7, 'atmosphere', 'TEXT', 0, None, 0)
          ]
PAST_COLUMNS: [
               (0, '_id', 'TEXT', 0, None, 0),
               (1, 'distance', 'REAL', 0, None, 0),
               (2, 'g', 'REAL', 0, None, 0),
               (3, 'orbital_period', 'REAL', 0, None, 0),
               (4, 'avg_temp', 'REAL', 0, None, 0),
               (5, 'date_added', 'TEXT', 0, None, 0)
          ]

With this query, we return the offending date: 2020–07–19. Like freshness and distri‐
bution observability, achieving schema observability follows a pattern: we identify the
useful metadata that signals pipeline health, track it, and build detectors to alert us of
potential issues. Supplying an additional table like EXOPLANETS_COLUMNS is one way to
track schema, but there are many others. We encourage you to think about how you
could implement a schema change detector for your own data pipeline!

Visualizing Lineage
We’ve described lineage as the most holistic of the five pillars of data observability,
and for good reason. Lineage contextualizes incidents by telling us (1) which down‐
stream sources may be impacted, and (2) which upstream sources may be the root
cause. While it’s not intuitive to “visualize” lineage with SQL code, a quick example
may illustrate how it can be useful. (In Chapter 6, we’ll teach you how to build your
own field-level lineage system from scratch using common open source frameworks.)

To demonstrate how this works, let’s add another table to our database. So far, we’ve
been recording data on exoplanets. Here’s one fun question to ask: how many of these
planets may harbor life?

The HABITABLES table takes data from EXOPLANETS to help us answer that question,
among other characteristics, as showcased in Example 4-23.

Example 4-23. HABITABLES provides information on whether the planets listed in
EXOPLANETS are habitable

sqlite> PRAGMA TABLE_INFO(HABITABLES);
_id           | TEXT | 0 | | 0  
perihelion    | REAL | 0 | | 0  
aphelion      | REAL | 0 | | 0  
atmosphere    | TEXT | 0 | | 0  
habitability  | REAL | 0 | | 0  
min_temp      | REAL | 0 | | 0  
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max_temp      | REAL | 0 | | 0  
date_added    | TEXT | 0 | | 0  

An entry in HABITABLES contains the following:

_id: a UUID corresponding to the planet

perihelion: the closest distance to the celestial body during an orbital period

aphelion: the furthest distance to the celestial body during an orbital period

atmosphere: the dominant chemical makeup of the planet’s atmosphere

habitability: a real number between 0 and 1, indicating how likely the planet is
to harbor life

min_temp: the minimum temperature on the planet’s surface

max_temp: the maximum temperature on the planet’s surface

date_added: the date our system discovered the planet and added it automatically
to our databases

Like the columns in EXOPLANETS, values for perihelion, aphelion, atmosphere,
min_temp, and max_temp are allowed to be NULL. In fact, perihelion and aphelion
will be NULL for any _id in EXOPLANETS where eccentricity is NULL, since you use
orbital eccentricity to calculate these metrics. This explains why these two fields are
always NULL in our older data entries.

To see which exoplanets are most habitable, we can use the following query to render
the output in Example 4-24:

sqlite> SELECT * FROM HABITABLES LIMIT 5;

Example 4-24. Output of query to get a sense for the most habitable exoplanets

_id,perihelion,aphelion,atmosphere,habitability,min_temp,max_temp,date_added
c168b188-ef0c-4d6a-8cb2-f473d4154bdb,,,,0.291439672855434,,,2020-01-01
e7b56e84-41f4-4e62-b078-01b076cea369,,,,0.835647137991933,,,2020-01-01
a27030a0-e4b4-4bd7-8d24-5435ed86b395,,,,0.894000806332343,,,2020-01-01
54f9cf85-eae9-4f29-b665-855357a14375,,,,0.41590200852556,103.71374885412 ...
4d06ec88-f5c8-4d03-91ef-7493a12cd89e,,,,0.593524201489497,,,2020-01-01

So, we know that HABITABLES depends on the values in EXOPLANETS (or, equally,
EXOPLANETS_EXTENDED), and EXOPLANETS_COLUMNS does as well. A dependency graph
of our database is depicted in Figure 4-12.
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Figure 4-12. Dependency graph depicting the lineage between the source data and
downstream “products”

Very simple lineage information, but already useful. Let’s look at a data anomaly in
HABITABLES in the context of this graph, and see what we can learn.

Investigating a Data Anomaly
When we have a key metric, like habitability in HABITABLES, we can assess the
health of that metric in several ways. For a start, what is the average value of
habitability for new data on a given day? In Example 4-25, we query the average
value of habitability for new exoplanet data.

Example 4-25. Query to pull average habitability value for new exoplanet data

SELECT
  DATE_ADDED,
  AVG(HABITABILITY) AS AVG_HABITABILITY
FROM
  HABITABLES
GROUP BY
  DATE_ADDED;

Example 4-26 is the CSV file generated by the query.

Example 4-26. Results from Example 4-25 query

DATE_ADDED,AVG_HABITABILITY
2020-01-01,0.435641365919993
2020-01-02,0.501288741945045
2020-01-03,0.512285861062438
2020-01-04,0.525461586113648
2020-01-05,0.528935065722722
...,...
2020-09-02,0.234269938329633
2020-09-03,0.26522042788867
2020-09-04,0.267919611991401
2020-09-05,0.298614978406792
2020-09-06,0.276007150628875
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Looking at this data, we see that something is wrong. It looks like we have a data
anomaly. The average value for habitability is normally around 0.5, but it halves to
around 0.25 later in the recorded data (Figure 4-13).

Figure 4-13. Visualizing the CSV file to get a better understanding of where the data
anomaly occurred—and why

In Figure 4-13, we can clearly see that this issue is a distributional data anomaly, but
what exactly is going on? In other words, what is the root cause of this data anomaly?

Why don’t we look at the null rate for habitability, like we did when we were detecting
distribution anomalies earlier in the chapter? We can do this by leveraging the query
in Example 4-27, which pulls the nulls rate for our new, expanded data set, clueing us
in to possible data anomalies.

Example 4-27. Null rate query for new data set

SELECT
 DATE_ADDED,
 CAST(
   SUM(
    CASE
    WHEN HABITABILITY IS NULL THEN 1
    ELSE 0
    END
   ) AS FLOAT) / COUNT(*) AS HABITABILITY_NULL_RATE
FROM
 HABITABLES
GROUP BY
 DATE_ADDED;
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Fortunately, nothing looks out of character here, as you can see in the results, as
highlighted in Example 4-28.

Example 4-28. Results of Example 4-27 query

DATE_ADDED,HABITABILITY_NULL_RATE
2020-01-01,0.0
2020-01-02,0.0
2020-01-03,0.0
2020-01-04,0.0
2020-01-05,0.0
...,...
2020-09-02,0.0
2020-09-03,0.0
2020-09-04,0.0
2020-09-05,0.0
2020-09-06,0.0

As you can see in Example 4-28, this doesn’t look promising as the cause of our issue.
What if we looked at another distributional health metric, the rate of zero values?
This is another potential root cause of a distribution anomaly. Let’s run another
query, as shown in Example 4-29, to help us do exactly that.

Example 4-29. Query to understand the rate of zero values

SELECT
 DATE_ADDED,
 CAST(
   SUM(
    CASE
    WHEN HABITABILITY IS 0 THEN 1
    ELSE 0
    END
   ) AS FLOAT) / COUNT(*) AS HABITABILITY_ZERO_RATE
FROM
 HABITABLES
GROUP BY
 DATE_ADDED;

Something seems evidently more amiss here, as evidenced by the CSV file depicted in
Example 4-30. Several exoplanets’ habitability have a zero rate, which could be a root
cause of a data anomaly.

Example 4-30. Results from our query in Example 4-29

DATE_ADDED,HABITABILITY_ZERO_RATE
2020-01-01,0.0
2020-01-02,0.0
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2020-01-03,0.0
2020-01-04,0.0
2020-01-05,0.0
...,...
2020-09-02,0.442307692307692
2020-09-03,0.441666666666667
2020-09-04,0.466666666666667
2020-09-05,0.46218487394958
2020-09-06,0.391304347826087

In Figure 4-14, we visualize the results of our zero-rate query using AS

FLOAT) / COUNT (*) AS HABITABILITY_ZERO_RATE; this illustrates the anomalous
results in August and September 2020.

Figure 4-14. Visualizing zero value rates and the probable root cause of the anomaly

We can adapt one of the distribution detectors we built earlier in the chapter to
get the first date of appreciable zero rates in the habitability field, as depicted in
Example 4-31.

Example 4-31. Query for first date of zero rates in habitability field

WITH HABITABILITY_ZERO_RATES AS(
  SELECT
    DATE_ADDED,
    CAST(
      SUM(
        CASE
          WHEN HABITABILITY IS 0 THEN 1
          ELSE 0
        END
      ) AS FLOAT) / COUNT(*) AS HABITABILITY_ZERO_RATE
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  FROM
    HABITABLES
  GROUP BY
    DATE_ADDED
),
  
CONSECUTIVE_DAYS AS(
SELECT
  DATE_ADDED,
  HABITABILITY_ZERO_RATE,
  LAG(HABITABILITY_ZERO_RATE) OVER(ORDER BY DATE_ADDED) 
    AS PREV_HABITABILITY_ZERO_RATE
FROM
  HABITABILITY_ZERO_RATES
)
  
SELECT
  *
FROM
  CONSECUTIVE_DAYS
WHERE
  PREV_HABITABILITY_ZERO_RATE = 0 AND
  HABITABILITY_ZERO_RATE != 0;

We can then run this query through the command line in Example 4-32, which will
fetch the first date of appreciable zeros in the habitability field.

Example 4-32. Command-line interface running the query in Example 4-31

$ sqlite3 EXOPLANETS.db < queries/lineage/habitability-zero-rate-detector.sql
DATE_ADDED | HABITABILITY_ZERO_RATE | PREV_HABITABILITY_ZERO_RATE
2020–07–19 | 0.369047619047619 | 0.0

2020–07–19 was the first date the zero rate began showing anomalous results. Recall
that this is the same day as the schema change detection in EXOPLANETS_EXTENDED.
EXOPLANETS_EXTENDED is upstream from HABITABLES, so it’s very possible that these
two incidents are related.

In this way lineage information can help us identify the root cause of incidents and
move quicker toward resolving them. Compare the two following explanations for
this incident in HABITABLES:
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1. On 2020–07–19, the zero rate of the habitability column in the HABITABLES table1.
jumped from 0% to 37%.

2. On 2020–07–19, we began tracking two additional fields, eccentricity and2.
atmosphere, in the EXOPLANETS table. This had an adverse effect on the down‐
stream table HABITABLES, often setting the fields min_temp and max_temp to
extreme values whenever eccentricity was not NULL. In turn, this caused the
habitability field spike in zero rate, which we detected as an anomalous
decrease in the average value.

Let’s break these explanations down. Explanation 1 uses just the fact that a data
anomaly took place. Explanation 2 uses lineage, in terms of dependencies between
both tables and fields, to put the incident in context and determine the root cause.
Everything in the second explanation is actually correct, and we encourage you to
mess around with the environment to understand for yourself what’s going on. While
these are just simple examples, an engineer equipped with Explanation 2 would be
faster to understand and resolve the underlying issue, and this is all owed to proper
observability.

Tracking schema changes and lineage can give you unprecedented visibility into the
health and usage patterns of your data, providing vital contextual information about
who, what, where, why, and how your data was used. In fact, schema and lineage are
the two most important data observability pillars when it comes to understanding the
downstream (and often real-world) implications of data downtime.

Scaling Anomaly Detection with Python
and Machine Learning
At a high level, machine learning is instrumental for data observability and data
monitoring at scale. Detectors outfitted with machine learning can apply more flexi‐
bly to larger numbers of tables, eliminating the need for manual checks and rules
as your data warehouse or lake grows. Also, machine learning detectors can learn
and adapt to data in real time and can capture complicated seasonal patterns that
otherwise would be invisible to human eyes. Let’s dive in—no prior machine learning
experience required.

As you may recall from the previous two sections of this exercise, we’re working
again with mock astronomical data about habitable exoplanets. Now, we’re going to
restrict our attention to the EXOPLANETS table again, as we did earlier in the chapter, to
better understand how to scale anomaly detection with machine learning, depicted in
Example 4-33.
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Example 4-33. Our trusty EXOPLANETS data set

$ sqlite3 EXOPLANETS.db
sqlite> PRAGMA TABLE_INFO(EXOPLANETS);
_id             | TEXT | 0 | | 0
distance        | REAL | 0 | | 0
g               | REAL | 0 | | 0
orbital_period  | REAL | 0 | | 0
avg_temp        | REAL | 0 | | 0
date_added      | TEXT | 0 | | 0

Note that EXOPLANETS is configured to manually track an important piece of meta‐
data—the date_added column—which records the date our system discovered the
planet and added it automatically to our databases. To detect for freshness and
distribution anomalies, we used a simple SQL query to visualize the number of new
entries added per day, as highlighted in Example 4-34.

Example 4-34. Query to pull the number of new EXOPLANETS entries added per day

SELECT
 DATE_ADDED,
 COUNT(*) AS ROWS_ADDED
FROM
 EXOPLANETS
GROUP BY
 DATE_ADDED;

This query yields a seemingly healthy set of data, as depicted in Example 4-35. But is
there more we should know?

Example 4-35. Results of Example 4-34 (which look entirely standard)

date_added,ROWS_ADDED
2020-01-01,84
2020-01-02,92
2020-01-03,101
2020-01-04,102
2020-01-05,100
...,...
2020-07-14,104
2020-07-15,110
2020-07-16,103
2020-07-17,89
2020-07-18,104

These results are visualized in Figure 4-15.
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Figure 4-15. Visualizing the number of rows added per day for a given month

In words, the EXOPLANETS table routinely updates with around 100 entries per day,
but goes “offline” on some days when no data is entered, as depicted in Figure 4-15.
We introduced a metric called DAYS_SINCE_LAST_UPDATE to track this aspect of the
table via our anomaly detection query template, as depicted in Example 4-36. This
will tell us how many days it has been since the EXOPLANETS data set was updated,
between distinct entries.

Example 4-36. Query on how many days since EXOPLANETS data set was updated

WITH UPDATES AS(
  SELECT
    DATE_ADDED,
    COUNT(*) AS ROWS_ADDED
  FROM
    EXOPLANETS
  GROUP BY
    DATE_ADDED
)
  
SELECT
  DATE_ADDED,
  JULIANDAY(DATE_ADDED) - JULIANDAY(LAG(DATE_ADDED) OVER(
    ORDER BY DATE_ADDED
  )) AS DAYS_SINCE_LAST_UPDATE
FROM
  UPDATES;
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The results are listed in a CSV file, depicted in Example 4-37, and visualized in
Figure 4-16. We see a list of dates with new data entries.

Example 4-37. Results from Example 4-36

DATE_ADDED,DAYS_SINCE_LAST_UPDATE
2020–01–01,
2020–01–02,1
2020–01–03,1
2020–01–04,1
2020–01–05,1
...,...
2020–07–14,1
2020–07–15,1
2020–07–16,1
2020–07–17,1
2020–07–18,1

In Figure 4-16, we can clearly see that there were some dates in February, April, May,
June, and July 2020 where data was not added to our EXOPLANETS data set, signaling
an anomaly.

Figure 4-16. Using a freshness anomaly detection query, we can identify when the data
goes “offline”

With a small modification, we introduced a threshold parameter to our query to
create a freshness detector, which allows us to further refine our anomaly detection.
Our detector returns all dates where the newest data in EXOPLANETS was older than
one day, as highlighted in Example 4-38.
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Example 4-38. Query to identify when a column in our EXOPLANETS data set has not
been updated in over one day

WITH UPDATES AS(
  SELECT
    DATE_ADDED,
    COUNT(*) AS ROWS_ADDED
  FROM
    EXOPLANETS
  GROUP BY
    DATE_ADDED
),
  
NUM_DAYS_UPDATES AS (
  SELECT
    DATE_ADDED,
    JULIANDAY(DATE_ADDED) - JULIANDAY(LAG(DATE_ADDED)
      OVER(
        ORDER BY DATE_ADDED
      )
    ) AS DAYS_SINCE_LAST_UPDATE
  FROM
    UPDATES
)
  
SELECT
  *
FROM
  NUM_DAYS_UPDATES
WHERE
  DAYS_SINCE_LAST_UPDATE > 1;

The CSV file generated by this query is depicted in Example 4-39, highlighting
freshness anomalies.

Example 4-39. Results of Example 4-38 query

DATE_ADDED,DAYS_SINCE_LAST_UPDATE
2020–02–08,8
2020–03–30,4
2020–05–14,8
2020–06–07,3
2020–06–17,5
2020–06–30,3

In Figure 4-17, we can clearly visualize the specific dates when our data set was
collecting stale data, likely from an exoplanet orbiter or other space probe.
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Figure 4-17. Visualizing dates when the table was collecting “stale” data, indicating data
downtime

The spikes in Figure 4-17 represent instances where the EXOPLANETS table was work‐
ing with old or “stale” data. In some cases, such outages may be standard operating
procedure—maybe our telescope was due for maintenance, so no data was recorded
over a weekend. In other cases, though, an outage may represent a genuine problem
with data collection or transformation—maybe we changed our dates to ISO format,
and the job that traditionally pushed new data is now failing. We might have the
heuristic that longer outages are worse, but beyond that, how do we guarantee that we
only detect the genuine issues in our data?

The short answer: you can’t. Building a perfect predictor is impossible (for any inter‐
esting prediction problem, anyway). But, we can use some concepts from machine
learning to frame the problem in a more structured way and, as a result, deliver data
observability and trust at scale.

Improving Data Monitoring Alerting with Machine Learning
Whenever we alert about a broken data pipeline, we have to question whether the
alert was accurate. Does the alert indicate a genuine problem? We might be worried
about two scenarios:

• A data monitoring alert was issued, but there was no genuine issue. We’ve wasted•
the user’s time responding to the alert.

• There was a genuine issue, but no data monitoring alert was issued. We’ve let a•
real problem go undetected.
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These two scenarios are described as false positives (predicted anomalous, actually
OK) and false negatives (predicted OK, actually anomalous), and we want to avoid
them. Issuing a false positive is like crying wolf—we sounded the alarm, but all was
OK. Likewise, issuing a false negative is like sleeping on guard duty—something was
wrong, but we didn’t do anything.

Our goal is to avoid these circumstances as much as possible and focus on maxi‐
mizing true positives (predicted anomalous, actually a problem) and true negatives
(predicted OK, actually OK).

Accounting for False Positives and False Negatives
Anomaly detection is an unsupervised task. Unsupervised learning is a machine
learning task where the optimal behavior is not knowable at training time. In other
words, the data on which you’re training doesn’t come with labels attached. For
this reason, you may be compelled to call anomaly detection unsupervised, since
anomalies don’t come with a ground truth. Without a ground truth, you can’t get an
error signal, in other words, the difference between what you predicted and what you
should have predicted.

While some anomaly detection tasks are best understood as unsupervised learning
problems, it still makes sense to consider supervised error signal vocabulary like false
negative, false positive, precision, etc. Otherwise, we cannot benchmark different
detection algorithms against one another or have any metric for improvement and
success.

For any given data point, an anomaly detector issues either an “anomalous” or a “not
anomalous” prediction. Also, consider that there is some truth about the matter—the
data point in question is either a genuine problem, or not a problem at all. Consider a
measurement reflecting that your key analytics table has not updated once in the last
three days. If your table should update hourly, this is a genuine problem!

When a data point is problematic and our detector calls it “anomalous,” we call this
a true positive. When a data point is just fine and our detector doesn’t detect it (i.e.,
issues “not anomalous”), we call this a true negative. Table 4-1 illustrates this concept.

Table 4-1. Four possible anomaly detection outcomes

  Predicted
  Negative Positive

Actual
Negative True Negative False Positive
Positive False Negative True Positive
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False negatives are cases where the data point was genuinely problematic, yet our
detector did not detect. A false negative detection is like a sleeping guard dog—your
algorithm lets a problem go by undetected. False positives are cases where we detected
an anomaly, but the point in question was not actually problematic. A false positive
detection is like crying wolf—your algorithm issued an “anomalous” result, but the
underlying data point was actually fine. False positives and false negatives are realities
for even the most well-trained anomaly detection algorithms.

False positives and false negatives both sound bad. It seems like the best anomaly
detection techniques ought to avoid them both. Unfortunately, for reasons to do with
simple statistics, we can’t “just avoid both.” In fact, fewer false positives comes at the
expense of more false negatives—and vice versa.

To understand why, let’s think about the boy who cried wolf again—through an
anomaly detector lens! The boy who cried wolf detects every data point as an anom‐
aly. As a result, his detection is highly sensitive (not likely to let any false negatives slip
by) but not at all specific (liable to produce lots of false positives). Data professionals
dislike boy-who-cried-wolf detectors because their detections aren’t believable. When
an anomaly detector with a high false positive rate detects, you’re likely to believe the
alert isn’t genuine.

The sleeping guard dog is another kind of anomaly detector—actually, the opposite
kind. This detector never considers data points anomalous. The resulting anomaly
detection algorithm is highly specific (no false positives will be produced) but not
at all sensitive (lots of false negatives will occur). Data professionals dislike sleeping-
guard-dog detectors too, because their results aren’t dependable. Overly conservative
detectors will never issue anomalous detections, meaning they’re bound to miss when
things go really awry.

The trick, as it turns out, is to aim somewhere in the middle between these two
detection schemes.

Improving Precision and Recall
For a given collection of data, once you’ve applied an anomaly detection algorithm,
you’ll have a collection of true positives (TPs), true negatives (TNs), false positives
(FPs), and false negatives (FNs). We typically don’t just look at these “scores” by
themselves—there are common statistical ways of combining them into meaningful
metrics. We focus on precision and recall, accuracy metrics that quantify the anomaly
detector’s performance.

Precision is defined as the rate of correct predictions made, so:

Precision = TPs
TPs + FPs
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In other words: out of all the “positives” (predictions made), how many are correct?

Recall is defined as the rate of actual anomalies detected, so:

Recall = TPs
TPs + FNs

In other words: out of all the genuine anomalies, how many did we catch?

These terms are popular accuracy metrics for classification systems, and their names
are semantically meaningful. A detector with high precision is “precise” in that when
it predicts anomalies, it’s more often than not correct. Similarly, a detector with high
recall “recalls” well—it catches a high rate of all the actual anomalies.

The problem, of course, is that you can’t have the best of both worlds. Notice that
there’s an explicit trade-off between these two. How do we get perfect precision?
Simple: alert for nothing—the guard dog sleeping on duty all the time—forcing us to
have a false positive rate of 0%. The problem? Recall will be horrible, since our false
negative rate will be huge.

Likewise, how do we get perfect recall? Also simple: alert for everything—crying wolf
at every opportunity—forcing a false negative rate of 0%. The issue, as expected, is
that our false positive rate will suffer, affecting precision.

Our world of data is run by quantifiable objectives, and in most cases we’ll want a
singular objective to optimize, not two. We can combine both precision and recall
into a single metric called an F-score. The general formula for nonnegative real β is:

Fβ =
1 + β2 · Precision · Recall

β
2 · Precision + Recall

Fβ is called a weighted F-score, since different values for beta weigh precision and
recall differently in the calculation. In general, an Fβ-score says, “I consider recall to
be beta times as important as precision.”

When β = 1, the equation values each equally. Set β > 1, and recall will be more
important for a higher score. In other words, β > 1 says, “I care more about catching
all anomalies than occasionally causing a false alarm.” Likewise, set β < 1, and
precision will be more important. β < 1 says, “I care more about my alarms being
genuine than about catching every real issue.”
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There are many frameworks you can use to apply anomaly detection at scale without
having to hand-code your algorithms in Python. See the following for a few of our
favorites:

Facebook Prophet
A forecasting model built to handle daily, weekly, monthly, and yearly seasonali‐
ties in time series data at scale. Users can load baseline Prophet models and tweak
human-interpretable model parameters, adding domain knowledge via feature
augmentation. The package ships in both Python and R.

TensorFlow
A popular machine learning library for a variety of tasks, including natural lan‐
guage processing, computer vision, and time series anomaly detection. The pack‐
age provides useful and well-documented implementations of more advanced
anomaly detection algorithms. TensorFlow’s Keras package, for example, imple‐
ments an autoencoder model that can be used for a neural form of autore‐
gression, more powerful than a basic autoregressive-integrated-moving-average
(ARIMA) model.

PyTorch
Developed at Facebook, this is another machine learning Python library fulfilling
similar use cases to TensorFlow (which is developed by Google). PyTorch typi‐
cally has higher uptake in the academic side of the industry, while TensorFlow
enjoys greater popularity in industry settings.

scikit-learn
Another popular machine learning software package with implementations for
all sorts of algorithms. In addition to time series anomaly detection methods like
ARIMA, scikit-learn has versions of the k-nearest neighbor algorithm and the
isolation forest algorithm, two popular methods for clustering. Like TensorFlow,
scikit-learn is developed in Python.

MLflow
A popular experiment tracking tool developed as open source by the creators
of Databricks. Experiment tracking refers to the process of managing machine
learning models in development and production. MLflow is primarily an experi‐
ment tracking and reproduction software. MLflow instances have shared model
registries where experiments can be backed up and compared side by side. Each
model belongs to a project, which is a packaged software environment designed
to ensure model reproducibility, as depicted in Figure 4-18. An important aspect
of developing anomaly detection software is the guarantee that the code runs the
same on different machines. You don’t want to think you’ve solved a bug locally
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just for the fix to fail to apply in production. Likewise, if a colleague reports
an accuracy metric for their updated model, you’d like to know that you could
replicate their quality results yourself. Also with projects, the MLflow registry
assists with deploying models to production environments, including Azure ML
and Amazon SageMaker, or to Spark clusters as an Apache Spark UDF.

Figure 4-18. MLflow’s model registry visualized in the data science workflow

Experiment tracking, the process of managing machine learn‐
ing model development and training, involves hyperparameter
comparison, dependency checking, managing and orchestrat‐
ing training jobs, saving model snapshots, and collecting logs
—among other tasks! This can in principle be done using
some incredibly complicated spreadsheets, though obviously
there are better tools for the job.

TensorBoard
This is TensorFlow’s visualization toolkit, yet you don’t need to model with
TensorFlow to take advantage of the software. With TensorBoard, as shown in
Figure 4-19, you can visualize common machine learning metrics like loss per
epoch of training, confusion matrices, and individual error analysis.
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Figure 4-19. A standard TensorBoard view during model training. Source: Tran
et al.1

These and other frameworks can take your anomaly detectors to the next level,
eliminating false negatives and positives and reducing the need for model tuning over
time.

Detecting Freshness Incidents with Data Monitoring
With our new vocabulary in hand, let’s return to the task of detecting freshness inci‐
dents in the EXOPLANETS table. We’re using a simple prediction algorithm, since we
turned our query into a detector by setting one model parameter X. Our algorithm
says, “Any outage longer than X days is an anomaly, and we will issue an alert for it.”
Even in a case as simple as this, precision, recall, and F-scores can help us!

To showcase, we took the freshness outages in EXOPLANETS and assigned ground truth
labels encoding whether each outage is a genuine incident or not. It’s impossible to
calculate a model’s accuracy without some kind of ground truth, so it’s always helpful
to think about how you’d generate these for your use case. Recall that there are a total
of six outages lasting for more than one day in the EXOPLANETS table, as highlighted in
the data depicted in Example 4-40.
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Example 4-40. Results from Example 4-38 query on outages lasting more than one day

DATE_ADDED,DAYS_SINCE_LAST_UPDATE
2020–02–08,8
2020–03–30,4
2020–05–14,8
2020–06–07,3
2020–06–17,5
2020–06–30,3

Let’s say, arbitrarily, that the incidents on 2020-02-08 and 2020-05-14 are genuine.
Each is eight days long, so it makes sense that they’d be problematic. On the flip
side, suppose that the outages on 2020-03-30 and 2020-06-07 are not actual incidents.
These outages are four and three days long, respectively, so this is not outlandish.
Finally, let the outages on 2020-06-17 and 2020-06-30, at five and three days, respec‐
tively, also be genuine incidents, as depicted in Example 4-41.

Example 4-41. Classifying the “true” anomalies

INCIDENT,NOT INCIDENT
2020-02-08 (8 days),2020-03-30 (4 days)
2020-05-14 (8 days),2020-06-07 (3 days)
2020-06-17 (5 days),
2020-06-30 (3 days),

Having chosen our ground truth in this way, we see that longer outages are more
likely to be actual issues, but there’s no guarantee. This weak correlation will make
a good model effective, but imperfect, just as it would be in more complex, real use
cases. To improve model accuracy, we need look no further than one of the most
common tools in a data or ML engineer’s toolkit: the F-score.

F-Scores
F-scores are classification accuracy metrics designed to optimize jointly for both pre‐
cision and recall. The “default” of these is the F1-score, defined (for the statisticians)
as the harmonic mean between precision and recall:

F1 = 2
1

Precision + 1
Recall

This means that the F1-score is designed to equally balance precision and recall,
which results in meaning we reward gains in one just as much as the other. In some
contexts, this kind of evaluation might be appropriate. In other cases, though, either
recall or precision might matter a lot more.
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A real-world example that drives home the point: on Saturday morning, January 13,
2018, Hawaiian islanders received text messages that a ballistic missile was inbound
and that they should seek underground shelter immediately. The alert went out at
8:07 a.m. and ended ominously with “This is not a drill.”

Thirty-eight minutes later, after the Hawaiian telephone network and 911 emergency
line had gone down from overuse, the Hawaiian state government issued that the
alert had been a mistake. While one Hawaiian man suffered a heart attack upon
hearing the news, there were no immediate fatalities from the event.

The Hawaiian incident had been intended as a test of the island’s actual alerting
system—the problem was, instead, that the system had sent out a real alert in error.
In this instance, the real alert is an example of anomaly detection gone wrong, in the
real world—a false positive. Now, while certainly scary, consider the equivalent false
negative and the potential repercussions there. When considering real-world impacts,
the consequences when things don’t work as anticipated could be severe.

What does this mean for product design and what can we do to mitigate it? In terms
of what we’ve been discussing here: a false positive is better than a false negative for
the missile detection system. Meaning: recall is more important than precision. If
we’re examining the performance of a system such as this, we should use something
other than the F1-score. In particular, a general Fβ score lets us say, “recall is beta
times as important than precision for my detector”:

Fβ = 1 + β2

β
2

Precision + 1
Recall

When β = 1, note that this equation comes out the same as the F1-score equation. It
would also say “recall is one times as important as precision”—weighing them equally.
However, if we were testing something like a missile alert system where recall was
twice or three times as important, we might consider evaluating using an F2 or an F3.

Does Model Accuracy Matter?
In the past several pages, you may have noticed our sparing use of the word “accu‐
racy.” Machine learning algorithms, anomaly detectors included, are supposed to be
“accurate”—or so you’ve heard. Why aren’t we then leading with that vocabulary?

Here’s part of our answer (an example drawn from a Stanford professor, Mehran
Sahami). Suppose you’re building a sophisticated, machine learning anomaly detec‐
tion system to test for acquired immunodeficiency syndrome (AIDS). Here’s how our
super sophisticated system works: it just predicts “No” anytime you ask it if someone
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has AIDS. AIDS affects approximately 1.2 million people in the United States today.
The US population hovers somewhere about 330 million. Our “accuracy,” or how
correct we are on average, is 1 − (Americans with AIDS / Americans) = 1 − (1.2
million / 330 million) = 99.6%. That’s one of the best accuracies we’ve ever seen—
surely, publication worthy, cause for celebration, etc.

I hope this example illustrates the point: accuracy is not as simple as how correct your
detector is on average, and moreover it shouldn’t be defined the same for different
applications. After all, the outcome of relying on accuracy metrics in the preceding
example would misdiagnose tens of thousands of individuals—or more. At the end of
the day, we want a good detection scheme to minimize both false positives and false
negatives. In machine learning practice, it’s more common to think about related but
more insightful terms, precision and recall, as depicted in Figure 4-20.

Figure 4-20. Precision (how often your algorithm accurately detects an anomaly) and
recall (how many of the total anomalies were caught)

As discussed earlier in the chapter, precision, generally, tells us how often we’re right
when we issue an alert. Models with good precision output believable alerts, since
their high precision guarantees that they cry wolf very infrequently.

Recall, generally, tells us how many issues we actually alert for. Models with good
recall are dependable, since their high recall guarantees that they rarely sleep on the
job.
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Extending our metaphor, a model with good precision is a model that rarely cries
wolf—when it issues an alert, you had better believe it. Likewise, a model with good
recall is like a good guard dog—you can rest assured that this model will catch all
genuine problems.

Now, suppose we begin by setting our threshold to three days—in words, “every out‐
age longer than three days is an anomaly.” This means we correctly detect anomalies
on 2020-02-08, 2020-05-14, and 2020-06-17, so we have three true positives. But, we
unfortunately detected 2020-03-30 as an incident when it isn’t one, so we have one
false positive. Three true positives / (three true positives + one false positive) means
our precision is 0.75. Also, we failed to detect 2020-06-30 as an incident, meaning
we have one false negative. Three true positives / (three true positives + one false
negative) means our recall is also 0.75. F1-score, given by the formula:

TP

TP + 1
2 FP + FN

Inputting the appropriate values, this means that our F1-score is also 0.75. Not bad!

Now, let’s assume we set the threshold higher, at five days. Now, we detect only
2020-02-08 and 2020-05-14, the longest outages. These turn out to both be genuine
incidents, so we have no false positives, meaning our precision is 1—perfect! But note
that we fail to detect other genuine anomalies, 2020-06-17 and 2020-06-30, meaning
we have two false negatives. Two true positives / (two true positives + two false
negatives) means our recall is 0.5, worse than before. It makes sense that our recall
suffered, because we chose a more conservative classifier with a higher threshold.
Our F1-score can again be calculated with the preceding formula, and turns out to be
0.667.

If we plot our precision, recall, and F1-score in terms of the threshold we set, we see
some important patterns. First, aggressive detectors with low thresholds have the best
recall, since they’re quicker to alert and thus catch more genuine issues. On the other
hand, more passive detectors have better precision, since they only alert for the worst
anomalies that are more likely to be genuine. The F1-score peaks somewhere between
these two extremes—in this case, at a threshold of four days. Finding the sweet spot is
key to best fine-tune our detectors, as depicted in Figure 4-21.

Finally, let’s look at one last comparison (Figure 4-22). Notice that we’ve looked only
at the F1-score, which weighs precision and recall equally. What happens when we
look at other values of beta?
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Figure 4-21. Calculating precision, recall, and F1-score and plotting the results to deter‐
mine how to tune anomaly detectors

Figure 4-22. Calculating F-score with different values of β

Recall that a general Fβ says “recall is β times as important as precision.” Thus, we
should expect that F2 is higher than F1 when recall is prioritized—which is exactly
what we see at thresholds less than 4, as depicted in Figure 4-22. At the same time,
the F0.5-score is higher for larger thresholds, showing more allowance for conservative
classifiers with greater precision.

With this F-score in tow and a better-tuned algorithm, you’re ready to detect issues
across the five pillars of data observability: freshness, volume, distribution, schema,
and lineage.

Scaling Anomaly Detection with Python and Machine Learning | 115



Beyond the Surface: Other Useful
Anomaly Detection Approaches
The best anomaly detection algorithms do three things: detect issues in near real
time, alert those who need to know, and give you information to help prevent future
downtime from occurring. In this chapter, we walked through common approaches
and key elements of basic anomaly detection algorithms, but our example only
scratches the surface. There are several other best practices, algorithm components,
and methodologies that warrant similar, or even more accurate, results depending on
the tooling you use:

Rule definitions or hard thresholding
Rule definitions set explicit cutoffs for certain metric values and determine
anomalies relative to the threshold. While technically detection, this approach
can only properly be called “anomaly” detection if most of the data points lie
within the threshold. Rule definitions are incredibly scalable and might work for
extremely well-defined SLAs, data uptime guarantees, and so forth.

Autoregressive models
Autoregression works on time-series anomaly detection, where data points
are ordered using a timestamp object. Autoregressive models take data from
previous timesteps, feed them into a regression (linear) model, and use the
output to form a prediction for where the next timestamp’s data will be. Data
points veering too far from the autoregressive prediction are marked anomalous.
Combined with a simple moving average algorithm, autoregression gives us
the autoregressive-moving-average and ARIMA detection algorithms. If we had
taken our exoplanet example a step further and layered in autoregression, this
data set would have worked quite well.

Exponential smoothing
Exponential smoothing methods exist to remove trend and seasonality from time
series so that more naive approaches (e.g., ARIMA) can take over. Holt-Winters
is a famous seasonal model for time series forecasting, and there is, again, a rich
taxonomy (additive, multiplicative, damped, nondamped, and so on).

Clustering
Clustering techniques, like the k-nearest neighbor algorithm or the isolation
forest algorithm find anomalies by putting similar data points in buckets, and
alerting you to the “odd ones out,” e.g., the data fitting into small or even one-off
buckets.

Hyperparameter tuning
Machine learning models have lots of parameters, which are numerical repre‐
sentations of the data used by the prediction algorithm. Some parameters are
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learned using the data and training process. For example, with a z-scoring model,
μ and σ are parameters set automatically from the input data’s distribution.
Other parameters, called hyperparameters, are not set by the learning process
but instead dictate the learning and inference processes in certain ways. Some
hyperparameters affect the model architecture, for example the size of a neural
network, the size of embedding and hidden state matrices, and so on. These are
called model hyperparameters. Another class, algorithm hyperparameters, affects
the way training is done, for example the learning rate, number of epochs, or
number of data points per training batch.

Ensemble model framework
An ensemble model framework takes the best of each method—a bit of cluster‐
ing, exponential smoothing, and autoregressive nodes combined into a neural
feed-forward network—and combines their predictions using a majority-voting
ensemble algorithm.

While important, such approaches are outside the scope of this book—for more on
building great anomaly detection algorithms, we suggest you check out Hands-On
Machine Learning with Scikit-Learn, Keras, and TensorFlow (O’Reilly) by Aurélien
Géron.

Designing Data Quality Monitors
for Warehouses Versus Lakes
When it comes to building data quality monitors for your data system, it’s important
to distinguish whether you’re working with structured, monolithic data from a ware‐
house or entering the wild west of the modern data lake ecosystem.

The primary differences between designing anomaly detection algorithms for ware‐
houses and lakes boil down to:

• The number of entrypoints you have to account for•
• How the metadata is collected and stored•
• How you can access that metadata•

First, data lake systems tend to have high numbers of entrypoints, meaning one should
assume high heterogeneity in data entering from different sources. In monitoring, say,
null rates in tabular data entering from Postgres, application logs, and a web API, a
data scientist might notice clusters of table behavior corresponding to the different
endpoints. In these cases, be wary of a “one-size-fits-all” modeling approach. More
likely than not, different model architectures (e.g., different hyperparameters) may
work better at predicting anomalies in each different format. One way to do that is
to condition on the endpoint of the data itself, forming a new feature for input into
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the machine learning model. Another is to use an ensemble model architecture, or
simply to have separate models for each of your use cases.

Second, metadata collected straight into a data lake may need varying levels of prepro‐
cessing before you can expect an anomaly detection algorithm to derive anything of
value from it. Types may need coercion, schemas may need alignment, and you may
find yourself deriving entirely new augmented features in the data before running the
detector’s training task.

This is fine to do immediately before model training, provided you aren’t bottleneck‐
ing your compute resources by applying “transformations” on large batches of input
data. In some cases, it may be advantageous to devise some ELT steps in between the
lake data and the machine learning algorithm. “Cleaning Data” on page 43 provides
some insight into why this may be valuable.

Summary
In this chapter, we’ve taken a quick safari through monitoring and anomaly detection
as it relates to basic data quality checks. Now, how can these concepts help us apply
detectors to our production environments in data warehouses and lakes?

The key lies in understanding that there’s no perfect classifier for any anomaly
detection problem. There is always a trade-off between false positives and false
negatives, or equally precision and recall. You have to ask yourself, “How do I weigh
the trade-off between these two? What determines the ‘sweet spot’ for my model
parameters?” Choosing an Fβ score to optimize will implicitly decide how you weigh
these occurrences, and thereby what matters most in your classification problem.

Also, remember that any discussion of model accuracy isn’t complete without some
sort of ground truth to compare with the model’s predictions. You need to know
what makes a good classification before you know that you have one. In Chapter 5,
we’ll discuss how to apply the technologies highlighted in Chapters 2, 3, and 4 to
architecting more reliable data systems, as well as discuss new processes, like SLAs,
SLIs, and SLOs, to help them scale.
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CHAPTER 5

Architecting for Data Reliability

Airbnb, the global online vacation marketplace, wrote in a 2020 post on their engi‐
neering blog that “leadership [set] high expectations for data timeliness and quality,”
leading to the need to make significant investment in their data quality and gover‐
nance efforts. Meanwhile, Krishna Puttaswamy and Suresh Srinivas, former engineers
at Uber, wrote in a 2021 Uber Engineering blog article that high-quality big data is “at
the heart of this massive transformation platform.”

It’s no secret: data quality is top of mind for some of the best data teams. Still, it’s one
thing to write about it: how do we actually achieve this in practice?

Data reliability—an organization’s ability to deliver high data availability and health
throughout the entire data life cycle—is the outcome of high data quality. As compa‐
nies ingest more operational and third-party data than ever before, with employees
from across the organization interacting with that data at all stages of its life cycle, it’s
become increasingly important for that data to be reliable.

Data reliability has to be intentionally built into every level of your organization, from
the processes and technologies you leverage to build and manage your data stack to
the way you communicate and triage data issues further downstream. In this chapter,
we’ll explore how to architect for data reliability at each stage of the pipeline—and
data engineering experience.

Measuring and Maintaining High
Data Reliability at Ingestion
Now that we have a better understanding of the state of data quality, let’s look at what
all of this means in practice, starting with ingestion. However, we would be remiss
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not to discuss some of the fundamental best practices that ensure high data quality
before ingestion to the data warehouse or lake.

It is common for organizations to ingest data from both internal and external,
third-party sources depending on the needs of the business. Your decision making is
only as good as the data you are using for insights and analysis: garbage in is garbage
out. It’s important to make sure your organization has the right set of practices in
place to ensure data quality.

To achieve this, organizations have begun to establish rigorous data quality control
standards for all data that enters their data ecosystem. While data quality issues can
occur at any point in your data pipeline, most organizations will agree that catching
and fixing data quality issues at the point of ingestion will help minimize the chances
of poor quality data working its way downstream.

Best practices such as data cleaning, data wrangling (the process of structuring and
enriching your data into a desired format), and data testing are ways organizations
are ensuring data quality is up to their organizations’ needs. And with technology
advancing over the years in the data industry, an abundance of tools have emerged in
the space to automate this process for companies.

Such tools allow organizations to automatically examine aspects of data such as its
format, consistency, completeness, freshness, and uniqueness. By automating this
process, organizations not only save time and resources when data cleaning but
ensure that the quality of incoming data is constantly controlled and managed when‐
ever data enters their ecosystem.

Data cleaning (also commonly referred to as cleansing) involves preparing and
modifying data for future analysis by removing incomplete, irrelevant, incorrect,
incorrectly formatted, or duplicate data from a data set. While the data cleaning
process can be tedious, it often falls to the data engineering team, although with the
rise of self-service tooling and more distributed data management approaches, this
onus on clean data is increasingly falling to data producers. Regardless of who “owns”
data cleaning, it is important to educate the rest of the organization on its importance
as everyone in the company plays a key role in ensuring the integrity of data.

When dealing with missing or inaccurate data many companies turn to data enrich‐
ment, which is a process where organizations are able to merge and add either first-
or third-party data to data sets they already are working with. By enriching data,
organizations are able to add more value to their data sets, which in the end makes
data more useful and reliable.

After data cleaning, data testing is your best line of defense against data quality before
ingestion. Data testing is the process of validating your organization’s assumptions
about the data, either before or during production. Writing basic tests that check for
things such as uniqueness and not_null are ways organizations can test out the basic
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assumptions they make about their source data. It is also common for organizations
to ensure that data is in the correct format for their team to work with and that the
data meets their business needs.

There are a few basic types of data quality tests, which we first addressed in
Chapter 3:

Unit testing
Unit tests check that a line of code (SQL) does what it is supposed to do; they can
be used with very, very small snippets of data. When unit testing data, you must
separate the business logic from the “glue code.”

Functional testing
Functional tests are used with large data sets and are often separated in data
validation, integrity, ingestion, processing, storage, and ETL. This type of testing
frequently occurs in the pipeline (pre-analytics layer).

Integration testing
Integration tests are used to ensure that your data pipeline meets your criteria for
validity (i.e., within expected ranges); generally, teams will run fake data through
the pipeline using these tests before leveraging production data.

As mentioned in Chapter 3, some common data quality checks include:

Null values
Are any values unknown (NULL)?

Freshness
How up-to-date is my data? Was it updated an hour ago or two months ago?

Volume
How much data is represented by this data set? Did two hundred rows turn into
two thousand?

Distribution
Is my data within an accepted range? Are my units the same within a given
column?

Missing values
Are any values missing from my data set?

How would you write these? In a later chapter, we’ll go through a list of common data
tests in SQL that can be applied to many open source languages (with varying syntax
and glue code, of course), but for explanation’s sake, let’s walk through an example
data set.

Let’s assume you’re a media distributor working with a data set that tracks your
global customer base, including location (City) and how much they’re paying for a
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subscription (Price) of your services. There are 500 entries in this data set, and five
columns: City, County, Price, Customers, Product.

If you wanted to test the data to ensure that you’re only running a pipeline on
customers who live in Berlin, you might run a SQL command that says:

SELECT * FROM Customers WHERE City = "Berlin";

And if you wanted to understand if there are any null values in City, you might
query:

SELECT * FROM Customers WHERE City IS NULL;

If you wanted to understand if any product is more expensive than $4.50 and less
expensive than $8.50, you might run:

SELECT * FROM Products WHERE Price > 4.50 AND Price < 8.50;

And this just scratches the surface of the types of tests you could run to better
understand the health of your data.

Based on the preceding examples, you can tell that data testing can be quite tedious.
Before setting your tests, you have to have a clear understanding of the data, what to
expect from it, and what “bad data” looks like. We often refer to these expectations
as “assertions,” derived from the world of unit test-driven development in software
engineering.

As a result, data team members often split testing responsibilities over data sets,
with individual analysts and engineers responsible for creating and maintaining
tests for the data sets they’re building pipelines for and interacting with daily. And
some companies hire entire Data Quality Assurance teams to handle data testing,
with responsibilities including creating tests for business use cases and maintaining
existing tests.

In the last few years, tools, including open source solutions like Apache Griffin and
Great Expectations, have emerged in the data testing category to help data engineers
and analysts automate the data testing process at different stages of the pipeline. dbt
(data build tool) is another solution in the data space that has narrow testing capa‐
bilities. These tools also help data team members document important information
about data sets (in other words, metadata), such as what the data represents and how
to use the data in reporting as well as what other data a given asset relies on and feeds
into. More on these later.

We cannot emphasize enough the importance of testing your data before production;
just as a software engineer would never (purposefully) push code to production
without testing it first, a data engineer should never run a pipeline with untested data.
But to test your data well, you need a clear understanding of your data health prior to
running your pipelines—we’ll talk about ensuring data health and observability later.
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Keep in mind that data testing catches only expected data quality issues; it does not
have the scalability or knowledge to account for “unknown” data quality issues. Data
changes a lot, even during production, so it’s important to supplement testing with
reactive monitoring and anomaly detection, as discussed in Chapter 4.

Measuring and Maintaining Data Quality in the Pipeline
In the 1990s, when your website was down, most people wouldn’t notice by the
time you were able to get it up and running again given the low volume of users
to most websites (after all, not everyone was using the World Wide Web!). Now, in
the 2020s, everyone notices when your service or application is down, for instance,
Slack’s infamous outage in January 2021. Slack, a popular enterprise communication
management platform with over 12 million daily active users at the time, went down
on Monday, January 4, 2021, the first workday after the New Year’s holiday, causing
many companies to be without their primary means of interoffice communication.
Consider the fact that many workers were homebound as a result of the COVID-19
pandemic and you can imagine the frustration that ensued.

Nowadays, nearly every business that hosts software relies on site reliability engineer‐
ing (SRE) to ensure that applications in production are reliable at all times. As
organizations grow and the underlying tech stacks powering them become more
complicated (think: moving from a monolith to a microservice architecture), it’s
important for SRE teams to maintain constant awareness of the health of their
systems. Observability, a more recent addition to the engineering lexicon, speaks to
this need and refers to the monitoring, tracking, and detection of incidents to prevent
downtime.

As a result of this industry-wide shift to distributed systems, SRE has emerged as a
fast-growing engineering discipline. At its core, application observability is broken
into three major pillars:

• Metrics refer to a numeric representation of data measured over time.•
• Logs, a descriptive, qualitative text record of an event that took place at a•

given timestamp, also provide valuable context regarding when a specific event
occurred.

• Traces represent causally related events in a distributed environment.•

Increasingly, data teams are coming to rely on similar principles of observability and
monitoring to track data quality in production pipelines (see Figure 5-1), with com‐
panies developing their own unique methodology for how to measure it, depending
on the needs of the business.
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Figure 5-1. A data pipeline refers to “data in production” and is composed of a data
warehouse / lake (or both), ETL, and an analytics layer

Similarly, data observability (i.e., ensuring data quality in the pipeline) can be broken
down into five major pillars, as shown in Figure 5-2.

Figure 5-2. The five pillars of data observability

The five pillars of data observability, like the three pillars of application observability,
highlight the elements of data health that should be closely monitored as an indicator
of high data quality:

Freshness
Is the data recent? When was the last time it was generated? What upstream data
is included/omitted?

Distribution
Is the data within accepted ranges? Is it properly formatted? Is it complete?

Volume
Has all the data arrived?

Schema
What is the schema, and how has it changed? Who has made these changes and
for what reasons?
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Lineage
For a given data asset, what are the upstream sources and downstream assets that
are impacted by it? Who are the people generating this data, and who is relying
on it for decision making?

The five pillars of data observability serve as key measurements for understanding
the health of your data at each stage in its life cycle, and provide a fresh (no pun
intended) lens with which to view the quality of your data.

As previously mentioned, data downtime refers to periods of time where data is miss‐
ing, erroneous, or otherwise inaccurate, and often suggests a broken data pipeline. By
measuring data downtime, you can determine the reliability of your data and ensure
the confidence necessary to use it. While SRE measures application downtime as a
function of time, we can similarly measure data downtime.

As data becomes increasingly tied to business outcomes, we’re observing a sea change
to less subjective, more quantifiable metrics, and for many teams, measuring uptime
and downtime for data is broadly applicable and provides a good starting point for
understanding data health.

Understanding Data Quality Downstream
Chances are, you won’t realize that your data is “bad” until it reaches the analytics
layer—or even beyond, when data is piped back to the applications and services you
collect it from (i.e., the list of acronyms we shared earlier). As previously mentioned,
teams can leverage monitoring and observability tools to catch data quality issues or
even set up a sequence of tests based on assumptions about your data.

Once data is in the analytics layer, teams can track, evaluate, and respond to quality
and reliability in a few different ways, including:

• A data reliability dashboard that tracks the time to detection (TTD), time to reso‐•
lution (TTR), and other data quality metrics after data lands in the dashboard.
We’ll discuss TTD and TTR in more detail later in the chapter.

• Service-level agreements (SLAs) that establish customer promises and punish‐•
ments for missing service-level objectives (e.g., If we fail, we’ll give you a 10%
discount next month).

• Service-level indicators (SLIs), in other words, the specific numbers being meas‐•
ured (for instance, Slack’s SRE team measures their success rate as the number of
200 responses sent from its servers).

• Service-level objectives (SLOs) are the actual target values you set for your SLIs•
(for instance, an SLI could be to have a 99% success rate, 95% of the time, for a
product functionality).
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• A net promoter score measuring how satisfied your stakeholders are with the•
data (i.e., was it delivered on time and do I trust it?).

However, when understanding data quality in the dashboard (see Figure 5-3), the
most important step is to align with your stakeholders around how they intend to
use the data and what high-quality, reliable data looks like to them. In many ways,
choosing and abiding by an SLI is of grave importance to the success of your data
organization and needs to be very specific to what’s important to your customers. It’s
the very score you use to evaluate your performance, so if it’s “a bit off ” it means your
entire strategy for optimizing “uptime” could be flawed. We’ll discuss SLAs, SLIs, and
SLOs later on in this chapter.

Figure 5-3. A data reliability dashboard (in this case, rendered in Datadog and Grafana)
can help your data team and stakeholders keep track of the quality and reliability of your
data

An easy way to set SLAs and SLIs is to understand what they’ll be using the data for,
and which data should be prioritized via testing, observability, and other tooling. It’s
nearly impossible to write data tests or even monitor for all critical data assets, but
aligning on which data matters and to who will cover many of your bases.

Traditionally, data quality is measured by data stewards and data governance leaders
by a few defining characteristics. According to the Data Management Association
UK, companies have measured data quality based on six key dimensions:

Completeness
How complete is my data?

Timeliness
Did my data arrive on time?

Validity
Does my data meet all syntax requirements (i.e., format, type, or range)?
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Accuracy
Does data describe the real-world environment it’s trying to represent?

Consistency
Is data consistent against well-understood and accepted definitions?

Uniqueness
Is an individual data point recorded more than once?

In the world of data engineering and data analytics, these measurements are useful,
but they aren’t always directly applicable (i.e., accuracy). As a data engineer, you’re
not usually the one working with the end result (clean, reliable data) in the context of
the business; you’re just notified when something breaks and trusted to apply testing
and monitoring at each step of the process.

For data engineers, measuring data quality in the dashboard might boil down to
tracking:

• The ratio of data to irrelevant or erroneous data (in other words, if you have 1 TB•
of data, how much of that data is missing, inaccurate, or stale?)

• The number of null or missing values in a given data set, or the completeness of•
data (which won’t account for “accuracy,” given that “inaccurate values” can skew
this metric)

• The timeliness of data (in other words, was data late?)•
• The percent of duplicated values (which accounts only for uniqueness of data•

and not any of the other possible ways data can break)
• The consistency of data (i.e., does each value in this row or column have the•

same format and size?)
• The number of functional teams who consistently access and use your data (this•

is applicable when applying distributed data architectures, like the data mesh, for
which data quality is of the utmost importance)

And the list goes on.

Building Your Data Platform
In addition to monitoring and alerting for data issues at all stages of the data pipeline,
delivering reliable data requires a thoughtful data platform—a combination of tech‐
nologies that enable you to manage data holistically, from ingestion to analytics.

Data platform requirements change with your business. The “right” data platform
for a 2,000-person ecommerce company will look quite different from a 20-person
FinTech startup, but there are still a few core layers that all data platforms require.
We think about the data stack in six layers: ingestion, storage and processing,

Building Your Data Platform | 127



transformation and modeling, business intelligence (BI) and analytics, discovery and
governance, and quality and observability, as shown in Figure 5-4.

Figure 5-4. Six foundational, interconnected layers needed when building a data
platform

It’s important to note that “layers” is used in the figurative sense; these elements are
interconnected (versus stacked) and are not listed in order of priority or importance.
But we’ve found that best-in-class data teams invest in each of them, sometimes
leveraging the same tools or technologies to account for two to three at a time. Of
course, as architectures grow to accommodate more advanced use cases, the number
of layers will increase depending on the needs of your data team. We’ll cover each of
these layers in detail as we explore how to build your data stack.

Data Ingestion
Modern data ingestion is complex, usually involving the collection of structured
and unstructured data from a wide variety of sources. This is also known as the
extraction and loading stages of ETL (extract-transform-load) and ELT (extract-load-
transform).

Most ETL tools extract data from external sources or internal systems, transform it
within a staging area into an acceptable (usually relational) format for storage, and
load it into databases. With the advent of modern cloud-based data warehouses that
can store untransformed data, however, data teams can adopt the newer integration
architecture of ELT—extracting raw data from a source, loading it directly into a data
warehouse, and transforming it at the end of the process.
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There are numerous ingestion tools available on today’s market—both off-the-shelf
and open source—although some data teams choose to use custom code and build
custom frameworks to handle ingestion.

Orchestration and workflow automation are often folded into the ingestion layer—
taking siloed data, combining it with other sources, and making it available for
analysis. However, we would argue that orchestration can, and should, be weaved into
the platform after you handle the storage, processing, and business intelligence layers.
After all, orchestration requires an orchestra of functioning data!

Keep in mind: it’s best practice to test your data at each step of the data pipeline and
make the proper assertions to help concretize what data quality at each step looks
like. Data tested at ingestion will not necessarily stay reliable as it evolves through the
pipeline.

Data Storage and Processing
The storage layer is the workhorse of your data stack—it’s where your newly ingested
data is stored and processed. Data storage today looks unrecognizable compared
to the on-premises computing clusters of a decade ago, thanks to the evolution of
cloud-native data storage solutions. These tools make it much more accessible and
affordable for companies to store and process massive amounts of data at scale.

There are three primary types of data storage solutions: data warehouses, data lakes,
and data lakehouses. Data warehouses are fully managed solutions that typically
require data to be structured according to specific schema—often forcing stricter
data hygiene from the moment of ingestion. Data lakes, on the other hand, are often
custom-built by data teams with a combination of open source and off-the-shelf tech‐
nologies, supporting raw, unstructured data and decoupled, distributed computing.
Data lakehouses are an emerging hybrid, adding warehouse-style features like SQL
functionality and schema to data lakes or providing more flexibility to traditional
warehouses.

The “right” solution will be different for every company, and even for the same
company at different stages—evolving along with the number of data sources you
leverage or the skillsets of the primary users of your data platform.

Data Transformation and Modeling
The terms “data transformation” and “data modeling” may be used interchangeably,
but they are very distinct processes. Data transformation encompasses preparing raw
data for analysis and reporting. Data modeling is the process of identifying the key
concepts and relationships in your data that encapsulate your business logic, and then
modeling these in the form of tables and the relationships between them.
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Data transformation usually includes exploratory data analysis (in other words,
profiling data to understand its structure and characteristics), data mapping (defining
how individual fields are formatted to produce the final output), code generation
(producing executable code based on those defined rules or metadata), code execu‐
tion (applying the generated code to produce the desired output), and data review
(ensuring the transformed data meets requirements).

Traditionally, data transformation has been performed by specialized engineers using
scripting languages like Python, R, or SQL and time-consuming work cycles. Today,
some data transformation can be accomplished by end users—like business ana‐
lysts—using cloud-based tools and technologies. This modern, self-service approach
allows the business users literate in SQL (and often closest to the data) to maintain
more control in setting requirements and speed up the time to actionable insights,
and no-code or low-code approaches make this transition possible. That being said,
transformation is still very much a data engineer-owned process that incorporates
Python and languages outside of SQL.

Data transformation can happen in batch or real-time streaming, the latter of which
is a promising and increasingly common approach to handling transformation and
modeling in real time (i.e., when having access to fresh data is more important
than ensuring that data is accurate). For a more detailed discussion of the trade-offs
between the two, revisit Chapter 3.

Business Intelligence and Analytics
Once data is collected, transformed, and stored, it must be made available to business
users. After all, the best data in the world won’t do any good if your staff can’t use it.

This highly visible layer of the data stack is known as business intelligence and
analytics. If your data platform is a book, your business intelligence and analytics
layer is its cover, complete with a descriptive title, engaging visuals, and a summary of
what the data is trying to tell you. The BI layer makes data actionable, and without it,
your data lacks meaning.

Analytics tools retrieve, analyze, and surface data through dashboards and data
visualizations, allowing users to leverage data for actionable insights. Charts, graphs,
maps, and other data visualization tools bring your data to life, giving employees an
accessible way to explore and understand patterns and trends in your data. Without
visualizations, your data remains virtually inaccessible—millions of rows on a spread‐
sheet that may be accurate, but aren’t easily understood.

Experiencing data through visualizations empowers data storytelling, or the ability
to convey data as a narrative that humans can comprehend and, therefore, act on.
Data storytelling goes a step beyond visualizations by communicating the context
around changes in data and sharing the why behind data trends. The discipline of
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data storytelling must be practiced and honed over time, but your team can’t begin to
develop those skills without access to self-serve BI and analytics tooling.

Data Discovery and Governance
Data teams need a scalable way to document and understand critical data assets.
Historically, this has been accomplished through data catalogs, which serve as an
inventory of metadata and provide an understanding of your data’s accessibility,
health, and location. Data catalogs make it easy to keep track of where personally
identifiable information is housed, as well as who within your organization has
permission to access it across the pipeline—making them an integral part of data
governance and regulatory compliance.

Modern data teams, however, are encountering the limitations of traditional data
catalogs. As data ecosystems grow increasingly complex and leverage large amounts
of unstructured and schemaless data, traditional catalogs can fall short due to their
lack of automation and inability to scale with the growth and diversity of modern
data stacks. They tend to require data teams to do the heavy lifting of manual data
entry, including updating the catalog as data assets evolve, and often don’t support the
dynamic nature of unstructured data.

Data discovery is a new approach increasingly applied to data cataloging that pro‐
vides a domain-specific, dynamic understanding of your data based on how it’s being
ingested, stored, aggregated, and used by a set of specific consumers. With data
discovery, governance standards should remain federated across domains, but unlike
more traditional approaches, data discovery enables a real-time understanding of the
data’s current state—not its ideal or “cataloged” state.

Data discovery can answer these questions not just for the data’s ideal state but for the
current state of the data across each domain:

• What data set is most recent? Which data sets can be deprecated?•
• When was the last time this table was updated?•
• What is the meaning of a given field in my domain?•
• Who has access to this data? When was the last time this data was used? By•

whom?
• What are the upstream and downstream dependencies of this data?•
• Is this production-quality data?•
• What data matters for my domain’s business requirements?•
• What are my assumptions about this data, and are they being met?•
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Data discovery makes it possible for data teams to trust that their assumptions about
data match reality, empowering dynamic discovery and a high degree of reliability
across your data infrastructure.

In our next section, we’ll discuss the layer of your data platform we seemingly skipped
over: data observability. Don’t worry—the method behind our madness will make
sense in just a few short paragraphs.

Developing Trust in Your Data
Now that you know what steps to take to ensure data quality pre-, during, and post-
production as well as which technologies you need to build a robust data platform,
the next step is to develop trust in your data through the right processes and culture.
After all, the most advanced data stack in the world is useless unless that data you’re
using can be trusted to deliver reliable insights to your business. Data for the sake of
data is about as useful as a fish riding a bicycle.

When it comes to building reliable and trustworthy data systems, the first step is to
understand the health of your data in its current state. In the same way that software
engineering teams develop trust in their software applications through observability
and DevOps, data teams must embrace similar best practices when it comes to
building trust in their data. Data observability is a good first step.

Data Observability
The sixth layer of the modern data stack isn’t a final step per se, but rather an
interconnected approach that weaves throughout your entire data lifecycle: observa‐
bility. Over the last two decades, DevOps engineers have developed best practices
of observability to ensure applications stay up, running, and reliable. And just as
application observability includes monitoring, tracking, and triaging of incidents to
prevent downtime, modern data engineers are applying the same principles to data.

Data observability refers to an organization’s ability to fully understand the health of
the data in their system at every stage of the life cycle. As mentioned in Chapter 1,
data observability applies DevOps practices of automated monitoring, alerting, and
triaging across five pillars: freshness, distribution, volume, schema, and lineage.

End-to-end data observability is crucial for ensuring data quality. Effective observa‐
bility tooling will connect to your existing data stack, providing end-to-end lineage
that allows you to surface downstream dependencies and automatically monitor your
data at rest—without extracting data from your data store and risking your security
or compliance. Having observability makes audits, breach investigations, and other
possible data disasters much easier to understand and resolve while keeping your
CTO from having an ulcer!
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Measuring the ROI on Data Quality
Unreliable data can lead to wasted time, lost revenue, compliance risk, and erosion of
customer trust. Surveying Monte Carlo’s hundreds of customers, we found that data
leaders tell us their data scientists and engineers spend 40% or more of their time
troubleshooting or firefighting data problems. Gartner estimates companies spend
upwards of $15 million annually on data downtime, while over 88% of US businesses
have lost money because of data quality issues. And one in five companies has lost a
customer due to data quality issues.

Before you can improve your data quality, it’s important to measure the impact of
poor data quality and delineate which data sets matter most to your organization. As
you’re likely aware, all data is not created equal, but having a sense of the cost of data
downtime on your business for key assets will be foundational to communicating the
impact of data quality to your stakeholders.

Calculating the cost of data downtime
Quantifying and communicating the value of data quality is a complex endeavor.
We’ve found that the following metrics, borrowed from DevOps practitioners, pro‐
vide a good start: time to detection and time to resolution.

Time to detection (TTD) describes the length of time it takes for your data team to
surface a data quality issue of any kind, from freshness anomalies to schema changes
that break entire pipelines. For many teams, TTD is measured in days, weeks, or
even months—because, most often, data outages are first detected by downstream
consumers when a dashboard or report “looks off.”

These periods of time are incredibly costly because the more time that passes, the
harder it becomes to recover data through reprocessing or backfilling source data.
Additionally, every business decision, marketing campaign, or product roadmap
update that relied on the incorrect data needs to be revalidated or communicated to
stakeholders.

Time to resolution (TTR) refers to how quickly your team is able to resolve a data
incident once alerted. This can be minutes, hours, or days, depending on the com‐
plexity of the incident, the availability of your data lineage, the robustness of your
data discovery or catalog, and the resources available. TTR metrics allow you to
understand the severity of your data issue and track the amount of time it takes to
resolve it. By converting to dollars—that is, articulating how much money is spent or
saved as a result of TTR—it becomes considerably easier to communicate the impact
of this broken data to your stakeholders:

(TTD hours + TTR hours) × Downtime hourly cost = Cost of data downtime
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The downtime hourly cost is a generalized metric to represent the engineering time
spent per downtime hour and the impact of data downtime on data consumers and
business decisions.

Engineering time spent can be calculated as a factor of downtime hours. For example,
we can estimate that one data engineer spends one-quarter of every downtime hour
monitoring for and investigating issues, which contributes ~$14.75 per downtime
hour (avg $59/hr salary + benefits for data engineer, a back-of-the-envelope calcula‐
tion based on US data engineering salary data from ZipRecruiter). Over time and as
technical debt accrues, the cost of downtime only grows.

This cost will vary significantly depending on the potential impact of a downtime
hour on your business. If, for example, you rely on data to report earnings to
Wall Street, a downtime hour resulting in misreporting data is catastrophic, likely
contributing $1,000s/hr to the downtime cost. Additionally, you can add the cost of
downtime on your analytics team. If, for example, you have 10 analysts, the cost of
them sitting idle during a downtime incident is significant (avg $75/hr salary × 10
= $750/hr). Assuming only four of your analysts will be impacted by a downtime
hour, we can conservatively reduce this by 60% to $300/hr.

Assuming you have ~100 downtime hours a month split between four analysts, the
cost to your business could easily exceed $420,000/year (100 hrs/month × $300/hr
× 12 months). And this doesn’t even factor in the lost opportunity cost of bad data!

Often, the impact of data quality and reliability goes unnoticed (in fact, many of these
issues often go unnoticed until it’s too late!), and it can be difficult to proactively
justify budget and resources with executives and other stakeholders who aren’t on the
data team. By calculating baseline TTD and TTR, it becomes much easier to then
communicate exactly what impact you expect to generate on the business. Without
this baseline, it’s much harder to get operational buy-in from the powers that be to
grow your team, up-level your tech stack, and scale out the data quality program of
your dreams.

Updating your data downtime cost to reflect external factors
Your annual cost of broken data can be approximated by the engineering or resources
you must spend to resolve the problem. We believe the right equation factors in
the cost of labor to tackle these issues, your compliance risk (we can use average
General Data Protection Regulation, or GDPR, fines to quantify this risk), and the
opportunity cost of losing stakeholder trust in your data.

Based on available data as well as interviews and surveys conducted with over 150
different data teams across industries, we estimate that data teams spend 30 to 40%
of their time handling data quality issues instead of working on revenue-generating
activities.
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1 In making this calculation, we take labor cost to equal the number of data engineers multiplied by their
annual salary multiplied by 30%. Compliance risk is estimated at 4% of annual revenue. Opportunity cost is
the revenue you could have generated if you moved faster, releasing X new products and acquiring Y new
customers.

Bringing this together, we can use the following equation to calculate the cost of
broken data:1

Labor cost + Compliance risk + Opportunity cost = Annual cost of broken data

This framework is a starting point, but measuring the cost is the first step toward
fully understanding the implications of broken data at your company—and, ulti‐
mately, preventing them altogether.

How to Set SLAs, SLOs, and SLIs for Your Data
Again, we can look to our DevOps counterparts for inspiration on architecting relia‐
bility into our data systems. Site reliability engineers use frameworks such as SLAs,
SLIs, and SLOs to reduce application downtime and ensure reliability. Several of the
data teams interviewed for this book have begun to implement these frameworks
across their organizations to prioritize, standardize, and measure data reliability.

Essentially, companies use SLOs to define and measure the SLA a given product,
internal team, or vendor will deliver, along with potential remedies if those SLAs are
not met. For example, Slack promises its customers on Plus plans and above 99.99%
uptime every quarter—and if they fall short, Slack will provide service credits on their
accounts for future use.

Many software teams develop internal SLOs to help engineering, product, and busi‐
ness teams align on what matters most about their applications and prioritize incom‐
ing requests. The very practice of codifying SLOs—rather than counting on everyone
to do their best and shoot for as close to 100% uptime as possible—helps set clear
expectations. With these SLOs in place, engineering teams and their stakeholders
can be confident they’re paying attention to the same metrics and speaking the same
language.

And setting those non-100% expectations leaves space for growth. Without some
tolerance for minimal downtime, there’s zero room for innovation—and seasoned
engineers know that even with all the best practices in place, systems will still break
occasionally. But with solid SLAs in place, engineers know exactly how and when to
intervene once something does go wrong.

Similarly, SLAs can help data teams and their consumers define, measure, and track
data reliability across its life cycle. Setting data reliability SLAs builds trust between
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your data, your data team, and downstream consumers. Without agreed-upon SLIs,
consumers can make inaccurate assumptions or look to anecdotal evidence about
the reliability of your data. With SLOs in place, your organization can become more
“data-driven” about data.

Additionally, by formalizing communication and prioritization processes, data reli‐
ability SLAs help your data team have a clearer grasp on business priorities and
make it easier to respond swiftly when incidents occur. Still, setting SLAs in and
of themselves is meaningless: you need alignment from data producers, engineers,
analysts, and consumers on what these SLAs should be and how much attention and
resources should be devoted to maintaining them.

Setting data SLAs requires specificity and collaboration, and clear, up-front alignment
with everyone this SLA affects (data producers, data engineers, data analysts, business
developers, data consumers, etc.). In fact, just setting SLAs for the sake of setting
them can often leave your team in a poor position if there’s no investment or account‐
ability in meeting them. Instead, teams should create and evangelize SLAs the same
way they set key performance indicators (KPIs) to larger strategic projects:

1. Take stock of business priorities.1.
2. Assess how these business priorities are enabled or tied to data analytics.2.
3. Understand your consumer’s need for high data quality / tolerance for poor data3.

quality.
4. Set SLOs accordingly, and seek stakeholder feedback and alignment.4.
5. Measure SLOs.5.

So, how do we get started? For data teams, setting reliability goals usually includes
three steps: defining, measuring, and tracking.

Step 1: Defining data reliability with SLAs
Setting SLAs first requires agreeing upon and clearly defining what reliable data
means to your business. We recommend starting this process by conducting an
inventory of your data, how it’s being used, and by whom—assessing the historical
performance of your data to get a baseline metric of reliability.

Data teams should also gather feedback from their consumers on what reliability
looks like to them. Data engineers can be removed from their colleagues’ daily
workflows, but it’s crucial to understand how consumers interact with data, what data
matters most, and which potential issues require immediate attention. All relevant
stakeholders, including data leaders or business consumers, should weigh in—and
buy in—on the definitions of reliability you’re developing. For instance, 99% of users
might not care about TABLE X, but for 1% of users, that table is their lifeblood to the
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rest of the business. Consumer interviews are critical to understand your business’s
data needs and what “reliable” data looks like.

After all, powerful technologies and workflows can facilitate proper incident
response, but they can’t replace a poor culture. Data teams, partners, and consumers
must align on SLAs before they are useful to the business.

Step 2: Measuring data reliability with SLIs
With a baseline in place and thorough understanding of your data consumers’ needs,
you can begin to target the metrics that will become your service-level indicators
of reliability. Generally speaking, data SLIs should reflect the agreed-upon state of
data you defined in the first step, providing boundaries of how data is and isn’t used
and describing what data downtime looks like. Scenarios here could include missing,
duplicative, or stale data.

SLIs will vary based on your specific use case, but here are a few examples of metrics
often used to quantify data health:

The number of data incidents for a particular data asset (N)
This may be beyond your control for external data sources, but it is still a key
driver of data downtime and typically worth measuring.

The frequency with which a critical table is updated
If an important table should be updated every 10 hours or less, you—and your
data consumers—should know.

The expected distribution for a given data set
If your distribution falls outside the standard range, this could indicate an issue
outside of your control (maybe sales were just really high that day?), but it’s likely
worth looking into.

Step 3: Tracking data reliability with SLOs
Once SLIs are identified, you can set objectives, or ranges of acceptable downtime
for your data. These SLOs should be based on your real-world circumstances—for
example, if you decide to track TTD but don’t use automated monitoring tools,
your SLO should be more generous than a mature organization with robust data
observability tooling.

Setting these ranges makes it possible to create a uniform framework that rates
incidents by level of severity and makes it easy to respond swiftly when issues occur.
With these objectives set and incorporated into your SLAs, you can build dashboards
that track and report on progress—either custom, ad hoc solutions or using dedicated
data observability tools.
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These measurements can be quite useful for data teams when understanding the
health of their data at an operational level, but when it comes to measuring the
impact of data quality on the business, we suggest revisiting data downtime.

Setting SLAs, SLOs, and SLIs for data is only the first piece of the puzzle. When
data incidents occur, we also need a way to triage and manage incidents before they
become a massive headache for downstream consumers.

For this, we can again turn to our friends in DevOps for inspiration. Most engineer‐
ing organizations allocate entire site reliability teams to identifying, resolving, and
preventing downtime. In today’s modern data organization, data engineers often bear
the brunt of the pain when pipelines break and dashboards turn wonky. To make the
incident resolution process easier and more seamless, we can take a page out of the
SRE handbook to effectively communicate and triage data issues as they arise.

For example, let’s say one of your executive’s critical reports is surfacing stale data.
From the outset, you’re not sure how this pipeline broke, but you need to communi‐
cate that it has broken and that your team is on the case. And as you’re resolving this
issue, you need to consistently update not just your fellow data downtime sleuths but
also your key stakeholders on the incident resolution process. While what it takes to
achieve reliable data is ultimately up to the needs of your business, having a great
communications strategy in place will make it that much easier to execute on your
SLAs.

Let’s shift gears from talking about principles and take a look at how all of these
concepts were applied when an ebook subscription service was struggling with a lack
of real-time data.

Case Study: Blinkist
With over 16 million users worldwide, Blinkist helps time-strapped readers fit learn‐
ing into their lives through their ebook subscription service. Gopi Krishnamurthy,
Director of Engineering, led the team responsible for data engineering, infrastructure,
cloud center of excellence, growth, and monetization. For Blinkist, having trustwor‐
thy and reliable data is foundational to the success of their business.

Lack of real-time data tracking caused marketing spend to decrease across critical dis‐
tribution channels. As a high-growth company, Blinkist leveraged paid performance
marketing to fuel customer acquisition. Their 2020 strategy—with a 40% growth
target—included a significant investment in channels like Facebook and Google,
which would auto-optimize campaigns based on behavioral data shared between the
Blinkist app and the channels themselves.

Of course, like so many companies in 2020, the COVID-19 pandemic changed
everything. Now, historic data didn’t reflect the current reality of their audience’s
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daily lives, and real-time data became essential—not just for determining advertising
spend, but also for understanding the current state of how users were interacting with
the Blinkist app and content across the web.

Any inaccuracies in this data could impact decision making, from campaign spending
to updating the product roadmap. It was crucial that no opportunities to innovate
were missed—from adding new features to simplifying onboarding to testing new
advertisements—because a campaign around “improving your commute” just wasn’t
relevant anymore. As C-level execs and campaign managers grew increasingly depen‐
dent on real-time insights to drive marketing strategy, budget spend, and ROI,
Gopi and his team were struggling with data downtime—issues with data quality,
dashboard update delays, and broken pipelines.

In our interview with Gopi, he said, “Every Monday, we had executive calls. And
almost every Monday, I was on this call trying to answer why we are not able to scale,
what were the issues, how many problems we face in terms of tracking data…trying
to explain the severity of the problem and trying to boost confidence with executive
stakeholders.” Gopi estimates his team was spending 50% of their working hours
firefighting data drills, trying to resolve data downtime issues while rebuilding trust
with the rest of the organization. It wasn’t sustainable and something had to change.

Foundational to achieving data reliability was a focus on data governance, data qual‐
ity, and refactoring systems. Gopi and his team implemented a regimented approach
to data testing and observability that tracked key data SLAs and SLIs. “At the core
of this framework is data reliability engineering—that we treat data reliability as a
first-class citizen, the same way engineering teams in the last decade have started to
treat DevOps and site reliability engineering,” said Gopi.

By investing in testing and data observability and setting clear data reliability SLAs
to measure data reliability, Blinkist was able to remediate data downtime before it
affected downstream consumers. As Gopi and his team worked to rebuild broken
trust along with broken pipelines, they partnered with company leaders to build a
shared understanding of data reliability principles and set concrete data SLAs.

Outcome: Time savings of 120 hours per week for a team of 6 data engineers through
testing, observability, and SLA alignment.

“The scale of growth that we’ve seen this year is overwhelming,” Gopi said. “Although
the data teams can’t take full credit, I definitely think the things we were able to
do—in terms of data observability and bringing transparency into data operations—
improved how we target our audience and channels.”

Still, it’s important to remember that setting SLOs and measuring SLIs don’t them‐
selves improve anything. The key to Gopi’s success is that his team evaluated what was
most important, set SLIs to measure it and SLOs to judge their progress, and then
were able to properly prioritize and evaluate the success of the projects they executed
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to improve those metrics. Often data teams get caught up in setting their metrics but
don’t give the proper value to actually executing against them and identifying what
negative features of their environment contribute to each of their missing SLOs.

Summary
For those beginning their data quality journeys, architecting for data reliability
requires a three-pronged approach:

• Invest in DevOps-inspired processes (testing and observability) up front—and•
across functional domains.

• Build a resilient and performant data platform.•
• Set and align on cross-organizational data SLAs, SLIs, and SLOs.•

Without these steps, data teams will have a challenging time achieving any semblance
of reliable, high-quality data. Still, taking your data quality strategy from a siloed
experience managed solely by data engineers and other upstream roles to something
prioritized by your broader company is a gradual process. At the risk of sounding
cliche: Rome wasn’t built in a day, and neither is your data quality strategy.

In the next chapter, we’ll dive into a critical component of the data reliability work‐
flow: incident management and resolution, an end-to-end approach to fixing data
quality at scale.
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CHAPTER 6

Fixing Data Quality Issues at Scale

Picture this: it’s Friday at 5 p.m., and you’re about to log off for the day. You start
closing your tabs, packing up your bag, and settling into your weekend state of mind.
Just as you’re about to turn off your laptop, you get an urgent Slack message from
your CFO about a broken dashboard.

“The numbers are wrong in our quarterly results report,” she Slacks you. “I didn’t sign
off on this!”

Assuming the issue is about the data itself and not rooted in your company’s shoddy
financials, you have a serious case of data downtime on your hands. You frantically
open Looker to find she’s right—the report looks way off and you have no idea why.
You validated the numbers yesterday with her. Your charts and graphs were absolutely
glowing with accuracy.

You pull up the source data (an Excel spreadsheet living on your desktop, “Financial
Report V. 212 GOOD_I_ PROMISE_YES_GOOD”), but that confuses you even
more. Dozens of emails, two phone calls, a few Zoom meetings, and seven hours later,
you determined the culprit of the errant dashboard: a schema change upstream with a
source table.

Great, you figured out what happened—now what?

For most data teams, pausing the pipeline and identifying the root cause of the issue
at hand is just the tip of the iceberg when it comes to restoring data reliability and
trust in your data.
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Fixing Quality Issues in Software Development
Fortunately, analysts and engineers don’t need to reinvent the wheel when it comes to
managing these types of “data downtime” incidents in individual pipelines and even
larger data systems. Instead, we can look to DevOps and site reliability engineering
(SRE) yet again for inspiration when it comes to handling incident management and
resolution at scale. To build and release more performant software, DevOps teams
apply a feedback loop, called the DevOps life cycle (as depicted in Figure 6-1), that
helps teams reliably deliver features aligned with business objectives at scale.

Figure 6-1. The DevOps life cycle gives engineers a framework with which to manage the
reliability and performance of software applications

The DevOps life cycle incorporates eight sections, or continuous stages, including:

Plan
The dev team aligns with product and business teams to understand the goals
and SLAs for your software.

Code
Write new software.

Build
Release your software into a test environment.

Test
Test your software.

Release
Release the software to production.
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Deploy
Integrate and deploy the software with your existing applications.

Operate
Run the software, adjust as necessary.

Monitor
Monitor and alert for issues in the software.

And the cycle repeats itself. While many of our data technologies and frameworks
(i.e., data testing, data SLAs [service-level agreements], distributed architectures, etc.)
have adapted to meet the standards and best practices set by our software engineering
counterparts, our tendency to handle data quality reactively has prevented us from
driving the adoption of analytics in a meaningful and scalable way. By leveraging
the best practices of incident management from software engineering to data envi‐
ronments, we can approach data quality with a proactive and scalable approach that
can meet the analytical demands of your business.

According to Andrew Stribblehill and Kavite Guiliana, two authors who collaborated
on Google’s canonical SRE Handbook, “Effective incident management is key to
limiting the disruption caused by a [software] incident and restoring normal business
operations as quickly as possible. If you haven’t gamed out your response to potential
incidents in advance, principled incident management can go out the window in
real-life situations.”

In short, incident management is the process of identifying, root causing, resolving,
analyzing, and preventing issues that arise in your day-to-day engineering workflows.
DevOps and SRE teams leverage incident management to programmatically discover
and address buggy software, outages, and other performance issues in real time.

In this chapter, we’ll discuss how data teams can fix data incidents at scale by applying
principles of software incident management to their data systems, from investing in
the right technology and tooling to implementing DevOps-inspired processes and
organizational structures.

Data Incident Management
Francisco Alberini, a former Data Product Manager at Segment, a leading customer
data platform, was responsible for building their data governance tool, Protocols.
In this role, Francisco was no stranger to tackling broken data pipelines. In our
discussion with Francisco, he said:

Data systems can break for a million different reasons, and there isn’t a one-size-fits-all
approach to understanding how or why. As the PM for Protocols, I spent a lot of
time thinking about and building dashboards to evaluate the quality of data our
customers were receiving. When issues occurred, my approach consisted of two steps:
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(1) frantically ping that one data engineer who had been on our team for 4+ years
(decades of historical knowledge in engineering time) to ask for urgent help, and (2) if
she wasn’t available, spend hours debugging this pipeline by spot-checking thousands
of tables. Neither was particularly scalable.

Francisco’s experience is not unique.

As data systems become increasingly distributed and companies ingest more and
more data, the opportunity for error (and incidents) only increases. For decades,
software engineering teams have relied on a multistep process to detect, resolve, and
prevent issues from taking down their applications. As data operations mature, it’s
time we treat our data systems with the same diligence, particularly when it comes to
building more reliable pipelines.

While not a ton of literature exists about how data teams can handle incident man‐
agement for their data, there are already great resources and best practices we can
leverage from our friends in software development. We recommend data teams apply
a similar, but modified approach to incident management: the data reliability life
cycle (Figure 6-2), which is inspired by the DevOps life cycle and helps data teams
manage the performance and reliability of data pipelines.

Figure 6-2. The data reliability life cycle

By applying the data reliability life cycle to data pipelines, data engineering teams
can more seamlessly detect, resolve, and, ultimately, prevent data quality issues before
they impact the business. And when it comes to building a data incident management
workflow for your pipelines, critical steps include incident detection, response, root
cause analysis (RCA), resolution, and a blameless postmortem.
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Incident Detection
With the right tooling and processes, incident detection (Figure 6-3) can easily be
integrated into data engineering and analytics workflows, ensuring that all data stake‐
holders and end users are alerted when issues arise across the proper communication
channels (i.e., Slack, Microsoft Teams, email, SMS, PagerDuty, or carrier pigeon).

Figure 6-3. Incident detection can alert you to freshness, volume, and distribution issues
across your data pipelines

It goes without saying that you should, first and foremost, test your data before it
enters production. Still, even with the most robust tests and checks in place, bad
data will fall through the cracks and be pushed to prod before you can say “broken
data pipeline.” When data pipelines break or dashboards go haywire, the first step is
incident detection. Incidents can be detected through data monitoring and alerting,
which can be both implemented manually on your data pipelines and triggered based
on specific thresholds. Incident detection can also be layered as part of an anomaly
detection or data observability solution and triggered automatically at regular inter‐
vals based on historical data patterns and custom rules.

One critical component of incident detection is anomaly detection (Figure 6-4) or
the ability to identify when pillars of data health (i.e., volume, freshness, schema, and
distribution) veer from the norm. Anomaly detection is most valuable when imple‐
mented end to end (across your warehouses, lakes, ETL, and BI tools) as opposed to
only in a specific silo of your data ecosystem. Good anomaly detection will also tune
algorithms to reduce white noise and false positives, leveraging precision and recall.
We went into detail about how to build your own anomaly detectors and data quality
monitors in Chapter 4, but let’s recap and walk through a high-level view here.
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Figure 6-4. Anomaly detection within the data reliability life cycle

Over the years, we’ve found that there is a predilection for data teams to rely on
anomaly detection alone to “solve” incident management. There are a few issues with
this statement. First and foremost, incident management is never truly “solved.” As
long as companies continue to leverage data to power their digital services and drive
decision making, data incidents will continue to happen. Pipelines will break, schema
changes will disrupt downstream dashboards, and null values will crop up at the least
opportune times. Second, relying on anomaly detection alone is a single point of
failure; incident detection is a multilayered process that relies not just on the ability
to detect incidents, but also respond to, resolve, and prevent them in an iterative and
repeatable way.

Don’t get us wrong: anomaly detection is an extremely important part of the data
reliability life cycle and a key tool for the “detect” stage of your data incident man‐
agement protocol. But relying on anomaly detection without the additional support
of testing, versioning, observability, lineage, and the various other technologies and
processes available to automation-inclined data teams is problematic at best and a
recipe for frustration and long data downtime recovery times at worst. Anomaly
detection is a tool, not a silver bullet.

To articulate our point, imagine for a moment that you’re a car mechanic. A sedan
drives into your garage, engine sputtering. “What’s wrong?” you ask, lifting your eyes
from your desk. The driver rolls down their window. “Something’s wrong with my
car,” they respond. Very descriptive, you think, wiping the sweat from your brow.
Your sarcasm makes you chuckle. “Something is wrong with my car,” they repeat, this
time without the contraction.
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After a few hours of poking around, you figure out that the car has a loose spark
plug. Sure, their lack of information isn’t the end of the world, but imagine how
much quicker this process could have been if they had been proactive and said, “I
have trouble getting my engine to start, my car won’t accelerate, and my battery keeps
dying.”

What does this story have to do with data? Well, on the surface, not much. But we
can learn a thing or two from our friendly mechanic when it comes to not relying on
anomaly detection alone to resolve data quality issues.

Nowadays, most data teams employ some measure of anomaly detection to solve for
data quality. Anomaly detection is great for organizations that are looking to identify
when the key pillars of data health (i.e., volume, freshness, schema, and distribution)
are not meeting an organization’s expectations in production. Moreover, anomaly
detection is extremely valuable to businesses when implemented end to end (such as
across your data warehouse, lake, ETL, and BI tools), as opposed to only living within
one or two layers of your data platform.

As most data teams are learning, however, anomaly detection alone is not cutting it
when it comes to building the trust, accountability, and transparency demanded by
insight-driven organizations. Recently, Barr was having (virtual) coffee with the VP of
Analytics at a Fortune 500 software company who summarized this problem almost
too perfectly:

I want things that are tied to impact so I can take action on them. Anomaly detection
is necessary as a starting point, but we need to do a lot more work to understand the
root cause and assess the impact. Knowing there’s a problem is great, but it’s really hard
to understand what to do with it. Instead, we need to understand exactly what broke,
who’s impacted by it, why and where it broke, and what the root cause might be.

Here’s where the rest of the data incident management life cycle comes in.

Response
Good incident response starts—and ends—with effective communication, and fortu‐
nately, much of it can be prepared in advance and automated through a workflow via
PagerDuty and Slack when the time comes. Data teams should spend time writing
runbooks and playbooks that walk through standard incident response. While run‐
books give you instructions for how to use different services and common issues they
encounter, playbooks provide step-by-step processes for handling incidents. Both
will provide links to code, documentation, and other materials that can help teams
understand what to do when critical pipelines break. One important part of a good
runbook? Delegating roles when outages or breakages occur. (Read on for more best
practices regarding role delegation during incident management.)
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In traditional site reliability engineering programs, there is an on-call process that
delegates specific roles depending on service, often segmented by hour, day, or week.
In addition to an “incident responder,” there is often an “incident commander”
responsible for assigning tasks and synthesizing information as the responder and
other stakeholders troubleshoot the issue. The incident commander is also tasked
with spearheading communication to upstream and downstream consumers that
might be affected, i.e., those that work with the data products powered by the broken
pipeline.

With business context, metadata is a powerful tool for understanding which teams
are affected by a given data downtime incident; coupled with end-to-end lineage, as
depicted in Figure 6-5, communicating the upstream and downstream relationships
between these affected assets can be a painless and quick process, saving teams hours
of manual graphing and ensuring the appropriate parties can be notified before bad
data affects the business.

Figure 6-5. End-to-end lineage is a valuable tool for understanding upstream and
downstream dependencies when data pipelines break

Once data downtime occurs, it’s important to communicate its impact to upstream
and downstream consumers, both those that work with the data and those that use it.
With the right approach, much of this can be baked into automated workflows using
PagerDuty, Slack, and other communication tools.

Root Cause Analysis
In theory, RCA sounds as easy as running a few SQL queries to segment the data,
but in practice, this process can be quite challenging. Incidents can manifest in
nonobvious ways across an entire pipeline and impact multiple, sometimes hundreds,
of tables.

For instance, one common cause of poor data quality is freshness–i.e., when data
is unusually out-of-date. Such an incident can be a result of any number of causes,
including a job stuck in a queue, a timeout, a partner that did not deliver its data
set timely, an error, or an accidental scheduling change that removed jobs from your
directed acyclic graph (DAG).
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In our experience, we’ve found that most data problems can be attributed to one or
more of these events:

• An unexpected change in the data feeding into the job, pipeline or system, as•
depicted in Figure 6-6

• A change in the logic (ETL, SQL, Spark jobs, etc.) transforming the data•
• An operational issue, such as runtime errors, permission issues, infrastructure•

failures, schedule changes, etc.

Figure 6-6. Schema change alert delivered via a data observability platform

Quickly pinpointing the issue at hand requires not just the proper tooling but also
a holistic approach that considers how and why each of these three sources could
break. It’s also important to note that incidents rarely have a single root cause; rather,
they’re often a confluence of “causes” that can be turned into valuable learnings for
process optimization and technical fine-tuning.

As software (and data) systems become increasingly complex, it becomes more and
more difficult to pinpoint one exact cause (or root) of an outage or incident. Ama‐
zon’s five whys approach provides a helpful framework through which to contextual‐
ize RCA:

• Identify the problem.•
• Ask why the problem happened, and record the reason.•
• Decide if the reason is the root cause.•

— Could the reason have been prevented?—
— Could the reason have been detected before it happened?—
— If the reason is human error, why was it possible?—

• Repeat the process using the reason as the problem. Stop when you are confident•
that you have found the root causes.
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There is very rarely a single reason why your system broke. As data engineers work
to reduce manual toil, smarter processes, tests, data freshness checks, and other solu‐
tions should be able to identify the issue before it surfaces downstream, as depicted
via the data observability schema change alert in Figure 6-6. When they don’t, it’s a
strong indication that these fail-safes are inadequate.

To get started, we’ve identified the five steps data teams must take when conducting
RCA on their data pipelines:

1. Look at your lineage. To understand what’s broken, you need to find the most1.
upstream nodes of your system that exhibit the issue—that’s where things started
and that’s where the answer lies. If you’re lucky, the root of all evil occurs in the
dashboard in question and you will quickly identify the problem.

2. Look at the code. A peek into the logic that created the table, or even the particu‐2.
lar field or fields that are impacting the incident, will help you come up with
plausible hypotheses about what’s wrong.

3. Look at your data. After steps 1 and 2, it’s time to look at the data in the table3.
more closely for hints of what might be wrong. One promising approach here is
to explore how other fields in a table with anomalous records may provide clues
as to where the data anomaly is occurring (Figure 6-6).

4. Look at your operational environment. Many data issues are a direct result of the4.
operational environment that runs your ETL/ELT jobs. A look at logs and error
traces from your ETL engines can provide some answers.

5. Leverage your peers. More often than not, your teammates will have some knowl‐5.
edge of or insights into the data causing you problems. Never hurts to ask!

Let’s look at this in practice. In the following sections, we’ll walk through the five
steps necessary to conduct root cause analysis for a broken customer dashboard.

Step 1: Look at your lineage
You know the customer dashboard is broken. You also know this dashboard is built
on top of a long chain of transformations, feeding off several (or maybe several
dozen) data sources. To understand what’s broken, you will need to find the most
upstream nodes of your system that exhibit the issue—that’s where things started and
that’s where the answer lies. If you’re lucky, the root of all evil occurs in the dashboard
in question and you will quickly identify the problem. On a bad day, the problem
happened in one of the most upstream sources of your system, many transformation
steps away from the broken dashboard—which would require a long day of tracing
the issue up the DAG, and then backfilling all broken data.
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Make sure everyone (data engineers, data analysts, analytics engi‐
neers, and data scientists) troubleshooting data problems has
access to the most up-to-date lineage. To be useful, your lineage
should include data products like BI reports, ML models, or
reverse-ETL sinks. Field-level lineage is a plus (Figure 6-7). Often
automated, field-level lineage is an important investment for data
engineering teams seeking to easily and quickly understand which
data assets are broken and how these breakages have impacted
downstream data products and dashboards.

Figure 6-7. Lineage visualization for root cause analysis

Step 2: Look at the code
You found the most upstream table that’s experiencing the issue. Congratulations,
you’re one step closer to understanding the root cause! Now, you need to understand
how that particular table was generated by your ETL or ELT processes (Figure 6-8).

A peek into the logic that created the table, or even the particular field or fields that
are impacting the incident, as well as the metadata associated with that table, will help
you come up with plausible hypotheses about what’s wrong.

Ask yourself:

• What code most recently updated the table? And when?•
• How are the relevant fields calculated? What could possibly have created the•

“wrong” data given this logic?
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• Have there been any recent changes to the logic, potentially introducing an issue?•
• Have there been any ad hoc writes to the table? Has it been backfilled recently?•

Figure 6-8. Looking at the code and how the query was generated during root cause
analysis

Make sure everyone troubleshooting data problems can quickly
trace back tables to the logic (SQL, Spark, or otherwise) that cre‐
ated them (Figure 6-9). To get to the bottom of things, you need
to know not only what the code currently looks like, but also what
it looked like when the table was last updated and ideally when
that happened. While we all try to avoid them, backfills and ad hoc
writes should be accounted for.
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Figure 6-9. Looking at the query itself after assessing the lineage and metadata for the
data asset in question

Step 3: Look at your data
You now know how the data was calculated and how that might have contributed to
the incident. If you still haven’t spotted the root cause, it’s time to look at the data in
the table more closely for hints of what might be wrong.

Ask yourself:

• Is the data wrong for all records? For some records?•
• Is the data wrong for a particular time period?•
• Is the data wrong for a particular subset or segment of the data, e.g., only your•

Android users or only orders from France?
• Are there new segments of the data (that your code doesn’t account for yet) or•

missing segments (that your code relies on)?
• Has the schema changed recently in a way that might explain the problem?•
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• Have your numbers changed from dollars to cents? Your timestamps from PST to•
EST?

• And the list goes on.•

One promising approach here is to explore how other fields in a table with anom‐
alous records may provide clues as to where the data anomaly is occurring (Fig‐
ure 6-10). For example, Lior’s team recently surfaced that an important Users table
for one of our customers experienced a jump in the null rate for the user_interests
field. We looked at the source field (i.e., Twitter, Facebook, or Google) to see if a
relational pattern could point us in the right direction. This type of analysis provides
two key insights; both would explain the increase of null records, but each ultimately
drives very different actions.

Figure 6-10. Generating a visualization of the statistical prevalence of anomalies like
null values relative to other issues in the data can help pinpoint the root cause of a data
problem

The proportion of records associated with source="Twitter" increased significantly,
which normally has more records where user_interests="null" than other sources.
The proportion of records where user_interests="null" increased for records with
source="Twitter", while the proportion of records with source="Twitter" did not
change.

For the first insight, we may just be experiencing a seasonality issue or the result of an
effective marketing campaign. For the second insight, we likely have a data processing
issue with user data coming from our Twitter source and can focus our investigation
on the data coming from Twitter.

Make sure everyone troubleshooting data problems can handily
slice and dice data to find how the issue correlates with various
segments, time periods, and other cuts of the data. Visibility into
recent changes to the data or its schema is a lifesaver. Keep in mind
that while these statistical approaches are helpful, they are just one
piece of the larger RCA process.
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Step 4: Look at your operational environment
OK, the data checks out. What now? Many data issues are a direct result of the
operational environment that runs your ETL/ELT jobs (as depicted in Figure 6-11).
One powerful open source tool for handling these runs is dbt.

Figure 6-11. Taking a peek at the operational environment and associated ETL/ELT job
runs, often one of the final steps in root cause analysis

A look at logs and error traces from your ETL engines can help answer some of the
following questions:

• Have relevant jobs had any errors?•
• Were there unusual delays in starting jobs?•
• Have any long running queries or low performing jobs caused delays?•
• Have there been any permissions, networking, or infrastructure issues impacting•

execution? Have there been any changes made to these recently?
• Have there been any changes to the job schedule to accidentally drop a job or•

misplace it in the dependency tree?
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Make sure everyone troubleshooting data problems understands
how ETL jobs are performed and have access to the relevant logs
and scheduling configuration. Airflow, an open source data orches‐
tration tool, allows teams to dive into job logs to better understand
what might have gone wrong in the process (Figure 6-12). Under‐
standing infrastructure, security, and networking can help as well.

Figure 6-12. Using Airflow to analyze job logs can help troubleshoot data problems

Step 5: Leverage your peers
You did everything you can (or maybe you’re looking for shortcuts)—what’s next?
You need to get guidance from your data team. Before you start bombarding Slack
with questions, ask yourself:

• What similar issues have happened in the past with this data set? What has the•
team done to investigate and then resolve those issues?

• Who owns the data set that’s experiencing the issue right now? Who can I reach•
out to for more context?

• Who uses the data set that’s experiencing the issue right now? Who can I reach•
out to for more context?

Make sure everyone troubleshooting data problems has access to
metadata about data set ownership and usage, so they know who to
ask. A history of data incidents with helpful documentation can be
useful as well.
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Root cause analysis can be a powerful tool when it comes to addressing—and
preventing—data quality issues in near real time, but it’s important to remember
a broken pipeline can rarely be traced to one specific issue. Like any distributed
architecture, your data ecosystem is composed of a series of complex logic, events,
and of course, pipelines that, like a science experiment, react in a multitude of ways.

That being said, we’ve found that this five-step approach can help turn root cause
analysis from a stress-inducing wake-up call into a scalable and sustainable practice
for your entire data organization. And in the process, you’ll give that one data
engineer (you know, the human data pipeline encyclopedia on your data engineering
team) a bit of a break.

Resolution
Once you identify that something has gone awry and understand its initial impact,
the next step (sometimes even before root cause analysis) is to fix the issue and
communicate next steps to the proper stakeholders. This could be as easy as pausing
your data pipelines or models and rerunning them, but since data can break for
millions of reasons, this often involves a fair amount of troubleshooting.

In many cases, there may be an “initial resolution” (i.e., pause or “circuit break” a
pipeline—recall we looked at circuit breaking in Chapter 3) and a “final resolution,”
in other words, implement a more permanent solution that addresses the underlying
cause of the data downtime incident. Throughout this process, it’s important to
communicate the status of the incident in a dedicated Slack channel, email chain,
Wiki site, Google Document, JIRA workflow, or other collaboration tool that makes it
easy for various stakeholders to keep track of the current state of affairs.

After the incident is fixed, whether through changes to the code, data, or operational
environment, teams should communicate next steps to the affected parties and in the
coming days, schedule a postmortem.

Blameless Postmortem
Our friend, a site reliability engineer with over a decade of experience firefighting
outages at Box, Slack, and other Silicon Valley companies, told us that I couldn’t write
a chapter about incident management without making this abundantly clear: “For
every incident, the system is what’s at fault, not the person who wrote the code. Good
systems are built to be fault and human tolerant. It’s the system’s job to allow you to
make mistakes.”

When it comes to data reliability and DataOps, the same ethos rings true. Pipelines
should be fault-tolerant, with processes and frameworks in place to account for both
known unknowns and unknown unknowns in your data pipeline.
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Regardless of the type of incident that occurred or what caused it, the data engineer‐
ing team should conduct a thorough, cross-functional postmortem after they’ve fixed
the problem and conducted root cause analysis. A postmortem (which, literally,
means after death) is a meeting, and corresponding document, created after an
incident is resolved that highlights the key information, sequence of events, affiliated
parties, associated technologies, and other relevant facts about the issue. A postmor‐
tem is useful not just as a way to communicate the effects and outcome of an incident
but also to chronicle what happened so you can act more proactively to prevent
similar issues from happening again.

Here are a few best practices for conducting great postmortems on your data
pipelines:

Frame everything as a learning experience.
To be constructive, postmortems must be blameless (or if not, blame aware). It’s
natural to try and assign “blame” for incidents, but it’s rarely helpful when it
comes to instilling trust in your colleagues or fostering a collaborative culture.
By reframing this experience around the goal of “learning and improvement,”
it’s easier to proactively take the organizational (creating better workflows and
processes) and technological steps (making a case for investing in new tools)
necessary to eliminate data downtime.

Use this as an opportunity to assess your readiness for future incidents.
Update runbooks and make adjustments to your monitoring, alerting, and
workflow management tools. In short, runbooks are detailed how-to guides
for completing a common task or procedure widely used by DevOps and IT
teams. When applied to data, runbooks might include information about who
owns what tooling or data assets at your company, as well as when jobs are
regularly run or dashboards updated. As your data ecosystem evolves (adding
new, third-party data sources, APIs, and even consumers), this step will become
critical when it comes to incident prevention.

Document each postmortem and share with the broader data team.
As in software engineering, documenting what went wrong, how systems were
affected, and what the root cause is often comes as an afterthought. But docu‐
mentation is just as important as any other step in the incident management
process because it prevents knowledge gaps from accruing if engineers with tacit
knowledge leave the team or aren’t available to help.

Revisit service-level agreements (SLAs).
This isn’t the first (or last!) time we’ll be discussing SLAs in this book. Broadly
speaking, SLAs are a method many companies use to define and measure the
level of service a given vendor, product, or internal team will deliver—as well as
potential remedies if they fail. As data systems mature or change over time, it’s
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important to consistently revisit your SLAs, service-level indicators (SLIs), and
service-level objectives (SLOs). SLAs that made sense six months ago probably
don’t any more; your team should be the first to know and communicate these
changes with downstream consumers.

At the end of the day, postmortems are just as important for data teams as they are
for software engineers. As our field continues to advance (we’re in the decade of data,
after all), understanding how and why data downtime occurs is the only way we can
make continued improvements to the resiliency of our systems and processes.

Incident Response and Mitigation
Understanding how to instrument an effective incident management workflow is
the first step when it comes to preventing data anomalies and other data downtime
issues, but it only scratches the surface of what it takes to deliver comprehensive data
reliability. After all, testing only covers your “known unknown” data quality issues;
what about your “unknown unknowns”? Testing, a data engineer’s first line of defense
against data downtime, which usually accounts only for about 20% of “unknown
unknown” issues. Without proactive incident prevention measures in place, however,
the other 80% are often identified through disgruntled stakeholders downstream
messaging them about “broken reports and dashboards” (Figure 6-13).

Figure 6-13. Testing accounts only for about 20% of “unknown unknown” issues; the rest
may be identified by colleagues without proactive incident prevention measures

It helps to think of the first two sections of the data reliability life cycle (Detect and
Resolve in Figure 6-2) as the “reactive” stages of this process, and Prevent as the “pro‐
active” stage, ideally reducing the amount of time spent firefighting. Now that you’ve
identified, root-caused, resolved, and conducted a postmortem on your incident, the
next step is to prevent similar incidents from occurring again by implementing a data
reliability stack that layers testing, CI/CD, discovery, and observability for a more
proactive approach to incident management, as depicted by Figure 6-14.
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Figure 6-14. Proactive approach to data reliability that incorporates testing, CI/CD,
discovery, and observability, necessary components of managing and preventing data
incidents

The best part? These four elements are applicable to nearly any data architecture.
In fact, layering these discrete processes will enable you to build more resilient data
pipelines regardless of whether you’re building a centralized, distributed, or hybrid
data stack.

Establishing a Routine of Incident Management
Too often, data engineers are burdened not just with fixing data issues but also with
prioritizing what to fix, how to fix it, and communicating status as the incident
evolves. For many companies, data team responsibilities underlying this firefighting
are often ambiguous, especially when it relates to answering the question “Who is
managing this incident?” Sure, data reliability SLAs should be managed by entire
teams, but when the rubber hits the road, we need a dedicated person to help call the
shots and make sure SLAs are met should data break. In software engineering, this
role is often defined as an incident commander, and its core responsibilities include:

• Flagging incidents to the broader data team and stakeholders early and often•
• Maintaining a working record of affected data assets or anomalies•
• Coordinating efforts and assigning responsibilities for a given incident•
• Circulating runbooks and playbooks as necessary•
• Assessing the severity and impact of the incident•
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Data teams should assign rotating incident commanders on a weekly or daily basis, or
for specific data sets owned by specific functional teams. Establishing a good, repeat‐
able practice of incident management (that delegates clear incident commanders) is
primarily a cultural process, but investing in automation and maintaining a constant
check on data health gets you much of the way there. The rest is education.

Here are four key steps every incident manager must take when triaging and assess‐
ing the severity of a data issue.

Step 1: Route notifications to the appropriate team members
When responding to data incidents, the way your data organization is structured will
impact your incident management workflow, and as a result, the incident commander
process. If you sit on an embedded data team, it’s much easier to delegate incident
response (i.e., the marketing data and analytics team owns all marketing analytics
pipelines), as depicted in Figure 6-15. Team members are spread across different
business units and data team members in each domain are responsible for fielding
incidents for their stakeholders. In this structure, data team members typically report
to the head of a business unit or in some cases the chief data officer (CDO) or head of
data.

Figure 6-15. Decentralized data team structure
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If you sit on a centralized data team (Figure 6-16), fielding and routing these incident
alerts to the appropriate owners requires a bit more foresight and planning. A cen‐
tralized data team reports directly to the CDO or head of data and simultaneously
fields queries and incidents from data corresponding to different business units.
Unless otherwise specified, several business units are its stakeholders. There are pros
and cons to both data team structures when it comes to ensuring data reliability, but
more on this in Chapter 8.

Figure 6-16. Centralized data team structure

Either way, we suggest you set up dedicated Slack channels for data pipelines owned
and maintained by specific members of your data team, inviting relevant stakeholders
so they’re in the know if critical data they rely on is down. Many teams we work with
set up PagerDuty or Opsgenie workflows to ensure that no bases are left uncovered.
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Step 2: Assess the severity of the incident
Once the pipeline owner is notified that something is wrong with the data, the
first step they should take is to assess the severity of the incident. Because data
ecosystems are constantly evolving, there are an abundance of changes that can be
introduced into your data pipelines at any given time. While some are harmless (i.e.,
expected schema change), some are much more lethal, causing impact to downstream
stakeholders (i.e., rows in a critical table dropping from 10,000 to 1,000).

Once your team starts troubleshooting the issue, it is a best practice to tag the issue
based on its status, whether fixed, expected, investigating, no action needed, or false
positive. Tagging the issue helps users with assessing the severity of the incident
and also plays a key role in communicating the updates to relevant stakeholders in
channels that are specific to the data that was affected so they can take appropriate
action.

What if a data asset breaks that isn’t important to your company? In fact, what if this
data is deprecated?

Phantom data haunts even the best data teams, and we can’t tell you how many times
we have been on the receiving end of an alert for a data issue that, after all of the
incident resolution was said and done, did not matter to the business; in fact, the
data hadn’t been used in months! So, instead of tackling high priority problems, we
spent hours or even days firefighting broken data only to discover we were wasting
our time.

So, how do you determine what data matters most to your organization? One increas‐
ingly common way teams have been able to discover their most critical data sets is
by utilizing tools that help them visualize their lineage and understand how data
is being used by the business (Figure 6-17). Operational analytics help data teams
understand how data is being used across the company, what data pipelines are more
susceptible to data downtime, how much cloud storage costs per data asset, and other
valuable insights about data health. This allows them to have visibility into how all
of their data sets are related when an incident does arise, and to be able to trace
data ownership to alert the right people that might be affected by the issue. In many
respects, data observability solutions fill these gaps by providing rich lineage and a
way to explore the operational analytics of your data platform.

Once your team can figure out if the incident affected critical data, they will have a
better understanding of the severity of the downtime. If it affects data that is directly
powering financial insights, it’s likely a super high priority issue; if it’s not, it’s time to
move on.
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Figure 6-17. Visualization tools help data teams understand the use of data in the
business

Step 3: Communicate status updates as often as possible
Good communication goes a long way in the heat of responding to a data incident,
which is why we have already discussed how and why data teams should create a
runbook that walks step by step through how to handle a given type of incident.
Following a runbook is crucial to maintain correct lines of responsibility and reduce
duplication of effort.

Once you have “who does what” down, your team can then start updating a status
page where stakeholders can follow along for updates in real time. A central status
page also allows team members to see what others are working on and the current
status of those incidents.

In talks with fellow data leaders, we have seen incident command delegation handled
in one of two ways:

Assign a team member to be on call to handle any incidents during a given time period.
While on call, that person is responsible for handling all types of data incidents.
Some teams have someone full time that does this for all incidents their team
manages, while others have a schedule in place that rotates team members every
week to cover.

Team members are responsible for covering certain tables.
This is the most common structure we see. With this structure, team members
handle all incidents related to their assigned tables or reports while doing their
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normal daily activities. Table assignment is generally aligned based on the data or
pipelines a given member works with most closely.

Either approach works; it’s just a matter of figuring out what works best for your team
structure, resources, and priorities.

Step 4: Define and align on data SLOs and SLIs to prevent future incidents and downtime
While the incident commander is not accountable for setting SLOs, they are often
held responsible for meeting them. Simply put, SLOs are a method many companies
use to define and measure the level of service a given vendor, product, or internal
team will deliver—as well as potential remedies if they fail to deliver.

For example, Slack’s customer-facing SLA promises 99.99% uptime every fiscal quar‐
ter, and no more than 10 hours of scheduled downtime, for customers on Plus plans
and above. If they fall short, affected customers will receive service credits on their
accounts for future use.

Your SLIs, quantitative measures of your SLAs, will depend on your specific use case,
but here are a few metrics used to quantify incident response and data quality, as
previously discussed in Chapter 5:

The number of data incidents for a particular data asset (N)
Although this may be beyond your control, given that you likely rely on external
data sources, it’s still an important driver of data downtime and usually worth
measuring.

Time to detection (TTD)
When an issue arises, this metric quantifies how quickly your team is alerted.
If you don’t have proper detection and alerting methods in place, this could be
measured in weeks or even months. “Silent errors” made by bad data can result in
costly decisions, with repercussions for both your company and your customers.

Time to resolution (TTR)
When your team is alerted to an issue, this measures how quickly you were able
to resolve it.

By keeping track of these, data teams can work to reduce TTD and TTR, and in turn,
build more reliable data systems.

Why Data Incident Commanders Matter
When it comes to responding to data incidents, time is of the essence, and as the
incident commander, time is both your enemy and your best friend. In an ideal
world, companies want data issues to be resolved as quickly as possible. However,
that is not always the case and some teams often find themselves investigating data
issues more frequently than they would like. In fact, while data teams invest a large
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amount of their time writing and updating custom data tests, they still experience
broken pipelines. An incident commander, armed with the right processes, a pinch of
automation, and organizational support, can work wonders for the reliability of your
data pipelines.

Case Study: Data Incident Management at PagerDuty
PagerDuty helps over 16,800 businesses across 90 countries hit their uptime SLAs
through their digital operations management platform, powering on-call manage‐
ment, event intelligence, analytics, and incident response. So how does PagerDuty
approach data-specific incident management within their own organization? We sat
down with Manu Raj, Senior Director of Data Platform and Analytics (aptly named
the DataDuty team), to learn more about his team’s strategy for preventing “data
downtime” and achieving more reliable data pipelines at scale.

The DataOps Landscape at PagerDuty
PagerDuty’s business data platform team has a clear mandate: to provide its custom‐
ers with trusted data anytime, anywhere, that is easy to understand and enables
efficient decision making. “The most critical part of that is data governance, data
quality, security, and infrastructure operations,” said Manu. The team’s customers
include “pretty much all the departments in PagerDuty, including finance, executives,
customer success, engineering, sales, and marketing.”

In terms of the platform itself, the DataDuty team uses PagerDuty—“we absolutely
have to eat our own dog food”—as well as Snowflake for data warehousing, Fivetran,
Segment, Mulesoft, AWS, Monte Carlo, and Databricks. The team also recently inte‐
grated ML-powered data observability, giving them the ability to fully understand the
health of data systems by monitoring, tracking, and troubleshooting data incidents at
each stage of the pipeline.

Data Challenges at PagerDuty
Like most SaaS companies, PagerDuty uses a lot of SaaS cloud applications (think
Salesforce, Marketo, and Netsuite) and ingests a lot of internal and third-party data.
Structured data, unstructured data, data coming in at different cadences, and real-
time batches across different granularities are all part of the overall data ecosystem at
PagerDuty.

The DataDuty team’s primary challenge is making sure the quality of the data meets
end-user expectations by enabling them to make faster decisions based on accurate
data. “The dynamic nature of the business is what drives data challenges,” said Manu.
“The business data needs are changing continuously, quarter by quarter, and accurate
decisions have to be made quickly. Everything is data driven, so we have to be agile.”
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Using DevOps Best Practices to Scale Data Incident Management
To fulfill their ambitious mandate, the DataDuty team implemented a number of
DevOps incident management best practices to their data pipelines.

Best practice #1: Ensure your incident management covers the entire data life cycle
At PagerDuty, incident management for data engineers falls under what they call data
operations, which is an extension of DevOps. It includes tracking, responding, and
triaging for both data and pipeline issues. Once the data is in the warehouse and all
the way until it appears in customer-facing reports, there is potential for various types
of data downtime, from missing data to errant models. The DataDuty team monitors
for data quality issues including anomalies, freshness, schema changes, metric trends,
and more.

Data observability is especially important to monitor and ensure data quality in your
data warehouse. You could intervene at a data pipeline level through custom data
quality checks via ETL tools, but over time the management of the logic, scripts, and
other elements of your data ecosystem becomes cumbersome. Moreover, as Manu
notes, issues with data trends cannot be identified by pipeline quality checks.

Best practice #2: Incident management should include noise suppression
Data noise is a major issue when it comes to implementing data monitoring and
anomaly detection, and at the enterprise scale, you will have a variety of “alerts”
coming in daily, many of which will indicate changes in your data but not necessarily
net-new “issues.” One can even judge the operability of an alerting system on its
signal-to-noise ratio, striving to bring this ratio as close to zero as possible.

Data teams need to be able to triage between customers and business owners and
respond to these alerts in a timely fashion while delegating clear ownership over
the data products themselves. Manu’s DataDuty team uses PagerDuty to identify
similar data incident alerts, suppressing multiple alerts for one incident that contains
multiple data issues. This way, his team members aren’t overwhelmed with alerts and
can focus on fixing the root cause(s) of the data issue at hand.

Best practice #3: Group data assets and incidents to intelligently route alerts
According to Manu, data observability is the first step before any data incident
management steps, including incident response and escalation, can happen. After all,
“my data is not refreshed” is an entirely different issue compared to an abnormal
trend or metric. Teams need to be able to identify that this data issue exists over time.

When the DataDuty team began to integrate data observability with PagerDuty
across their own data platform, they followed best practices from DataOps, including
grouping together data issues to enable easier routing and alerting based on that
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360-degree view. By grouping similar data pipeline issues with data observability and
implementing triaging and alerting on top of this workflow, they were able to ensure
that these alerts were properly routed to the DataDuty team.

Since they use Airflow for scheduling, the team receives Airflow alerts via PagerDuty,
too. Additionally, by identifying the company’s most critical data assets, including
executive-level reporting and financial reporting-level data, through data observabil‐
ity, they can ensure that alerts related to those assets come via PagerDuty with an
escalation policy and automatically go to additional stakeholders and the Business
Intelligence team.

By monitoring and alerting on the health of BI metrics, such as the number of
customers, customer churn rate, the number of accounts, and the number of data
incidents, Manu and his team can gain a better sense of the reliability of their data.
These alerts are then routed to the business intelligence team so they can monitor
and take action as needed.

With these best practices, PagerDuty’s platform team lives up to their mandate by
approaching data incident management from a DevOps perspective—which aligns
perfectly with the principles of data observability.

Summary
When it comes to fixing broken data pipelines at scale, data teams should invest in
repeatable incident management, root cause analysis, and data reliability workflows.
To recap, we suggest taking these four important steps:

• Roll out an incident management program for critical data pipelines.•
• Leverage anomaly detection as part of a larger incident detection strategy.•
• Conduct thorough root cause analysis and impact analysis when incidents occur.•
• Tackle data quality proactively through testing, CI/CD, data observability, and•

data.

Without these steps, data engineers and analysts will have a challenging time han‐
dling data quality issues in near real time, particularly as data systems evolve and
companies ingest more and more data. In Chapter 7, we’ll take incident management
and resolution a step further by walking through how to build your own lineage
system—a critical tool for resolution and prevention in your quest against data
downtime.
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CHAPTER 7

Building End-to-End Lineage

On July 27, 2004, a five-year-old startup by the name of Google was faced with a
serious problem: their application was down.

For several hours, users across the United States, France, and Great Britain were
unable to access the popular search engine. The then-700-person company and their
millions of users were left in the dark as engineers struggled to fix the problem
and discover the root cause of the issue. By midday, a tedious and intensive process
conducted by a few panicked engineers determined that the MyDoom virus was to
blame.

In 2021, an outage of that length and scale was considered rather anomalous, but 15
years ago, these types of software outages weren’t uncommon. After leading teams
through several of these experiences over the years, Benjamin Treynor Sloss, a Google
engineering manager at the time, determined there had to be a better way to manage
and prevent these dizzying fire drills, not just at Google but across the industry.

Inspired by his early career building data and IT infrastructure, Sloss codified his
learnings as an entirely new discipline—site reliability engineering (SRE)—dedicated
to optimizing the maintenance and operations of software systems (like Google’s
search engine) with reliability in mind.

According to Sloss and others paving the way forward for the discipline, SRE was
about automating away the need to worry about edge cases and unknown unknowns
(like buggy code, server failures, and viruses). Ultimately, Sloss and his team wanted
a way for engineers to automate away the manual toil of maintaining the company’s
rapidly growing codebase while ensuring that their bases were covered when systems
broke.

“SRE is a way of thinking and approaching production. Most engineers developing a
system can also be an SRE for that system,” he said. “The question is: can they take
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a complex, maybe not well-defined problem and come up with a scalable, technically
reasonable solution?” If Google had the processes and systems in place to anticipate
and prevent downstream issues, not only could outages be easily fixed with minimal
impact on users, but they could even be prevented.

Nearly 20 years later, data teams are faced with a similar situation. Like software, data
systems are becoming increasingly complex, with multiple upstream and downstream
dependencies. Ten or even five years ago, it was normal and accepted to manage
your data in silos, but now, teams and even entire companies are working with data,
facilitating a more collaborative and fault-resistant approach to data management.

Over the past few years, we’ve witnessed the widespread adoption of software engi‐
neering best practices by data engineering and analytics teams to address this gap,
from adopting open source tools like dbt and Apache Airflow for easier data transfor‐
mation and orchestration to cloud-based data warehouses and lakes like Snowflake
and Databricks.

Fundamentally, this shift toward agile principles relates to how we conceptualize,
design, build, and maintain data systems. Long gone are the days of siloed dashboards
and reports that are generated once, rarely used, and never updated; now, to be useful
at scale, data must also be productized, maintained, and managed for consumption by
end users across the company. And in order to do this reliably, we need some sort of
map connecting the dots between disparate systems—in other words, lineage.

And in order for data to be treated like a software product, it has to be as reliable
as one, too. In this chapter, we’ll walk through how to build one of the most critical
features of this workflow (lineage!) and review a real-world case study from a data
platform product manager.

Building End-to-End Field-Level Lineage
for Modern Data Systems
Data engineers are no strangers to the schema changes, null values, and distribution
errors that plague even the healthiest data systems. In fact, as data pipelines become
increasingly complex and teams adopt more distributed architectures, such data
quality issues only multiply.

While data testing is an important first step when it comes to preventing these
issues, data lineage has emerged as a critical component of the data pipeline root
cause and impact analysis workflow. Akin to how site reliability engineers or DevOps
practitioners might leverage commands like git blame to understand where software
broke in the context of larger systems, data lineage gives data engineering and analyt‐
ics teams visibility into the health of their data at each stage in its life cycle, from
ingestion in the warehouse or lake to eventual analysis in the business intelligence
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layer. As part of a larger approach to data reliability, lineage is critical when it comes
to understanding the ins and outs of broken data.

Data lineage refers to a map of the data set’s journey throughout its life cycle, from
ingestion in the warehouse or lake to visualization in the analytics layer. In short,
data lineage is a record of how data got from point A to point B. In the context of
data pipelines, lineage traces the relationships across and between upstream source
systems (i.e., data warehouses and data lakes) and downstream dependencies (e.g.,
analytics reports and dashboards), providing a holistic view of data as it evolves.
As depicted in Figure 7-1, modern lineage tools also highlight the effects of system
changes on associated assets, down to individual columns.

Figure 7-1. Table-level lineage with upstream and downstream connections between
objects in the data warehouse and tables

Due to the complexity of even the most basic SQL queries, however, building data
lineage from scratch is no easy feat. Historically, lineage is parsed manually, requiring
an almost encyclopedic knowledge of a company’s data environment and how each
component interacts with each other.

Adding further complexity to the equation, keeping manual lineage up-to-date
becomes more challenging as companies ingest more data, layer on new solutions,
and make data analysis more accessible to additional users through codeless analytics
tools and other reporting software. In the next few sections, we will walk through
what it takes to build field-level lineage, focusing on the backend architecture, key
use cases, and best practices for data engineering teams planning to build field-level
lineage for their own data systems.
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Basic Lineage Requirements
For the past several years, data teams across industries have relied on table-level
lineage to improve their data reliability workflows by generating a map of upstream
and downstream dependencies. While useful at the macro level, table-level lineage
doesn’t provide teams with the granularity they need to understand exactly why or
how their data pipelines break.

As with building any new product functionality, the first step is to understand
user requirements, and from there, scope out what could actually be delivered in a
reasonable timeframe. Here are a few key features to consider when building lineage:

Fast time to value
Data teams want to quickly understand the impact of code, operational, and
data changes on downstream fields and reports. You will need to abstract the
relationships between data objects down to the field level; the table level may be
too broad for quick remediation.

Secure architecture
Generally speaking, you don’t want lineage to access user data or personally
identifiable information (PII) directly. We recommend an approach that accesses
metadata, logs, and queries but keeps the data in the customer’s environment.

Automation
Field-level lineage products often take a manual approach, which puts more
responsibility in the lap of the customer; we advocate for investing in an automa‐
ted approach that updates data assets based on changes in the data life cycle.

Integration with popular data tools
We needed a knowledge graph that could automatically generate nodes across an
entire data pipeline, from ingestion in the data warehouse or lake down to the
business intelligence or analytics layer. Many data teams require integration with
data warehouse and lake technologies like Snowflake, Redshift, Databricks, and
Apache Spark; transformation tools like dbt, Apache Airflow, and Prefect; and
business intelligence tools like Looker, Tableau, and Mode, which requires that
your solution account for every possible join and connection between every table
in their data system.

Extraction of column-level information
Many table-level lineage solutions are mainly derived from parsing query logs,
which can’t extract parsed column information—the metadata necessary to help
users understand anomalies and other issues in their data. For field-level lineage,
we suggest going down to the column level, a difficult task that we’ll discuss later
in the chapter.
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Based on this basic field-level lineage, users can also aggregate the metadata in further
steps to serve different use cases, such as operational analytics. For example, you
could precalculate for a given table and each of its fields how many downstream
tables are using the field. This would be particularly useful when it comes to identify‐
ing the impact of data quality issues on downstream reports and dashboards in the
business intelligence layer. After all, who doesn’t want a painless root cause analysis?

At its most basic, field-level lineage can be used to massively reduce time to detection
and time to resolution of data quality issues, with the goal of bringing down the total
amount of time it takes data teams to root-cause their data pipelines. In an analytics
capacity, data lineage can be used for a variety of applications, including:

Reviewing suspicious numbers in a revenue report
One data team at a 400-person FinTech company generates monthly revenue
forecasts using data collected and stored in Snowflake and visualized by Looker.
They can use field-level lineage to trace which table in their warehouse has the
source field for the “suspicious” numbers in this report, and through this process,
realize that the culprit for the data issue was a dbt model that failed to run.

Reducing data debt
Many data teams leverage data observability to deprecate columns in frequently
used data sets to ensure that outdated objects aren’t being used to generate
reports. Field-level lineage makes it easy for them to identify if a given column is
linked to downstream reports.

Managing personally identifiable information
Several of our customers deal with sensitive data and need to know which
columns with PII are linked to destination tables in downstream dashboards. By
being able to quickly connect the dots between columns with PII and user-facing
dashboards, customers can remove the information or take precautions to depre‐
cate or hide the dashboard from relevant parties.

These use cases just scratch the surface of how leading data teams leverage field-level
lineage. By integrating it with their existing root cause analysis workflows, getting to
the bottom of these questions can save time and resources for analysts and engineers
across their companies.

Data Lineage Design
When it comes to actually building field-level data lineage, the first thing you need to
do is architect a way to understand which columns belong to which source tables, as
depicted in Figure 7-2. This is a challenging task given that most data transformations
leverage more than one data source. Further complicating matters, you need to
recursively resolve the original sources and columns in the event that some of the
source tables are aliases of existing subqueries derived from other subqueries.
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Figure 7-2. Field-level lineage with hundreds of connections between objects in upstream
and downstream tables
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The sheer number of possible SQL clause combinations makes it extremely difficult
to cover every possible use case. In fact, when our team was building field-level
lineage for Monte Carlo’s customers, the original prototype covered only about 70%
of possible combinations. So, to cover every possible clause and clause combination
across all possible data warehouse, data lake, ETL, and business intelligence integra‐
tions across your stack (often dozens of tools!), you must individually test each clause
with one another and ensure that the solution still works as intended before moving
on to the next use case.

At a foundational level, the structure of most lineages incorporates three elements
(Figure 7-3):

• The destination table, stored in the downstream report•
• The destination fields, stored in the destination table•
• The source tables, stored in the data warehouse•

Figure 7-3. The structure of a field-level lineage includes several downstream destination
fields per upstream table

As previously mentioned, there are infinite relationships between destination and
source objects, which required us to leverage a data model that was flexible enough to
capture multiple queries at once.

We suggest using a logical data model, a table_mcon ID, and hashed field-level
lineage objects together as the ID for the document. For the same destination table,
there could be several different queries to update it. Using the destination table
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mcon and a hashed field-level lineage object, you can capture all the different lineage
combinations for a given destination table. Example 7-1 shows an example of an
index schema.

Example 7-1. Lineage query between a destination (analytics report) and one or more
source tables in the warehouse

{
  "edge_id": "37d65dc5c943cab124398b2c43f0d8f2c0ff5e76a2ba3052",
  "account_id": "ee7c21ae-9af9-4ce0-ac51-fa953065d6f7",
  "version": "normalized_v0.25",
  "job_ts": "2021-08-06 18:51:02.439000",
  "expire_at": "2021-08-13 18:51:02.439000",
  "destination_table_mcon": "", // destination table mcon
  "source_table_mcons": [
    "", // mcon 1
    "", // mcon 2
  ], // adding the destination table mcon, and source table ...
  "sources": [
    {
      "table_mcon": "", // mcon of the table 
      "field_name": ""
    },
    ...
  ],
  "destination_field": "new field name",
  "created_time": "2021-08-06 06:29:44.341000",
  "last_update_time": "2021-08-06 18:51:02.439000",
  "last_update_user_id": null,
  "parsed_query": ""
}

In this lineage model, we have one destination table. For each of the fields in the des‐
tination table, there is a list of source tables and source columns that define the field,
referred to as selected fields. This model also contains another list of source tables
and columns containing the nonselected fields. In this case, our model (Figure 7-4)
incorporates one denormalized data structure that contains edges between fields in a
destination table and their source fields in some source tables.

In Example 7-2, we offer a real example of how field-level lineage can “simplify” a
complex query. The WITH clause contains nine temporary tables, with some of the
tables using other temporary tables defined before them. Additionally, in the main
query, there could be joins between real tables, temporary tables declared in the WITH
clause, and subqueries.
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Figure 7-4. In this example, the lineage data model exposes the relationship between
source tables and destination tables

Example 7-2. JSON query that simplifies a complex WHERE query to identify the root
cause of a data quality issue, down to the field level

CREATE OR REPLACE TABLE decom.usage_timelines.pdt_usage_activities AS (
WITH usage_stuck_to_be_processed AS (
  SELECT s.usage_id,
    s.created_date
  FROM 'decom.processed.subscriptions' s
  JOIN 'decom.processed.usages' u
  ON s.usage_id = u.id
  WHERE (s.state = 'to_be_processed' AND u.activated_at IS NOT NULL)  
),
usage_subscription_state_updated as (
  SELECT *,
    rank() OVER (PARTITION BY usage_id ORDER BY created_at desc 
      AS sub_update_no_desc
  FROM 'decom.usage_timelines.usage_subscription_states' al_s
),
usages_batch_removeled as (
  select distinct u.id as usage_id
  from 'decom.processed.usages' u
  join 'decom.processed.subscriptions' s on u.id = s.usage_id
  left join usage_subscription_state_updated ussu on ussu.usage_id 
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    = u.id and ussu.sub_update_no_desc = 1  
  where s.state = 'in_question' and ussu.to_value = 'active'  
  ),
usage_subscription_state_change_actions AS (
  SELECT ussu.usage_id AS usage_id,
    CASE
      WHEN (
        ussu.from_value = 'to_be_processed' AND
        ussu.to_value = 'active' AND
        sub_update_no = 1
      ) THEN 'activate subscription'
      WHEN (
        ussu.from_value = 'to_be_processed' AND
        ussu.to_value IN ('in_question', 'disabled') AND
        sub_update_no = 1
      ) THEN 'remove from to_be_processed'
      WHEN (
        ussu.to_value IN ('in_question', 'disabled')
      ) THEN 'remove'
      WHEN (
        ussu.to_value = 'active' AND (
          ussu.from_value IN ('in_question', 'disabled') OR
          (from_value = 'to_be_processed' AND sub_update_no >= 3))
      ) THEN 're-activate'
      WHEN (
        ussu.to_value = 'to_be_processed'
      ) THEN 'other – to to_be_processed'
      WHEN (
        ussu.to_value = 'active'
      ) THEN 'other – to active'
      ELSE 'other change'
    END AS action
    ussu.created_at AS action_at
  FROM decom.usage_timelines.usage_subscription_states ussu
),
lead_subscription_orders AS (
  SELECT usage_id AS usage_id,
    CASE
      WHEN order_type = 'lead'
        THEN CAST('lead_order' AS string)
      WHEN order_type = 'regular'
        THEN CAST('regular_order' AS string)
    END AS action,
    MIN(order_placed_at) AS action_at
  FROM 'decom.cart.usages_orders_process'
  WHERE usage_legit_order_no = 1 AND order_placed_at IS NOT NULL  
  GROUP BY
    1, 2
),
lead_subscription_order_send_dates AS
(
  SELECT usage_id                                   AS usage_id,
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    CASE
      WHEN order_type = 'lead'
        THEN CAST('send lead order' AS string)
      WHEN order_type = 'regular'
        THEN CAST('send regular order' AS string)
    END                                             AS action,
    MIN(timestamp_add(send_date, interval 10 hour)) AS action_at 
  FROM 'decom.cart.usages_orders_process'
  WHERE usage_legit_order_no = 1 AND send_date IS NOT NULL  
  GROUP BY
    1, 2
),
submit_email AS
(
  SELECT id                                         AS usage_id,
    CAST('submit email' AS string)                  AS action,
    created_at                                      AS action_at
  FROM 'decom.processed.usages'
  WHERE created_at IS NOT NULL  
),
activations AS
(
  SELECT id                                         AS usage_id,
    CAST('activate' AS string)                      AS action,
    created_at                                      AS action_at
  FROM 'decom.processed.usages'
  WHERE activated_at IS NOT NULL  
),
unioned AS
(
  SELECT * FROM activations
    UNION ALL
  SELECT * FROM usage_subscription_state_change_actions
    UNION ALL
  SELECT * FROM lead_subscription_orders
    UNION ALL
  SELECT * FROM lead_subscription_order_send_dates
    UNION ALL
  SELECT * FROM submit_email
)
SELECT
  u.*,  
  COALESCE(usa.action_general_order, -1 AS action_general_order,  
  usa.subscription_phase_change_to      AS subscription_phase_change_to  
FROM unioned u
INNER JOIN (
  select usage_id,
    max(created_time) as max_created_date
  from usage_stuck_to_be_processed
  group by usage_id
) as usage_created_date
  on usage_created_date.usage_id = u.usage.id  
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LEFT JOIN tfddatawarehouse.cart.usage_subscription_actions usa
  ON u.action = usa.action  
WHERE
  NOT (u.usage_id IN ((SELECT usage_id FROM usages_stuck_to_be_processed)) )  
  and NOT (u.usage_id IN ((SELECT usage_id FROM usages_batch_removeled)) )  
);
...

Nonselected fields

Selected fields

In each query or subquery’s SELECT clause, there are fields that apply additional
functions, expressions, and subqueries. In even more complex examples, lineage can
reflect queries that have many nested layers of subqueries, and even more complex
expressions.

The  shows the selected fields in the lineage that derived from this query. The
selected fields are the fields that define the result table. The fields flagged with  are
extracted as nonselected fields. Nonselected fields have an impact on the rows to be
fetched from source tables, but they don’t contribute to the field values in the result
table, which offers a more intuitive UI and quick root cause analysis process because
unaffected lineage is obscured.

Parsing the Data
To “interpret” the data and build lineage, you need to parse it with a tool like ANother
Tool for Language Recognition (ANTLR), an open source queryparser generator that
reads, processes, executes, and translates structured text or binary files. Using the
queryparser to extract the columns that were defining grammars, you can access the
field-level relationships for more basic SELECT clause use cases. From there, we were
confident that we could build a fully functional backend.

A common problem that arises during query parsing relates to performance issues,
particularly when working with more complex queries. In some cases, the queries are
too long to be easily parsed: some use WITH clauses that define some subqueries,
and those subqueries are referenced in the main queries themselves. For example, if
a column doesn’t have quotes around it, it’s parsed as a column, and if it has quotes,
it’s parsed as a string. To fix this, you can modify the grammar of our query log parser
to better support your data warehouse or lake, which will each have its own parsing
nuances and complexities.

This SQL query complexity often manifests itself in another design challenge: archi‐
tecting a user interface. To build useful lineage, you need to ensure that it provides
rich context and metadata about the represented tables and fields without burdening
the user with superfluous information. Essentially, you need to abstract away this

180 | Chapter 7: Building End-to-End Lineage

https://oreil.ly/SbtO5
https://oreil.ly/SbtO5


spider web of relationships and possible interactions in order to deliver on the vision
of offering a truly powerful product experience for your customers. You need to
architect a tree with only the most relevant blossoms, leaves, and roots showing.

Building the User Interface
When it comes to building the frontend interface, you need to decide which technol‐
ogies to use and determine the most useful and intuitive way to display field-level
lineage. You also need to augment lineage as opposed to just automating it to allow
for quick incident resolution and a more scalable data reliability workflow. In other
words, you need a way of highlighting what connections are likely to be relevant
to a given use case or issue. After all, the most effective lineage doesn’t just surface
information—it surfaces the right information at the right time.

Generally speaking, data teams care most about either the most downstream layer
(business intelligence objects in tools like Looker or Tableau), or the most upstream
layer (the source table or field stored in the warehouse or lake, which is frequently the
root cause of the issue). As depicted in Figure 7-5, these layers aren’t often as critical
when it comes to conducting root cause analysis or understanding the health of your
data.

Figure 7-5. Field-level lineage UI featuring the source table and the destination reports
that indicate which source data impact downstream dashboards and reports, down to
the column level

The most downstream layer, BI reports and dashboards, is the end products that data
consumers use for their day-to-day work. This is important because data teams want
to know the direct impact on the consumer-facing data products, so they know how
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to communicate with end users, i.e., “Hey finance analyst, don’t use this number, it’s
outdated.”

The most relevant upstream layer, the source table in the warehouse or lake, is
leveraged when users trace the lineage layer by layer and find that one upstream layer
with the table/field has a data quality issue. Once they find it, then they can fix the
issue in that table/field and solve the problem.

To write the field-level lineage UI, you can create a reusable component using an
open source framework like JavaScript or TypeScript to easily port the field lineage
UI to other parts of your data platform. Since fields can potentially have tens of
upstream or downstream tables, which in turn could have hundreds or thousands of
fields, rendering all of those components without affecting the performance of the
app is crucial. Using lightweight visualization frameworks like Apache Preset or React
Virtuoso, a React framework makes it easy to visualize large data sets.

Currently, lineage should display at least two types of field relationships:

SELECT clause lineage
Field relationships defined by the SQL clause SELECT; these are field-to-field rela‐
tionships where a change in an upstream field directly changes the downstream
field.

Non-SELECT lineage
Field relationships defined by all other SQL clauses, e.g., WHERE; these are field-to-
table relationships, where the downstream fields are often shaped by a filtering or
ordering logic defined by upstream fields.

A chosen field’s upstream non-SELECT lineage fields (as depicted via the query
in Example 7-3) display as the filtering/ordering fields that result in the chosen
field. Its downstream non-SELECT lineage fields are the resulting fields from the
filtering/ordering logic defined by the chosen field.

Example 7-3. Lineage query that helps users understand table-to-field relationships

  create or replace transient table 
    analytics.prod_lineage.looker_explore_to_dashboard_edges as
    (with tile_with_upstream_explores as (
  select
    a.account_id,
    a.resource_id,
    b.value::varchar as upstream_explore,
    a.name,
    a.metadata:dashboard:dashboard_id as dashboard_id
  from analytics.prod_lineage.looker_dashboard_tile_nodes a,
    lateral flatten(input => a.extra:upstream_explores) as b
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Like any agile development process, building field-level lineage is an exercise in pri‐
oritization, listening, and quick iteration. Here are some best practices when building
lineage—or really, any other part of your data platform:

Listen to your teammates and take everyone’s advice into consideration.
When we began to work with our team’s own queryparser, we underestimated
how challenging it would be to parse queries. One of our teammates had previ‐
ous experience working with the parser, warned us of its quirks, and suggested
we might build a different one to complete the task. If we had listened to our
teammate early on, we would have saved a good chunk of time.

Invest in prototyping.
As startup founders, our customers are our north star. Whenever we create new
product features, we take care to consider their opinions and preferences. Doing
so effectively requires sharing a product prototype. To speed up the feedback
cycle and make these interactions more useful for both parties, we shipped an
early prototype to some of our most enthusiastic champions within weeks of
development. While this first iteration was not perfect, it allowed us to demon‐
strate our commitment to meeting customer demands and gave us some early
guidance as we further refined the product.

Ship and iterate.
This is a common practice in the software engineering world and something we
take very seriously. Time is of the essence, and when we prioritize one project we
have to ensure we are optimizing the time of everyone who is involved in that
project. When we began working on this feature, we didn’t have time to make
our product “perfect” before showing our prototype to customers—and moving
forward without perfection allowed us to expedite development. Our repeatable
process included building out the functionality of the feature, showing it off to
our customers, asking for feedback, then making improvements and/or changes
where needed.

We predict that more and more data teams will start adopting automatic lineage
and other knowledge graphs to identify the source of data quality issues as the
market matures and data engineering teams look to increase efficiencies and reduce
downtime.

In our next section, we highlight how a data leader at Fox, the global entertainment
and media company, leverages lineage as part of a broader data observability solution
to achieve DevOps processes at scale for this data organization.

Case Study: Architecting for Data Reliability at Fox
Companies are ingesting and storing an incredible amount of data—but not every
organization knows how to realize its full value. Data often gets stuck in silos, with
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requests backing up in ticket queues that never reach overworked data engineers and
analysts struggling to serve the needs of their entire organization.

As VP of Data Services at media giant Fox Networks, Alex Tverdohleb has spent the
last several years focusing on this problem. He intentionally built out the teams, the
technology, and the trust necessary to give internal stakeholders across the digital
organization the freedom to conduct ad hoc analytics without getting centralized data
engineers and analysts involved. At least as much as this is possible.

As distributed architectures continue to become a new gold standard for data-driven
organizations, this kind of self-serve motion would be a dream come true for many
data leaders. So when we got the chance to sit down with Alex, we took a deep
dive into how he made it happen. Figure 7-6 depicts how his team architected a
hybrid data architecture that prioritizes democratization and access, while ensuring
reliability and trust at every turn.

Figure 7-6. Fox Network’s data platform incorporates dozens of technologies across even
more data use cases. Source: Monte Carlo

Exercise “Controlled Freedom” When Dealing with Stakeholders
Alex has built decentralized access to data at Fox on a foundation he calls “controlled
freedom.” In fact, he believes using your data team as the single source of truth within
an organization actually creates the biggest silo. So instead of becoming a guardian
and bottleneck, Alex and his data team focus on setting certain parameters around
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how data is ingested and supplied to stakeholders. Within the framework, internal
data consumers at Fox have the freedom to create and use data products as needed to
meet their business goals.

“If you think about a centralized data reporting structure, where you used to come
in, open a ticket, and wait for your turn, by the time you get an answer, it’s often
too late,” Alex said. “Businesses are evolving and growing at a pace I’ve never seen
before, and decisions are being made at a blazing speed. You have to have data at your
fingertips to make the correct decision.”

To accomplish this at scale, Alex and his centralized data team control a few key
areas: how data is ingested, how data is kept secure, and how data is optimized in
the best format to then be published to standard executive reports. When his team
can ensure data sources are trustworthy, data is secure, and the company is using
consistent metrics and definitions for high-level reporting, it gives data consumers
the confidence to freely access and leverage data within that framework. Alex said:

Everything else, especially within data discovery and your ad-hoc analytics, should be
free. We give you the source of the data and guarantee it’s trustworthy. We know that
we’re watching those pipelines multiple times every day, and we know that the data
inside can be used for X, Y, and Z—so just go ahead and use it how you want. I believe
this is the way forward: striving toward giving people trust in the data platforms while
supplying them with the tools and skill sets they need to be self-sufficient.

Invest in a Decentralized Data Team
Under Alex’s leadership, five teams oversee data for the Fox digital organization:
data tagging and collections, data engineering, data analytics, data science, and data
architecture. Each team has its own responsibilities, but everyone works together to
solve problems for the entire business.

“I strongly believe in the fact that you have to engage the team in the decision-making
process and have a collaborative approach,” said Alex. “We don’t have a single person
leading architecture—it’s a team chapter approach. The power of the company is, in
essence, the data. But people are the power of that data. People are what makes that
data available.”

While members of different data teams collaborate to deliver value to the business,
there’s a clear delineation between analysts and engineers within the Fox data orga‐
nization. Analysts sit close to the business units, understanding pain points and
working to find and validate new data sources. This knowledge informs what Alex
and his teams call an STM, or Source to Target Mapping—a spec that essentially
allows engineers to operate from a well-defined playbook to build the pipelines and
architecture necessary to support the data needs of the business. According to Alex:
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[The division of labor between analysts and engineers] allows people to focus on their
specific areas instead of being spread thin. Some people may disagree with me, but
quite frankly, having developers attend a lot of business meetings can be a waste of
their time—because collecting and understanding business requirements often is a
strenuous and time-consuming effort. By installing the analytics before engineering
gets involved, we can bridge that gap and then allow the developers to do what they do
best—building the most reliable, resilient and optimized jobs.

By giving engineers a problem to solve as opposed to an analytics strategy to assem‐
ble, practitioners on Alex’s team can stay focused and work on projects that support
the goals of the business. When it comes to building your data stack, alignment is key.

It’s worth noting that this decentralized approach won’t work for
every organization, and the needs of your team structure will vary
based on the SLAs your company sets for data.

Avoid Shiny New Toys in Favor of Problem-Solving Tech
Cumulatively, Barr, Lior, and Molly have been in data for half of a century, and we can
say in no uncertain terms that Fox has one of the most robust and elegant data tech
stacks that we’ve ever seen. But Alex is adamant that data leaders shouldn’t pursue
shiny new tech for its own sake.

“First and foremost, in order to be successful at delivering the right underlying
architecture, you need to understand the business,” said Alex. “Don’t chase the latest
and greatest technology, because then you’re never going to stop. And sometimes the
stack you have right now is good enough—all you have to do is optimize it.”

The Fox data team built their tech stack to meet a specific need: enabling self-service
analytics. “We embarked on the journey of adopting a lakehouse architecture because
it would give us both the beauty and control of a data lake, as well as the cleanliness
and structure of a data warehouse.”

Several types of data flow into the Fox digital ecosystem, including batched, micro-
batched, streaming, structured, and unstructured. After ingestion, data goes through
what Alex refers to as a “three-layer cake”:

First, we have the data exposed at its raw state, exactly how we ingest it. But that raw
data is often not usable for people who want to do discovery and exploration. That’s
why we’re building the optimized layer, where data gets sorted, sliced-and-diced, and
optimized in different file formats for the speed of reading, writing, and usability. After
that, when we know something needs to be defined as a data model or included in a
data set, we engage in that within the publishing layer and then build it out for broader
consumption within the company. Inside of the published layer, data can be exposed
via our tool stack.
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The optimized layer makes up the pool of data that Alex and his team provide to
internal stakeholders under the “controlled freedom” model. With self-serve analytics,
data users can discover and work with data assets that they already know are trust‐
worthy and secure.

“If you don’t approach your data from the angle that it’s easy to discover, easy to
search, and easy to observe, it becomes more like a swamp,” said Alex. “We need to
instill and enforce some formats and strict regulations to make sure the data is getting
properly indexed and properly stored so that people can find and make sense of the
data.”

To Make Analytics Self-Serve, Invest in Data Trust
For this self-serve model to work, the organization needs to have trust that the
data is accurate, reliable, and trustworthy. To help achieve this goal, the entire data
stack is wrapped in QA, validation, and alerting—in other words, observability. “Data
observability has become a necessity, not a luxury, for us,” said Alex. “As the business
has become more and more data driven, nothing is worse than allowing leadership to
make a decision based upon data that you don’t have trust in. That has tremendous
costs and repercussions.”

Alex estimates that the Fox digital organization receives data multiple times a day
from over two hundred sources. They process nearly ten thousand schemas and tens
of billions of records per week:

You can’t scale the team to maintain and support and validate and observe that amount
of data. You have to have at least a few tools at your disposal. For us to make sure that
we have trust in the data’s timeliness, completeness, and cleanliness, tools like Monte
Carlo are “must-have.” It’s been a great addition to allow us to build an AI-powered
overview of what’s happening in our data stack.

The continual monitoring and alerting, along with automated data lineage, helps
Alex’s team to be more proactive about data incidents when they do occur:

We can catch the issues before they hit production and if they do, we know the level
of impact by using reverse-engineering to see how many and what kind of objects
have been involved, and we can stop it in-flight before it causes a massive impact
downstream. It all comes with trust—the moment you drop transparency or start
hiding things, people lose trust and it’s really hard to regain it back. I’ve learned that
no matter what happens, if you’re being honest and you’re owning the problem, people
tend to understand and give you another chance to fix it.

By keeping open lines of communication and being transparent about data health,
Alex and his teams have earned the trust required to build a self-serve data platform
that powers decisions on a daily basis.
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Summary
In this chapter, we discussed what it takes to build more reliable data workflows,
zeroing in on one of the key technologies: lineage. As you work toward more reliable
data, it’s hard to understand where you’re going if you don’t know where you’re
starting from. Data lineage is the “map” of your data that tells you just that, no matter
what stage of the data pipeline is affected by data downtime. When automated and
providing end-to-end coverage (which, we’ll admit, isn’t easy to achieve), lineage is
even more powerful.

Combined with detection and alerting, lineage forms the basis of true data reliability
and is an increasingly critical part of modern data stacks. Still, it doesn’t matter how
advanced your lineage is if it’s not scalable and easily understood by data analysts,
data scientists, and other stakeholders in your organization. This accessibility allows
you to give consumers a level of “controlled freedom” that turns data quality from a
siloed entity scattered among few visibility tables to something actually achievable on
a wide plane.

In our next chapter, we’ll dive deeper into some of the processes and techniques
leading data organizations are adopting to democratize data quality across their
organizations.
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CHAPTER 8

Democratizing Data Quality

“Hey—is this good data?”

“Can I trust this dashboard?”

“Who owns this data set?”

If you’ve heard these questions—and many others like them—from business analysts
and other data consumers at your company, congratulations! The onus of data trust
falls on your shoulders.

As companies ingest more and more data and analytics becomes part and parcel of
every organizational strategy, the need for high-quality data only increases, putting
pressure on data engineers, analytics engineers, and even data analysts to take owner‐
ship of this important, but challenging task.

Still, it doesn’t matter how many data quality tests you run—data trust can only be
achieved when the entire company buys into it. Despite the data-driven nature of
nearly all teams, data organizations often shoulder the brunt of the work when it
comes to tracking, enforcing, and scaling data quality initiatives.

After all, data quality isn’t just about building more reliable data pipelines and setting
service-level agreements (SLAs) for data freshness. It’s also about education and
communication. In fact, data quality is just as much a technical process as it is a
cultural one. And very often, it’s not about having fully accurate data—it’s about
understanding to what extent we can trust it.

In an interview with the authors, Cindi Howson, Chief Data Strategy Officer at
ThoughtSpot and former VP at Gartner, summarized it best:

You build trust when people understand where the data comes from, and when they
understand that even high-quality data will never be perfectly clean. I like how one
of our data analytics leaders talks about “Is the data directionally accurate—accurate
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enough to make decisions on it?’ Now there are some things that have to be perfect.
You have to get your blood type right, for instance. But if I’m looking at campaign ana‐
lytics and customer experience trends, we can make decisions with accurate-enough
data.

When it comes to democratizing data quality, it helps to make working with data as
easy and iterative as possible, much in the same way as software engineers work with
code.

As previously discussed, DevOps and software engineering teams have been applying
this “agile” approach to building applications for several years. To really give data
quality the diligence it deserves, we can learn a thing or two from these processes
and systems. The first step? Treating your data with the same diligence as production
software.

Treating Your “Data” Like a Product
For the past few decades, most companies have kept data in an organizational silo.
Analytics teams served business units, and even as data became more crucial to
decision making and product roadmaps, the teams in charge of data pipelines were
treated more like plumbers and less like partners.

Data is no longer a second-class citizen. With better tooling, more diverse roles, and a
clearer understanding of data’s full potential, many businesses have come to view the
entire ecosystem as a fully formed element of the company tech stack.

And the most forward-thinking teams are adopting a new paradigm: treating data
like a product. This is a hot topic in the data community right now, and in recent
months, we’ve had the privilege of discussing data-as-a-product with several industry
leaders—and uncovering their real-world takeaways on what it looks like to bring this
new approach to life on a daily basis.

But defining a data product is surprisingly difficult. The truth is, many things can be
considered a data product, from a Looker dashboard or Tableau report, to an A/B
testing platform or even a multilayered data platform.

So let’s get specific. Regardless of what data the product visualizes / crunches / puts to
work, there are specific outcomes it should deliver:

• Increased data accessibility (surface data where people need it when they need it)•
• Increased data democratization (make it easier for people to manipulate the data)•
• Faster ROI on data (quicker insights)•
• Time savings for the data team / data consumers•
• More precise insights (i.e., experimentation platforms)•
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Similarly, there are important characteristics or qualities a data product should have:

Reliability and observability
Acceptable downtime for a SaaS product is a discussion of “How many 9s?”
as in 99.9% or 99.999% availability. Just as software engineers use products
such as Datadog or New Relic to track SaaS product performance, data product
managers need solutions to identify and solve data product performance issues in
near real time.

Scalability
The data product should scale elasticity as the organization and demand grow.

Extensibility
While the data product has likely been built from an integration of different
solutions, it needs to maintain the ability to easily integrate with APIs and be
versatile enough to be ingested in all the different ways end users like to consume
data.

Usability
Great SaaS products focus on providing a great user experience. They are easy to
learn, fun to use, and quick to get work done.

Security and compliance
Data leaks are costly and painful, as are regulatory fines.

Release discipline and roadmap
SaaS products continually evolve and improve. Roadmaps are built at least a year
into the future with a strong quality assurance process for updates.

In the next section, we share how some of today’s most innovative data leaders
describe what it means to “treat data like a product.”

Perspectives on Treating Data Like a Product
In the early 2000s, companies like LinkedIn, Netflix, and Uber had a problem.
Teams across the organization were working with data, and lots of it, at scale. Data
was powering their product roadmap, fueling executive-level decision making, and
informing their paid marketing campaigns.

Internal and external data was flowing in and out of the company. There were regu‐
lations, guidelines, and restrictions for how this data could be used and by whom.
But nobody was in charge of developing data solutions to make analytics operational,
scalable, and accessible.

A new generation of data engineers, technical architects, managers, and even direc‐
tors has started applying best practices of software engineering and site reliability
to data systems, learning a few lessons along the way. As described in the following
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sections, we spoke with data leaders at companies of various industries and sizes,
including Convoy and Uber. While working with vastly different volumes and types
of data, these three companies have one critical thing in common: data quality is a
topline priority, and the means to this end, by and large, starts with treating data like
a product.

Convoy Case Study: Data as a Service or Output
Until recently, disparate operational and analytical data was often managed in silos,
with functional teams and associated analysts responsible for ensuring quality, availa‐
bility, and performance. As data sharing and more distributed architectures like the
data fabric or data mesh come to prominence, processes and workflows that treat
data like an evolving, cross-disciplinary entity will become the industry standard.

At Convoy, a Seattle-based freight marketplace, data is treated like a product in two
discrete ways: as a service or an output. We talked to Head of Product, Data Platform,
Chad Sanderson, and he suggested that:

There are two schools of thought that are still developing around what it means to
treat data as a product: in the first, you have an external or internal product or service
that generates data, meaning that the data—including the entire pipeline—is part of the
product. In the second approach, you think of the output of any codebase that’s serving
a customer as a product.

Chad suggests that in the first scenario, data must be subject to the same level of
rigor as application code. Generally speaking, this product is a service, whether that
service deploys ML models, queries the warehouse to gather insights, or something
else entirely.

In the second approach, data teams treat the output of the data (a report, dashboard,
a platform, etc.) as a product. Chad uses the data warehouse as an example: “When
you think about a data warehouse, it’s really just a codebase—primarily composed
of SQL—that’s serving internal customers like other analysts, data scientists, and
product managers who are using that data to go and make business decisions.”

Anything that’s pushed to a “production data environment” that the company can
access is a product. So if you’re using a dashboarding tool like Mode or Metabase, and
you’re writing SQL and pushing that dashboard to a public environment where other
people can access it, that is also a product.

In both scenarios, data is less of a siloed entity and more of a microservice, with
discrete business functions leveraging the same data across multiple use cases, and
more consumers beyond the data team actually accessing the data. Moreover, the
data is often being applied to use cases outside corporate decision making: powering
financial products, surfacing relevant advertisements to users, and even generating
lists upon lists of movies and TV shows to watch online.
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In either case, Chad says, teams need good data testing, clear SLAs, SLIs, and
SLOs, and extensive documentation and monitoring. In other words, data should
be expected to be reliable, and if it’s not, data teams and stakeholders should know
and be given the tools to fix the issue at hand.

We couldn’t agree more.

Uber Case Study: The Rise of the Data Product Manager
Since its inception in 2009 as Ubercab, Uber, the global ridesharing company, has
prioritized data as a competitive advantage and means of building more reliable
and custom-tailored experiences for their users. Like LinkedIn, Netflix, Google, and
other Silicon Valley giants, Uber employs a team of thousands to manage their data
and analytics operations, from data scientists building real-time pricing models to
operations analysts putting together forecasts to predict driver demand.

To truly operationalize data at scale, Uber needed to treat data not like a discrete set
of services for a discrete set of use cases but instead like production software that can
be leveraged by multiple teams at the company. At a traditional software company,
software solutions are managed from ideation to fruition by product managers. If
data needs to be given the same attention as reliability, fulfilling multiple use cases at
once, and as accessibility, does it need a product manager, too?

For Uber, the answer was yes. According to Atul Gupte, a former data product
manager at the company, data product managers were responsible for data democra‐
tization and increasing the time to value for the data itself. They design, build, and
manage the cross-functional development of a data platform, or a suite of specific
data tools, to serve multiple customers.

At Uber, the data product manager was a role solely dedicated to answering questions
like:

• What data exists?•
• Who needs this data?•
• Where is this data flowing to/from?•
• What purpose does this data serve?•
• Is there a way to make it easier to work with/access this data?•
• Is this data compliant and/or actionable?•
• How can we make data more useful to more people at the company, faster?•

Data product managers answer these questions by building internal tooling and
platforms for employees.
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Like a product management role, data product managers are beholden to the needs of
their stakeholders (data analysts, data scientists, and operations teams, to name a few)
and executives. Their primary purpose is to ensure that the preceding questions are
answered, and as a result, reliable, fresh, and usable data is generated and delivered to
those who need it.

Because the role is nascent, data product managers like Atul usually come from
backgrounds like traditional B2B product management, internal tooling product
management, data analysis, or backend engineering.

Applying the Data-as-a-Product Approach
From our conversations with these leaders and several others, we’ve identified five
key ways modern data teams can apply this approach to their own organizations.

Gain stakeholder alignment early–and often
When data is your product, your internal customers are also your stakeholders. Make
it a priority to partner with your key data consumers as you map out your own data
product roadmap, develop SLAs, and begin treating data as a product.

This means putting on your product manager hat—or, as Atul suggested earlier,
having a role dedicated to data product management—to fully understand the needs,
concerns, and motivations of your internal customers. You’ll want to have a clear
grasp on who uses your data and how, and for what purposes. This will help you
understand what types of data products you need to build to meet those needs.

This understanding also helps you adopt data storytelling. Software, product, and UX
teams use storytelling to share the context of their work through different perspec‐
tives that will help stakeholders understand its value based on what matters most
to them. You’ll also be working to convince your stakeholders that data should be
prioritized and to justify the investments required to treat data as a product.

Data storytelling is an invaluable tool when it comes to persuading stakeholders to
invest in data infrastructure over flashier machine learning models or new features
that promise to generate millions of dollars. By clearly communicating the “So what?”
behind why the given data initiative will further business goals—and in turn, your
company’s bottom line—it can be easier to justify budget, headcount, and resources,
including those allocated to data quality.

For years, the connection between data quality and revenue wasn’t always obvious.
Data was managed in silos, and stakeholders accepted what little data they had access
to; while the seasoned eye could probably tell if data was wrong or inaccurate, it
was often a blurry line, eroding trust in the data itself. As technologies advanced
and more employees across the enterprise became data literate, the appetite for data
increased, as did the onus on data quality.
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Necessity is the mother of invention; as data needs grow, so do the ways in which
we justify spending behind it. For example, sharing a tight narrative about how data
reliability can lead to more accurate machine learning models that forecast revenue is
a more compelling story than “data quality is good for the business.”

Apply a product management mindset
Another key step is to apply a product management mindset to how you build, mon‐
itor, and measure data products. When it comes to building pipelines and systems,
use the same proven processes as you would with production software, like creating
scope documents and breaking projects down into sprints.

In our interview with Jessica Cherny, Lead Data Analyst at Ironclad, she described
her company’s agile-inspired workflow:

We’re treating data internally as a product, and that means applying product manage‐
ment principles to data and the data team. So when we have a big strategic project that
requires data, we create data scoping documents, just like a product manager would
create a spec, with the right stakeholders. And we keep iterating with engineers and the
product managers to make sure it’s a cross-functional, stakeholder-aligned output—as
opposed to just having data people working in a silo and not interacting with anyone.

And similar to engineering processes, data teams should be factoring in scalability
and future use cases when building pipelines. According to Chad, this can represent a
significant shift from how data teams have approached their work in the past:

Oftentimes, the data that actually lands in a production database is really just service-
level events that get thrown in by engineers without really thinking about it. So one of
the big reasons why data models get so messy as a company evolves is that we’re usually
focused on rapidly building services first and thinking critically about data second.
And this idea of data as a product is kind of a continuum shift to start to change that.

Kyle Shannon, Senior Data and Analytics Engineer at SeatGeek, shared in the same
webinar that his company is focusing on scalability due to the rapid growth of their
data team:

We’re really trying to understand how we can better onboard new people coming in
and making better processes to make data more discoverable and accessible. People
that have been at a company for a long time know where to go to find information, but
if you’re hiring 20 or 30 data team members over the year, it’s really hard to say, “Oh,
just go into the Slack channels and ask questions.” It’s not going to scale. So as you are
building your data products, you have to document everything and make sure it’s very
clear—that you’re removing redundancies or any issues you might find along the way.

Another product mindset to adopt is setting up KPIs aligned with your business
goals before you begin building any new data product. As Chad described earlier,
storytelling can help illustrate the potential benefits of investments in data quality, but
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most organizations will still expect mature teams to measure the financial impact of
their initiatives.

Many data teams are adopting KPIs related to data quality, such as calculating the
cost of data downtime—times when data is partial, erroneous, missing, or otherwise
inaccurate—or by measuring the amount of time data team members spend trouble‐
shooting or fixing data quality issues, rather than focusing on innovations or building
new data products.

Setting baseline metrics for your data will help quantify the impact of your data
initiatives over time. Just ensure these metrics are applied consistently across use
cases, particularly if you have a central data platform.

Invest in self-serve tooling
In order for data to be brought out of silos and treated as a valued product in its
own right, business users need to have the ability to self-serve and meet their own
data needs. Self-serve tooling that empowers nontechnical teams to access data allows
your data team to focus on innovative projects that add value, rather than functioning
as an on-demand service to fulfill ad hoc requests.

Self-serve tooling is also one of the main principles of the data mesh concept—a
new approach to decentralized data architecture. Mammad Zadeh, the former VP
of Engineering at Intuit for their Data Platform team, is an enthusiastic advocate
of the data mesh and believes self-serve tooling is integral to data architecture and
data products. To measure the impact of their self-serve approach, the team even
implemented a metric that assesses whether a specific self-serve tool has reduced the
time it takes a user to complete a task, such as data discovery or access.

In our discussion with Mammad, he suggested, “We, in the central data teams,
should make sure the right self-serve infrastructure and tooling is available to both
producers and consumers of data so that they can do their jobs easily. Equip them
with the right tools, let them interact directly, and get out of the way.”

Prioritize data quality and reliability
One key component of approaching data as a product is applying standards of rigor
to the entire ecosystem, from ingestion to consumer-facing data deliverables. As we
discussed in the context of storytelling earlier, this means prioritizing data quality
and reliability throughout the data life cycle. Companies can assess their current
state of data quality by mapping their progress against the data reliability maturity
curve. Briefly, this model (see Figure 8-1) suggests there are four main stages of data
reliability:
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Reactive
Teams spend a majority of their time responding to fire drills and triaging data
issues—resulting in a lack of progress on important initiatives, an organizational
struggle to use data effectively in their product, machine learning algorithms, or
business decision making.

Proactive
Teams collaborate actively between engineering, data engineering, data analysts,
and data scientists to develop manual checks and custom QA queries to validate
their work. Examples might include validating row counts in critical stages of
the pipelines or tracking timestamps to ensure data freshness. Slack messages or
email alerts still pop up when things go wrong, but these teams do catch many
issues through their proactive testing.

Automated
At this level, teams prioritize reliable, accurate data through scheduled valida‐
tion queries that deliver broader coverage of pipelines. Teams use data health
dashboards to view issues, troubleshoot, and provide status updates to others
in the organization. Examples include tracking and storing metrics about dimen‐
sions and measures to observe trends and changes, or monitoring and enforcing
schema at the ingestion stage.

Scalable
These teams draw on proven DevOps concepts to institute a staging environ‐
ment, reusable components for validation, and/or hard and soft alerts for data
errors. With substantial coverage of mission-critical data, the team can resolve
most issues before they impact downstream users. Examples include anomaly
detection across all key metrics and tooling that allows every job and table to be
monitored and tracked for quality.

Figure 8-1. The data reliability maturity curve buckets common approaches to data
quality in four distinct camps: reactive, proactive, automated, and scalable

Find the right team structure for your data organization
Of course, team structure makes a huge impact on how your organization interacts
with data on a daily basis. Do you have a centralized data team that handles every
aspect of data management and application? Or analysts embedded across business
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units, meeting specific needs and gaining domain expertise—but suffering from silos
and lack of cohesive governance?

Different companies will require distinct approaches depending on their size and
business needs, but many data leaders we’ve talked to have found the best outcomes
with a hub and spoke model. In this structure, a centralized data platform team
handles infrastructure and data quality, while decentralized, embedded analysts and
engineers deal with semantic layers and apply data to the business. This model works
well if your organization is growing fast and needs to move quickly, but it can lead
to duplication and repeated efforts on the embedded analysts’ part without solid
alignment with the centralized data team.

Greg Waldman, Senior Director of Business Intelligence at restaurant POS software
Toast, led his team through a five-year organizational evolution that included
switches from centralized to decentralized to hub and spoke models. In our discus‐
sions with Greg, he advised data leaders at growth companies to follow a key tenet of
product management—stay agile:

The way I think about data teams, in a nutshell, is that you want everyone to add as
much business value as possible. We’ve been very open to change and trying different
things and understanding that what works with 200 people versus 500 people versus
a thousand is not the same answer, and that’s okay. It can be somewhat obvious when
you’ve reached those inflection points and need to try something new.

For Jessica Cherny, the advantage of decentralized analysts and engineers is their
ability to understand the real business need behind data requests:

I want to understand how to design a deliverable that actually serves their needs. It
happened recently when I was asked by someone on a strategic initiative to get a
specific set of data right away. And I was able to say, “Wait, hold on. Do I really need
to use this complex clustering method to answer this question? What is the actual need
for this—so I don’t have to drop everything I’m working on, and can actually serve you
in a timely and useful way?” And we ended up completely reorganizing what her ask
was, because I got to better understand the business need behind her question and how
to answer that in a simple, easily understood way.

Again, every company will have its own cultural landscape and challenges to address,
but a hub and spoke model can help growing teams move fast to meet business needs
without giving up ownership of data quality and governance.

Treating data like a product isn’t just a buzzworthy trend. It’s an intentional shift in
mindset that leads to meaningful outcomes: increasing data democratization and the
ability to self-serve, improving data quality so decisions can be made accurately and
confidently, and scaling the overall impact of data throughout the organization.
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Building Trust in Your Data Platform
Now that we have a better understanding of what it means to treat data like a product,
how do we actually implement this approach in practice?

In Chapter 2, we discussed what it takes to build a data platform, but how can we
set the groundwork in place to ensure that (1) your team uses it and (2) stakeholders
trust its outputs? In other words, how can we ensure they treat your data platform
like a product? Whether you’re just getting started or are in the process of scaling
your platform, the following best practices will help you avoid common pitfalls while
building trust in your data platform.

Align Your Product’s Goals with the Goals of the Business
For several decades, data platforms were viewed as a means to an end versus “the
end,” as in, the core product you’re building. In fact, although data platforms powered
many services, fueling rich insights into the applications that power our lives, they
weren’t given the respect and attention they truly deserve until very recently.

When you’re building or scaling your data platform, the first question you should ask
is: how does data map to your company’s goals? To answer this question, you have to
put on your data platform product manager hat. Unlike specific product managers, a
data platform product manager must understand the big picture versus area-specific
goals since data feeds into the needs of every other functional team, from marketing
and recruiting to business development and sales.

For instance, if your business’s goal is to increase revenue (go big or go home!), how
does data help you achieve these goals? For the sake of this experiment, consider the
following questions:

• What services or products drive revenue growth?•
• What data do these services or products collect?•
• What do we need to do with the data before we can use it?•
• Which teams need this data? What will they do with it?•
• Who will have access to this data or the analytics it generates?•
• How quickly do these users need access to this data?•
• What, if any, compliance or governance checks does the platform need to•

address?

By answering these questions, you’ll have a better understanding of how to prioritize
your product roadmap, as well as who you need to build for (often, the engineers)
versus design for (the day-to-day platform users, including analysts). Moreover, this
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holistic approach to KPI development and execution strategy sets your platform up
for a more scalable impact across teams.

Gain Feedback and Buy-in from the Right Stakeholders
It goes without saying that receiving buy-in up front and getting iterative feedback
throughout the product development process are necessary components of the data
platform journey. What isn’t as widely understood is whose voice you should care
about.

Yes, you need the ultimate sign-off from your CTO or VP of Data on the finished
product, but their decisions are often informed by their trusted advisors: staff engi‐
neers, technical program managers, and other day-to-day data practitioners. While
developing a new data cataloging system for her company, one product manager we
spoke with at a leading transportation company spent three months trying to sell her
VP of Engineering on her team’s idea, only to be shut down in a single email by his
chief of staff.

Consider different tactics based on the DNA of your company. We suggest following
these three concurrent steps:

1. Sell leadership on the vision.1.
2. Sell the brass tacks and day-to-day use case to your actual users.2.
3. Apply a customer-centric approach, no matter who you’re talking to. Position3.

the platform as a means of empowering different types of personas in your
data ecosystem, including both your data team (data engineers, data scientists,
analysts, and researchers) and data consumers (program managers, executives,
business development, and sales, to name a few categories).

A great data platform will enable the technical users to do their work easily and
efficiently, while also allowing less technical personas to leverage rich insights or put
together visualizations based on data without much assistance from engineers and
analysts.

There are a variety of data personas (Figure 8-2) you have to consider when you’re
building a data platform for your company, from engineers to data scientists, product
managers, business function users, and general managers.

At the end of the day, it’s important that this experience nurtures a community of data
enthusiasts that build, share, and learn together. Since your platform has the potential
to serve the entire company, everyone should feel invested in its success, even if that
means making some compromises along the way.
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Figure 8-2. When you’re gaining buy-in to build your data platform—or simply scaling
it—it helps to have input from core users and stakeholders across the company. Source:
Image courtesy of Atul Gupte

Prioritize Long-Term Growth and Sustainability
Versus Short-Term Gains
Unlike other types of products, data platforms are not successful simply because
they benefit from being “first to market.” Since data platforms are almost exclusively
internal tools, we’ve found that the best data platforms are built with sustainability in
mind versus feature-specific wins.

Remember: your customer is your company, and your company’s success is your
success. This is not to say that your roadmap won’t change several times over (it will),
but when you do make changes, do it with growth and maturation in mind.

For instance, Uber’s big data platform was built over the course of five years, con‐
stantly evolving with the needs of the business; Pinterest has gone through several
iterations of their core data analytics product; and leading the pack, LinkedIn has
been building and iterating on its data platform since 2008!

Our suggestion: choose solutions that make sense in the context of your organization
over time (Figure 8-3) and align your plan with these expectations and deadlines.
Data solutions with short-term usability in mind are often easier to get off the ground
but, over time, end up being more costly than platforms built with sustainability in
mind. Sometimes, quick wins as part of a larger product development strategy can
help with achieving internal buy-in—as long as it’s not shortsighted. Rome wasn’t
built in a day, and neither was your data platform.
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Figure 8-3. Short-term usability often comes at the expense of sustainability over time

Sign Off on Baseline Metrics for Your
Data and How You Measure Them
It doesn’t matter how great your data platform is if you can’t trust your data, but
data quality means different things to different stakeholders. Consequently, your
data platform won’t be successful if you and your stakeholders aren’t aligned on this
definition.

To address this, it’s important to set baseline expectations for your data reliability, in
other words, your organization’s ability to deliver high data availability and health
throughout the entire data life cycle. Setting clear service-level objectives (SLOs) and
service-level indicators (SLIs) for software application reliability is a no-brainer. Data
teams should do the same for their data pipelines.

This isn’t to say that different stakeholders will have the same vision for what “good
data” looks like; in fact, they probably won’t, and that’s OK. Instead of fitting square
pegs into round holes, it’s important to create a baseline metric of data reliability
and, as with building a new platform feature, gain sign-off on the lowest common
denominator.

We suggest choosing a novel measurement like specific SLAs for hours of data
downtime (as discussed in Chapter 6) or number of data quality issues per week that
will help data practitioners across the company align on baseline quality metrics.

Know When to Build Versus Buy
One of the first decisions you have to make is whether or not to build the platform
from scratch or purchase the technology (or several supporting technologies) from a
vendor.
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While companies like—you guessed it—Uber, LinkedIn, and Facebook have opted
to build their own data platforms, often on top of open source solutions, it doesn’t
always make sense for your needs. While there isn’t a magic formula that will tell you
whether to build versus buy, we’ve found that there is value in buying until you’re
convinced that:

• The product needs to operate using sensitive/classified information (e.g., finan‐•
cial or health records) that cannot be shared with external vendors for regulatory
reasons.

• Specific customizations are required for it to work well with other internal tools/•
systems and are niche enough that a vendor may not prioritize them.

• There is some other strategic value to building versus buying (i.e., competitive•
advantage for the business or beneficial for hiring talent).

For larger, more universal technical challenges (i.e., data warehouses, lakes, or data
visualization tools), it often makes more sense to buy. When it comes to solving
niche but critical problems for the business (for instance, aggregating GPS data on
highways), you’ll probably need to build it.

The good news for data teams? Data engineering is going through a renaissance
reminiscent of software engineering’s rise to prominence in the early 2010s, meaning
greater innovation and investment in tools that solve more complex and granular
needs. (Reverse ETL, data science workbooks, behavioral analytics, and even ML fea‐
ture stores come to mind as formerly niche technologies that are gaining widespread
adoption. We discussed these tools and others in Chapter 7).

Building your data platform as a product will help you ensure greater consensus
around data priorities, standardize on data quality and other key KPIs, foster greater
collaboration, and, as a result, bring value to your company.

In addition to serving as a vehicle for effective data management, reliability, and
democratization, the benefits of building a data platform as a product include:

• Guiding sales efforts (giving you insights on where to focus your efforts based on•
how prospective customers are responding)

• Driving application product roadmaps•
• Improving the customer experience (helps teams learn what your service pain•

points are, what’s working, and what’s not)
• Standardizing data governance and compliance measures across the company•

(General Data Protection Regulation [GDPR], California Consumer Privacy Act
[CCPA], etc.)
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Building a data platform might seem overwhelming, but with the right approach to
ensuring and scaling data quality, your solution has the potential to become a force
multiplier for your entire organization.

Now that we’ve highlighted the “what” for building a data quality-first culture, it’s
only fitting to discuss the “who.” Next, we dive into some of the data personas
responsible for ensuring data quality at the cross-functional level and share best
practices for assigning ownership along the way.

Assigning Ownership for Data Quality
In the modern data organization, there are so many answers to the question of own‐
ership of data quality, and it really varies depending on the size of the company and
the needs of the business. While many data professionals are quick to assign blame
when data quality issues arise and data downtime strikes, few are set up for success
when it comes to resolving the issues and communicating the impact downstream.

In data, this growing sphere of impact is often called the blast radius (as shown
in Figure 8-4) and refers to the extent of downtime experienced by downstream
stakeholders when data breaks. Across your organization, there are several stakehold‐
ers involved when data breaks, from your chief data officer to your resident data
engineer. Data downtime affects everyone that relies on data and analytics at your
company, with the impact of poor data quality only growing as data migrates down
the pipeline.

Figure 8-4. Blast radius caused by data downtime
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We’ll walk you through what data reliability looks like to a fictional data organization
and highlight key roles when it comes to ensuring data quality for the rest of the
company. We’ll introduce these roles, zero in on their hopes, dreams, and fears, and
share our approach to conquering data reliability at your company.

Chief Data Officer
Meet Ophelia, your CDO. Although she’s probably not (wo)manning your company’s
data pipelines or Looker dashboards, Ophelia’s impact is tied to the consistency,
accuracy, relevance, interpretability, and reliability of the data her team provides.

Ophelia wakes up every day and asks herself two things. First, are different depart‐
ments getting the data they need to be effective? And second, are we managing risk
around that data effectively?

She would sleep much easier with a clear, bird’s-eye view showing that her data
ecosystem is operating as it should. At the end of the day, if bad data gets in front of
the CEO, out to the public, or to any other data consumer, she’s on the line.

Business Intelligence Analyst
Betty, the business intelligence lead or data analyst, wants a punchy and insightful
dashboard she can share with her stakeholders in marketing, sales, and operations to
answer their multifarious questions about how their business functions are perform‐
ing. When things go wrong at the practitioner level, Betty is the first one called.

To ensure reliable data, she needs to answer these questions:

• Are we translating data into metrics and insights that are meaningful to the•
business?

• Are we confident that the data is reliable and means what we think it means?•
• Is it easy for others to access and understand these insights?•

Null values and duplicated entries are Betty’s archnemeses, and she’s a fan of anything
that can prevent data downtime from compromising her peace of mind. She’s fatigued
by business stakeholders that ask her to investigate a funny value in a report—it’s a
long process to chase the data upstream and validate if it’s right!

Analytics Engineer
Meet Anna, the analytics engineer. She sits at the intersection of business teams,
data analytics, and data engineering, and is primarily responsible for ensuring that
stakeholders can access and use the data required for their specific needs. Anna is
fluent in dbt, the data build tool, and prides herself on being able to model her way
out of nearly anything.
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That is, until an errant schema change causes her transformations to nosedive. When
downtime strikes, Anna is on the hook for explaining why and how the data broke,
often partnering with the data engineering and data platform teams to get to the root
cause. As a result, data observability is her best friend.

Data Scientist
Sam, the data scientist, studied Forestry in undergrad, but decided to make the jump
to industry to pay off his student loans. Somewhere between a line of Python code
and a data visualization, he fell in love with data science. And the rest was history.

To do his job well, Sam needs to know (1) where the data comes from and (2) that
it’s reliable, because if it’s not, his team’s A/B tests won’t work and all downstream
consumers (analysts, managers, executives, and customers) will suffer. Sam’s team
spends roughly 80% of their time scrubbing, cleaning, and understanding the context
of the data, so they need tools and solutions that can make their lives easier.

Data Governance Lead
Proud owner of a seven-month-old puppy, Gerald is the company’s very first data
governance specialist. He started off on the legal team, and then, when GDPR and
CCPA entered the picture, eventually focused his efforts exclusively on data compli‐
ance. It’s a novel role that is becoming increasingly important as the organization
grows.

When it comes to data reliability, Gerald cares about (1) unified definitions of data
and metrics across the company and (2) understanding who has access and visibil‐
ity to what data. For Gerald, bad data can mean costly fines, erosion of customer
trust, and lawsuits. Despite the criticality of his role, he sometimes jests that it’s like
accounting: “You’re only front and center if something has gone wrong!”

Data Engineer
When it comes to data reliability, Emerson, the data engineer, is at the crux of the
equation. Emerson started out as a full-stack developer at a small ecommerce startup,
but then as the company grew, so too did their data needs. Before she knew it,
she was responsible not just for building their data product but also integrating the
data sources the team relies on to make decisions about the business. Now, she’s a
Snowflake expert, PowerBI guru, and general data tooling whiz.

Emerson and her team are the glue that holds the company’s data ecosystem together.
They implement technologies that monitor the reliability of their company’s data, and
if something goes awry, she’s the one who is paged by the analytics team at 3 a.m. to
fix it. Like Betty, she’s lost countless hours of sleep because of this.

To be successful at her job, Emerson must tackle a lot of things, including:
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• Designing a data platform solution that scales•
• Ensuring that data ingestion is reliable•
• Making the platform accessible to other teams•
• Being able to fix data downtime quickly when it happens•
• Above all else, making analytics sustainable for the entire data organization•

Data Product Manager
Meet Peter, the data product manager. Peter got his start as a backend developer but
made the jump to product management a few years ago. Like Gerald, he’s the compa‐
ny’s first-ever hire in this role, which is simultaneously exciting and challenging.

He’s up-to-date on all the latest data engineering and data analytics solutions, and
is often called upon to make decisions on what offerings his organization needs
to invest in to be successful. He knows firsthand how automation and self-serve
tooling make all the difference when it comes to delivering an accessible, scalable data
product.

All other data stakeholders, from analysts to social media managers, are dependent
on him for building a platform that ingests, unifies, and makes accessible data from
a myriad of sources to consumers all over the business. Oh, and did we mention that
this data must be compliant with GDPR, CCPA, and other industry regulations? It’s a
challenging role and it’s difficult to keep everyone happy—it seems like his platform
is always one transformation away from what BI actually wanted.

Who Is Responsible for Data Reliability?
So, who in your data organization owns the reliability piece of your data ecosystem?

As you can imagine, the answer isn’t simple. From your company’s CDO to your
data engineers, it’s ultimately everyone’s responsibility to ensure data reliability. And
although nearly every arm of every organization at every company relies on data,
not every data team has the same structure, and various industries have different
requirements. For instance, it’s the norm for financial institutions to hire entire teams
of data governance experts, but at a small startup, not so much. And for those
startups that do—we commend you!

In Table 8-1, we outline our approach to mapping data responsibilities, from acces‐
sibility to reliability, across your data organization using the RACI (Responsible,
Accountable, Consulted, and Informed) matrix guidelines. The RACI matrix for data
personas offers a clear way of understanding who owns what in the modern data
organization.
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Table 8-1. RACI matrix for ownership in a modern data organization

CDO Business
Intelligence

Analytics
Engineer

Data
Science

Data
Engineering

Data
Governance

Product
Manager

Facilitate Data
Accessibility

Aa R A C R C R

Make It Easy to
Interpret Data

A R C R C I C

Drive Insights and
Recommendations
Based on Data

A R R R C C C

Ensure Data
Compliance

A I I I I R C

Maintain High Data
Quality

A C/I A R R C R

Deliver on Data
Reliability

A C/I R C R I R

a R = Responsible, A = Accountable, C = Consulted, and I = Informed

At companies that ingest and transform terabytes of data—like Netflix or Uber—
we’ve found that it’s common for data engineers and data product managers to tackle
the responsibility of monitoring and alerting for data reliability issues. Barring these
behemoths, the responsibility often falls on data engineers and product managers.
They must balance the organization’s demand for data with what can be provided
reliably.

Notably, the brunt of any bad choices made here is often borne by the BI analysts,
whose dashboards may wind up containing bad information or break from uncom‐
municated changes. In very early data organizations, these roles are often combined
into a jack-of-all-trades data person or a product manager.

Creating Accountability for Data Quality
Say it with me: data engineers are not data catalogs. You would be hard pressed to
find “answering multiple Slack messages every week about which tables are good to
use for this report,” in their job description, but it happens nonetheless. Data analysts
aren’t psychic. Yet, they are often placed in the position of having to intuit if the data
being piped is trustworthy. This misalignment has arisen as data teams are pushed
to move faster, weave themselves across the data mesh, and enable increasingly
self-service data platforms.

It’s the data team’s equivalent of the classic document version control issues that have
plagued knowledge workers for decades. What starts as a tight pitch deck evolves
into:
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• A million people making and sharing ad hoc slides•
• Massaging content on those slides until it becomes an echo of its original intent•
• Creating copies labeled V6_Final_RealFinal•

The same thing happens across the data team. Everyone is trying to do the right thing
(i.e., support your stakeholders, generate insights, pipe more data, etc.), but everyone
is also moving fast. One day you look up and notice you have six different models
with slight variations essentially doing the same thing, and no one knows which one
is most up-to-date or even which field to use.

This creates real operational problems downstream including:

• Inefficient cycles of redundant “traffic control”•
• Lower data quality•
• Time spent resolving problems created from analysts using improper/problem‐•

atic data
• Lower data trust across the organization•
• Increased data downtime•

When you don’t trust your data or you have lower data reliability, organizations often
pad the margins of error in their forecasts. As highlighted by Peleton’s recent produc‐
tion halt, poor forecasting can be especially problematic during a pandemic when
uncertainty across demand, supply chains and the overall business environment is at
an all-time high.

Balancing Data Accessibility with Trust
As discussed in Chapter 2, data discovery is a new and important approach to under‐
standing the health of your distributed data assets in real time, and it’s an essential
part of the modern data stack. Data discovery (depicted in Figure 8-5) provides
a domain-specific, dynamic understanding of your data based on how it’s being
ingested, stored, aggregated, and used by a set of specific consumers. It can replace
the modern data catalog by providing distributed, real-time insights about data across
different domains, all while abiding by a central set of governance standards.

As with a data catalog, governance standards and tooling are federated across these
domains (allowing for greater accessibility and interoperability), but unlike a data
catalog, data discovery surfaces a real-time understanding of the data’s current state as
opposed to its ideal or “cataloged” state.
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Figure 8-5. Data discovery provides real-time insights about data across different
domains

It is especially useful when teams take a distributed approach to governance that
holds different data owners accountable for their data as products, which allows
data-savvy users throughout the business to self-serve from those products.

But as data becomes more accessible, how can downstream stakeholders determine
what data sets have been served, transformed, and approved by a given domain’s
data team? How can one domain be sure a common set of data quality standards,
ownership, and communication processes are being upheld across the organization?

For many teams, the answer lies in data certification.
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Certifying Your Data
Data certification is the process by which data assets are approved for use across the
organization after having met mutually agreed upon SLAs for data quality, observa‐
bility, ownership/accountability, issue resolution, and communication.

Similar to the concepts of data quality, data validation, or data verification, data
certification layers critical processes that align people, frameworks, and technology to
central business policies. Data certification requirements vary based on the needs of
the business, the capacity of the data engineering team, and the availability of data,
but they typically incorporate features such as the following:

• Automated quality checks for freshness, volume, schema, and distribution•
• Delivery SLAs with defined uptime•
• Data owners who are accountable for investigating alerts•
• Alerts routed to Slack (or email)•
• Set communication process for outages•

Seven Steps to Implementing a
Data Certification Program
Data certification programs increase scalability by leveraging a consistent approach
applied across multiple domains. They also increase efficiency by facilitating
more trustworthy exchanges of information between domains with clear lines of
communication.

Here’s how it works.

Step 1: Build out your data observability capabilities
Implementing data observability—an organization’s ability to fully understand the
health of the data in their system—is an important first step in the data certifica‐
tion process. Not only do you need insight into your current performance to set a
baseline, but you also need a systemic end-to-end approach for proactive incident
discovery, alerting, and triaging as shown in Figure 8-6. Powered by observability, a
data incident dashboard automatically surfaces anomalies, schema changes, deleted
tables, and rule breaches.

If anything within the pipeline breaks—and it will break—you will be the first to
know. This head start, along with a detailed understanding of the data ecosystem, will
reduce time to detection and resolution by pinpointing where errors occur.
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Figure 8-6. Data incident dashboard

Knowing what systems and data sets have a tendency to create the largest or most
frequent problems downstream also helps inform the process of writing effective data
SLAs (Step 4). Additionally, understanding the upstream dependencies of your most
important tables or reports helps data teams understand what data to give the most
attention. The bottom line is that a table or data set should be closely monitored for
anomalies (ideally continuously learning and evolving via machine learning) to be
considered certified.

Step 2: Determine your data owners
Each certified data asset should have a responsible party across its life cycle from the
ingestion to analytics layer as shown in Figure 8-7. Modern metadata management
tools allow data owners to be assigned to tables along with other tags, helping them
keep tabs on the reliability of critical data sets.

Figure 8-7. Responsible parties should be assigned for each layer

Some data teams may choose to implement a RACI matrix; others may build it
directly into the specific SLA along with the expected communication procedures and
resolution times.
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Step 3: Understand what “good” data looks like
By asking your business stakeholders the “who, what, when, where, and why,” you
can understand what data quality means to them and which data is actually the most
important. This will enable you to develop key performance indicators such as:

• Freshness•
— Data will be refreshed by 8:00 a.m. daily (great for cases where the CEO or—

other key executives are checking their dashboards at 8:30 a.m.).
— Data will never be older than X hours.—

• Distribution•
— Column X will never be null.—
— Column Y will always be unique.—
— Field X will always be equal to or greater than field Y.—

• Volume•
— Table X will never decrease in size.—

• Schema•
— No fields will be deleted on this table.—

• Lineage•
— 100% of the data populating table X will have upstream sources and down‐—

stream ingestors mapped and include relevant metadata.
• Data downtime (or availability)•

— The number of incidents multiplied by (time to detection + time to resolu‐—
tion). An example of a data downtime SLA could be table X will have less than
Y hours of downtime a year.

— SLAs that measure each of the components of data downtime can be more—
actionable. Examples include we will reduce our incidents X%, time to detec‐
tion X%, and time to resolution X%.

• Query speed•
— Our friends at Locally Optimistic suggest: “Average query run time is a good—

place to start, but you may need to create a more nuanced metric (e.g., X% of
queries finish in <Y seconds).”

• Ingestion (great for keeping external partners accountable)•
— Data will be received by 5 a.m. each morning from partner Y.—

This process also enables you to configure granular alerting rules tailored to what
matters most to the business.
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Step 4: Set clear SLAs, SLOs, and SLIs for your most important data sets
As highlighted in Chapter 6, setting SLAs for your data pipeline is a major step
toward increasing your data reliability and is essential to a data certification program.
SLAs must be specific, measurable by an SLO and SLI, and achievable.

Not only do SLAs describe an agreed-upon standard of service, they define the
relationship between parties. In other words, they outline who is responsible for what
during normal operations as well as when issues occur.

In our discussions with Brandon Beidel, a Senior Data Scientist with Red Ventures, he
suggested that an effective SLA is realistic. Simply saying “having reliable data at all
times” is too vague to be useful; instead, Brandon suggested, teams should set SLAs
that are focused: “Good SLAs are specific and detailed. They will describe why it’s
important to the business, what the expectations are, when those expectations need to
be met, how they will be met, where the data lives, and who is impacted by it.”

Beidel includes within his SLAs how the team should respond if the SLA isn’t met.
For example, the “data in table X will be refreshed every day by 8:00 a.m.” will
transform into, “Team Z will ensure the data in table X will be refreshed every day by
8:00 a.m. Within two hours of an anomaly alert, the team will verify, communicate
to affected parties, and begin a root cause analysis of the issue. Within one business
day a ticket will be created and the wider team will be updated on the progress made
toward resolution.”

To achieve this level of specificity and organization, teams should align early—and
often—with stakeholders to understand what good data looks like. That includes
within the data team as well as the business. A good SLA needs to be informed by the
realities of how the business operates and how your users consume the data.

Beidel takes a slightly different approach and differentiates between what he consid‐
ers the SLA of “Table x will be updated by 8 a.m.” and the SLO of “We will aim to
meet this SLA 99% of the time.” However you decide to approach it, he recommends
against boiling the ocean. Most of his customers are implementing their data certifi‐
cation programs as “go forward” first and cleaning up older assets in a second wave.

In fact, many of the best data teams will start certifying the most critical tables and
data sets: the ones that add the most value to the business, have the most query
activity, number of users, or dependencies. Some are also implementing tiers of
certification—bronze, silver, gold—that convey different levels of service and support.

Step 5: Develop your communication and incident management processes
Where and how will alerts be sent to the team? How will next steps and progress be
communicated internally and externally? While this may seem like table stakes, clear
and transparent communication is essential to creating a culture of accountability.
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Many teams opt to have alerts and incident triage discussions take place in Slack,
PagerDuty, or Microsoft Teams. This enables rapid coordination while giving full
transparency to the wider team as part of a healthy incident management workflow,
as discussed in Chapter 6.

It’s also important to consider how to communicate major outages to the rest of the
organization. For example, if an alert turns out to be a huge production outage, how
does the on-call engineer inform the rest of the company? Where do they make that
announcement and how frequently do they provide updates?

Step 6: Determine a mechanism to tag the data as certified
At this point, you have created SLAs with measurable objectives, transparent own‐
ership, clear communication processes, and strong issue resolution expectations.
You have the tools and proactive measures in place to empower your teams to be
successful. The final step is to certify and surface the approved data assets for your
stakeholders.

We recommend decentralizing the certification process. After all, the certification
process is designed to help make teams faster and more scalable. Having centralized
regulations, enacted at the domain level, will achieve these goals and avoid creating
too much red tape. For the certification process, data teams will tag, search, and lev‐
erage their tables appropriately using either data discovery solutions, a home-grown
tool, or some other form of data catalog.

Step 7: Train your data team and downstream consumers
Of course, just because tables are tagged as certified doesn’t guarantee analysts will
stay in bounds. The team will need to be trained in the proper procedures, which will
need to be enforced as necessary. Fine-tuning the level of alerts and communication
is important as well.

Occasionally receiving alerts that don’t require action is healthy. For example, you
may have a table that grows significantly in size, but it was expected because the
team added a new data source. Nothing is broken and in need of fixing, but it’s still
helpful for the team to know. After all, “expected” behavior to one person might still
be newsworthy and critical to another member of the team—or even another domain.

However, alert fatigue is real. If the team is starting to ignore alerts, it can be a
sign to optimize your approach by either adjusting your monitors or bifurcating
communication channels to better surface the most important information.

When it comes to your data consumers, don’t be shy! You have put in an incredibly
robust system for data quality aligned to their needs. Help them move from a subjec‐
tive to objective understanding of how your team is performing and start giving them
the vocabulary to be part of the solution.
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Data certification can be a beautiful process to see in action. The data engineer tags
the table as certified along with the owner of the data set, and surfaces it within the
data warehouse for an analyst to grab it and use in their dashboard. And voila! No
more (or at least, a whole lot less) data downtime.

At its core, this process underscores that without the proper processes and culture in
place, certifying reliability and building organizational trust in your data is extremely
difficult. Technology will never be a replacement for good data hygiene, but it cer‐
tainly helps.

Second perhaps only to implementing a data certification program with clear SLAs,
modern data teams can best navigate the cultural and organizational hurdles of data
quality by prioritizing a team structure that plays to the strengths and needs of their
business.

Case Study: Toast’s Journey to Finding
the Right Structure for Their Data Team
About mortality, Shakespeare’s Hamlet once said: “To be or not to be, that is the
question.” About her data team, a wise head of data at a startup once said: “To
centralize or decentralize, that is the question.” And it’s an important one. Here’s how
some of the best data leaders apply an agile methodology to build data organizations
that scale with the growth of their companies.

As startups increasingly invest in data to drive decision making and power their dig‐
ital products, data leaders are tasked with scaling their teams—and fast. From know‐
ing which roles to hire for (and when) to setting SLAs for data, today’s data leaders
are responsible for—quite literally—keeping their companies insight-informed at
each stage of the journey.

Regardless of where you are in this marathon, one of the biggest challenges is deter‐
mining the proper reporting structure for your data team. As data needs increase,
so too do the bottlenecks imposed by centralized data teams—and the duplication
and complexity introduced by decentralized ones. And just when you think you’ve
figured out the *perfect* paradigm (i.e., a central data engineering team, distributed
data analysts, and a few analytics engineers to bridge the gaps or a handful of data
analysts reporting to the COO with data engineers working under the CTO), your
entire strategy gets turned on its head when priorities shift.

So, what’s a data leader to do?

To better understand how some of the best teams are tackling this problem, we sat
down with Greg Waldman, Senior Director of Business Intelligence at Toast, a newly
public provider of point-of-sale software for restaurants, to discuss the evolution of
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his company’s data team and share his experiences navigating the never-ending tug of
war between these centralized and decentralized structures.

Over the last five years, Greg led the Toast data team as it grew from one analyst
(Greg himself) to a 20+ person organization, and has evolved from a centralized to a
hybrid-decentralized model—and back again. Read on to learn how Greg’s team lets
business needs drive the data team structure, how he knew when it was necessary to
make those changes, and the crucial role he wishes he had hired much sooner.

In the Beginning: When a Small Team
Struggles to Meet Data Demands
When Greg joined Toast in 2016, the company already had 200 employees—but no
dedicated analytics staff. Despite this shortage of specialized talent, the company had
always prioritized using data to make decisions. Greg said:

Our founding team was just really sharp. They ran the company on Excel documents,
but eventually when they got to 200 people, they knew that approach wasn’t going to
scale. When I came on, the ask was basically, “We have too many meetings where one
person thinks the number’s five and the other person thinks the number’s four, and
then they just bicker about that the whole time. So, make that stop happening.

Immediately, Greg dug in and began building out tools, processes, and a basic data
program. Over the first year, the Toast data team tripled—they now had three people.
And the company continued to use data to drive its culture and decision-making.
“Everybody says they have a data-driven culture, but I’ve worked at enough places
to know the difference, and I see the juxtaposition compared to Toast,” said Greg.
“Our people throughout the company—especially our leadership—really look for
data before they make big decisions.”

But while the small data team tripled, Toast itself had doubled. By 2018, the company
had 400 employees. The centralized data team couldn’t keep up with the demands of
the entire fast-growing, data-obsessed organization. “We had lines out the door,” said
Greg. “There was just an appetite for more data than we were able to provide. And I
think that was a bit of an inflection point for us. Because if you don’t figure out a way
to serve that need, then the business might start operating in a different way—and be
less data-driven if you can’t get them the necessary data.”

Supporting Hypergrowth as a Decentralized Data Operation
The shift to a decentralized structure began to take shape organically as departments
began finding ways to meet their own data needs. “Eventually small pockets of analyt‐
ics opened up in other parts of the company, like sales and customer success,” Greg
said. “Mostly because our small team just couldn’t meet the needs of the growing
business. And so they started their own teams, and that kind of worked!”
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In 2018, this decentralized team of 10 data professionals worked within business
units, meeting data needs and supporting Toast’s head-spinning trajectory as the
company nearly doubled again, growing to 850 employees. Greg and his team also
rebuilt their data tech stack, migrating from an end-to-end data platform to a modern
distributed stack including S3, Airflow, Snowflake, Stitch, and Looker.

Dedicated analysts working in their business units still maintained a close connection
with Greg’s core analytics team, giving Toast a hybrid between a fully centralized
and fully decentralized data team structure. But as the organization continued to
scale—reaching a headcount of 1,250 employees in 2019, with 15 data analysts, data
scientists, and data engineers—problems began to arise from this hybrid model.

Data consistency was one concern. “There were various degrees of rigor across the
organization when it comes to what constitutes good data. When you’re small, you’re
scrappy, you’re growing, and any data is better than no data. But eventually, we
reached a scale where we knew that inaccurate data could be harmful.”

And even with technically accurate data, Greg knew that strong communication
between analysts, technical leaders, and downstream stakeholders was critical when
it came to establishing a standard of data observability and trust across the entire
company. “As the business got bigger and more complicated, you need analysts to
start seeing the whole business,” said Greg. “Even in a decentralized model you
need to ensure analysts work in close collaboration with other analysts and technical
leaders when it comes to setting the standards around performance and operability.”

Regrouping, Recentralizing, and Refocusing on Data Trust
So Toast brought analysts that had been working under their respective Customer
Success and Go-To-Market teams back under an analytics umbrella, as depicted in
Figure 8-8. When evaluating how to structure his data team, Greg always weighs
three options: centralized, decentralized, and hybrid, each of which they tried on for
size over time. In the end, he found the hybrid model to be most effective for the size
and scope of his analytics-heavy team.

“We ended up centralizing and a discussed but underrated benefit has been just how
much folks on the team have learned from one another,” said Greg. The team is now
part of the Finance & Strategy department. But he knows the centralized structure
may not be the long-term solution for Toast.

“The way I think about data teams, in a nutshell, is that you want everyone to add
as much business value as possible,” said Greg. “We’ve been very open to change and
trying different things and understanding that what works with 200 people versus 500
people versus a thousand versus two thousand is not the same answer, and that’s OK.
It can be somewhat obvious when you’ve reached those inflection points and need to
try something new.”
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Figure 8-8. Three potential data team structures. Source: Adapted from an image by
Greg Waldman and Toast

At the end of the day, it’s all about meeting the needs of the business—no matter what
it means for your team’s reporting structure—while ensuring that technical leads are
enablers and not bottlenecks for analysts.

Considerations When Scaling Your Data Team
Ultimately, Greg’s team settled on a centralized data team structure with a few dis‐
tributed elements, affording them greater ownership and governance over their data
products and the ability to build a scalable, modular data stack. Greg has some hard-
won advice for data leaders facing similar challenges at hypergrowth companies—but
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every tactic goes back to his principle of focusing on what approach best meets the
business needs of your company, which will likely change over time.

In short, he suggests, leaders should stay nimble and teams should be willing to adapt
to the needs of the business. Here’s how.

Hire data generalists, not specialists—with one exception
According to Greg, the first specialist you should hire is a data engineer:

Early on, we basically just hired data athletes who could do a little bit of everything.
We had those athletes playing analyst/data engineer. And I had a senior manager role
open, and a data engineer applied, but she didn’t have any interest in managing. When
I talked to her, it became obvious how badly we needed the dedicated data engineering
skill set on the team. And in retrospect, I should have been looking for someone like
that a year earlier given our growth trajectory.

All too often, data teams are hamstrung by the lack of technical support needed
to build and maintain ETL pipelines, as well as ensure that the data infrastructure
underlying them can scale with the analytics needs of the company. Greg notes,
“So while I still believe in hiring data athletes who can do a bit of everything, data
engineers are the one exception. After you hire a few analysts, your first data engineer
should follow close behind.”

Prioritize building a diverse data team from day one
This goes without saying, but when it comes to setting up your team for long-term
success, you need to invest (early) in candidates with diverse experiences and back‐
grounds. Homogeneity is a nonstarter for innovation and prevents data analysts and
engineers from understanding the perspectives and needs of all data consumers.
When you’re moving quickly at scale, however, it can be hard to remember this—
unless you put in place a set of clear hiring and growth KPIs that reflect this goal.

“Think about diversity early on,” said Greg. “Because especially in these small data
teams, if you’re not careful, you’ll just end up with a bunch of like-minded people
from similar backgrounds. And you don’t want a bunch of the same people—you
need different perspectives.”

It’s one thing to say, “We need to build a diverse team,” but something else entirely to
do it. So how should data leaders get started? Here are a few tips:

• Partner with executives and your Human Resources team to write job descrip‐•
tions that are inclusive of different experiences and backgrounds (i.e., avoiding
excessively masculine language in favor of gender-neutral ones).

• Put together diverse hiring panels (even if they’re not pulled from the data team)•
to embody the team you’re striving to build.
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• Cast a wide net to recruit for candidates who may not have traditional data titles•
or roles; it’s a constantly evolving space!

• Implement a gender- and race-blind application process that screens based on•
qualifications and experiences.

• It can be much harder to build a diverse team later in the startup journey because•
people from different backgrounds want to join a team that has people from
different backgrounds. If you don’t think about that right out of the gate, it can be
much more challenging.

Overcommunication is key to change management
This point is even more relevant in our remote-first world, in which many teams
work from home and overcommunication over email, Slack, and carrier pigeon (just
kidding!) is a necessary part of any job. According to Tomasz Tunguz, Managing
Director at Redpoint Ventures, companies should repeat themselves (i.e., their core
value propositions) with customers consistently, even if it seems unnecessary. The
same goes for data leaders when it comes to communicating their work and any team
changes with data stakeholders.

For instance, if your decentralized customer success analyst is migrating to report up
into the head of analytics after three months working under the head of customer
success, not only should you communicate that this change is happening, but also
reiterate that this adjustment doesn’t change the nature of your team’s output. Stake‐
holders can still expect accurate, timely analysis that maps to core business objectives,
even if the team is no longer distributed.

While structural changes inevitably impact the nature of the relationship between
stakeholder (the functional team) and service provider (the data team), codifying,
communicating, and repeating how this shift will not impact your team’s KPIs will
restore goodwill and help cross-functional groups overcome change.

“If you have analysts reporting into business leaders, make sure that they’re empow‐
ered to push back based on the data they are seeing,” said Greg. “Otherwise it can
be a tricky dynamic where they are encouraged to show data that backs anecdotal
hypotheses. When you bring those teams back under an analytics umbrella, your
analysts are going to learn from one another, but influencing other departments can
be challenging.” Most recently, Toast has been running a largely centralized analytics
model, which has performed well and met the needs of the business for the last year
and a half.

Don’t overvalue a “single source of truth”
The concept of a “single source of truth” or golden data is a powerful one—for good
reason. Striving for metrics alignment and consistently clean data can help companies
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trust that their data is pointing them in the right direction. Still, as a data leader at a
hypergrowth startup, you’ll be pulled in to work on lots of experiments and projects
at any given time—as long as you have directional observability into data trust (i.e., Is
this table up to date? Do I know who owns this data set? Why did 50 rows turn into
500?), the need for a “single source of truth” isn’t as pressing.

“I always tell people not to overvalue the whole ‘single source of truth’ concept,” said
Greg. “As a perfectionist, it took a long time for me to learn this. There are times
when you need to be 100% correct, and then there are a lot of times where you don’t.
Often, directional accuracy is fine, and you’ll just waste resources trying to be perfect.
The 80/20 rule is key.”

Data is always messy and rarely perfect. You’ll get more done if you prioritize having
an end-to-end view of data health and accuracy over more granular control.

Greg’s final piece of advice for data leaders?

“Hire good people with strong communication skills and everything else becomes
a lot easier. Good people will lead you to other great people, and you can hire the
smartest people in the world, but if they can’t communicate their analyses to less
technical folks they simply won’t be successful.”

Increasing Data Literacy
We’ve discussed the “what” and “who” of democratizing data quality, but “how” do
you actually build a culture of data quality? For many organizations, it all starts with
data literacy, in other words, the ability to read, write, and communicate about data
in a way that drives value and impact for the organization. After all, how can you
understand the value of data quality if you don’t even understand the value of data?
Or, for that matter, know how to use it?

A good data literacy strategy will gain top-down buy-in and bottoms-up adoption by
making data more accessible and easy to work with, leveraging self-service tooling
and education for less technical team members. The way to make these data initia‐
tives successful beyond the boundaries of the data function and impactful for the
broader organization, then, is to meet data stakeholders where they are.

One CDO Barr spoke with at the MIT CDO Symposium a few years ago shared with
the group that he created a new role called “Head of Data Literacy,” serving the entire
business. This person was responsible for ensuring that each business unit in this
~10K employee organization was “fluent in data.”

For example, they are creating a scorecard for each business unit to measure the
performance of the function in terms of data skills such as Excel, SQL, R, Python, etc.
They are then helping each function define goals for their data literacy aspirations
(i.e., what skills each person should know and to what level of depth and breadth);
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training/educating the teams to help members improve their skills; and overall get‐
ting more “data-fluent” as an organization. It is quite powerful to have a single point
of accountability in the organization on the hook for getting the entire company to be
data-literate in a very concrete, measurable way.

To achieve “data-fluency,” however, it’s important for data managers to prioritize both
data literacy and educating stakeholders about the value of data quality. After all,
what good is knowing how to work with and interpret data if the data itself can’t be
trusted to deliver accurate insights?

In our talks with Wendy Turner-Williams, Chief Data Officer at Tableau, she stated:

Simplifying and putting data in the hands of those who need it, when they need it
is hugely important. In addition, literacy is equally important and goes into multiple
things such as how you educate people inside your own company to use data and
understanding how data is used across teams to give you insight into what you can do
with data and drive value from it when it’s trustworthy.

Several data leaders we’ve spoken to over the years say that their number one hurdle
in terms of long-term sustainability of their data quality initiatives (and the success of
their data teams) is lack of documentation. Too often, teams rely on tacit knowledge
and outdated wiki pages to keep tabs on their data, and that’s just not scalable or
sustainable.

When we interviewed Amy Smith, Staff Business Analyst at Intuit, she said the best
way to ensure that your data team is all on the same page is through knowledge
sharing, early and often: “A lot of a data scientist’s early success is through joining a
team that is willing to take the time necessary to write down their knowledge,” she
said. “Putting the collective knowledge of a team into a form that someone new can
read and get up to speed on is hugely important.”

More specifically, lack of robust information about data and metadata is a major pain
point for teams, but it’s something that can be addressed. Some solutions that make
these insights easier to access are:

Data catalogs
Smaller teams (2–5 people) may get by with an Excel spreadsheet, but as your
data stack matures, consider investing in an in-house, third-party, or even open
source solution (more to come in the next section, “Prioritizing Data Governance
and Compliance”).

Database management system (DBMS)
A DBMS is a software application or package designed to manage data in a data‐
base, including the data’s format, field names, record structure, and file structure.
While this won’t replace a data catalog in terms of providing context, it will help
you keep your data organized for easy access.
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Data modeling tools
Data modeling tools give teams the ability to discover and visualize data assets.
These products can also help teams understand the relationship between various
elements of your data stack.

Operational analytics dashboards
Your data knowledge only matters if your data can be trusted. Operational ana‐
lytics dashboards about your data platform solve many of the same issues as data
catalogs, DBMSs, and data modeling tools, but they also provide insights into
how the data is being used and which data matters most to the business based on
consumption, number of data quality rules set, and other key indicators of data
set importance.

In addition, teams who want to take knowledge transfer and accessibility a step
further can make a point to build out their data operations with missing information
and other context. To this end, data leaders should encourage their analysts to add
missing dimensions to data when noticed, not only when required. Just because
you’re not using it now doesn’t mean you or a colleague won’t use it later.

Prioritizing Data Governance and Compliance
Perhaps there’s no topic in all of the larger data quality discussion that draws as much
confusion and ire as data governance, in other words, the management of data across
and beyond an organization. Data governance is top of mind for many data leaders,
particularly in light of GDPR, CCPA, IPOs, COVID-19, and any number of other
acronyms that speak to the increasing importance of compliance and privacy when it
comes to managing your company’s data.

Traditionally, data governance refers to the process of maintaining the availability,
usability, provenance, and security of data, and, as a data leader once told us, is the
“keep your CFO out of jail card.” Still, Gartner suggests that more than 80% of data
governance initiatives will fail in 2022.

In our opinion, data governance gets a bad reputation, primarily because traditional
approaches fail to scale with the needs of cloud-based data stacks. Over the past
several years, data catalogs have emerged as a powerful tool for data governance.
As companies digitize and their data operations democratize, it’s important for all
elements of the data stack, from warehouses to business intelligence platforms, and
now, catalogs, to participate in compliance best practices.

Prioritizing a Data Catalog
When you think of data governance, data catalogs often come to mind. As you’ll
recall from Chapter 2, data catalogs have historically served as the basis of a data
team’s ability to store and curate metadata about data usage and location. Analogous
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to a physical library catalog, data catalogs serve as an inventory of metadata and give
investors the information necessary to evaluate data accessibility, health, and location.

Since data catalogs provide a single source of truth about a company’s data sources,
it’s very easy to leverage data catalogs to manage the data in your pipelines. Data cata‐
logs can be used to store metadata that gives stakeholders a better understanding of a
specific source’s lineage, thereby instilling greater trust in the data itself. Additionally,
data catalogs make it easy to keep track of where personally identifiable information
(PII) can both be housed and sprawl downstream, as well as who in the organization
has the permission to access it across the pipeline.

Traditionally, manual data catalogs and metadata management platforms have been
the de facto approach to tackling data governance, but as systems evolve, we’re
finding this approach insufficient to keep up with the pace of data growth and the
distribution of data across distinct domains. Fortunately, many vendors are getting
smart to this new need and are embracing machine learning and knowledge graph–
based technologies to make governance more accessible and scalable.

There are three major types of automated data catalogs on the market today, available
as in-house solutions, third-party tools, or open source technologies.

In-house
Some B2C companies—we’re talking the Airbnbs, Netflixs, and Ubers of the world—
build their own data catalogs to ensure data compliance with state, country, and
even economic union (e.g., GDPR) level regulations. The biggest perk of in-house
solutions is the ability to quickly spin up customizable dashboards, pulling out fields
your team needs the most.

While in-house tools (like Uber’s Databook, depicted in Figure 8-9) make for quick
customization, over time, such hacks can lead to a lack of visibility and collaboration,
particularly when it comes to understanding data lineage. In fact, one data leader I
spoke with at a food delivery startup noted that what was clearly missing from her
in-house data catalog was a “single pane of glass.” If she had a single source of truth
that could provide insight into how her team’s tables were being leveraged by other
parts of the business, ensuring compliance would be easy.

On top of these tactical considerations, spending engineering time and resources
building a multimillion dollar data catalog just doesn’t make sense for the vast
majority of companies.
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Figure 8-9. Uber’s Databook lets data scientists easily search for tables and other critical
assets across business domains

Third-party
Traditionally, data catalogs were managed manually and governed in silos, often
requiring duplicated work between different analysts and data science teams. Now,
there are a whole host of ML-powered data catalogs on the market that lend them‐
selves to distributed governance, many with pay-for-play workflow and repository-
oriented compliance management integrations. Some cloud providers, like Google,
AWS, and Azure, also offer data governance tooling integration at an additional cost.

In our conversations with data leaders, one downside of legacy solutions came up
time and again: usability. While nearly all of these tools have strong collaboration
features, one Data Engineering VP I spoke with specifically called out his third-party
catalog’s unintuitive UI. If data tools aren’t easy to use, how can we expect users to
understand or even care whether they’re compliant?

Open source
In 2018, Lyft became an industry leader by making their data discovery and meta‐
data engine, Amundsen, named after the famed Antarctic explorer, open source
(Figure 8-10). Other open source tools, such as Apache Atlas, Magda, and CKAN,
provide similar functionalities, and all three make it easy for development-savvy
teams to fork an instance of the software and get started.
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Figure 8-10. Amundsen, an open source data catalog, gives users insight into data set
ownership

While tools like Amundsen allow teams to tag metadata to control user access, this
is an intensive and often manual process that most teams just don’t have the time to
tackle. In fact, a product manager at a leading transportation company shared that
his team specifically chose not to use an open source data catalog because they didn’t
have off-the-shelf support for all the data sources and data management tooling in
their stack, making data governance extra challenging.

Beyond Catalogs: Enforcing Data Governance
As data organizations mature, however, data catalogs alone are unable to keep up
with the requirements of modern data governance programs. To start, mitigating
governance gaps is a monumental undertaking, and it’s impossible to prioritize these
without a full understanding of which data assets are actually being accessed by
your company. Data lineage and observability help fill these gaps, as discussed in
Chapter 2.

Data accessibility and security are also an important feature of data governance,
particularly for organizations with distributed analytics teams or working with sen‐
sitive third-party information. As a result, data governance programs should also
incorporate automated and distributed policy enforcement (whether built in-house
or purchased via a third-party vendor) to manage PII identification and access
controls.

Still, even with data catalogs, observability platforms, lineage, and data access con‐
trols, it’s impossible to gain buy-in on governance (and all of data quality for that
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matter) without a data culture that prioritizes the right processes and workflows to
make data reliable and secure at scale.

We talked to Zosia Kossowski, Group Product Manager, Business Intelligence at
HubSpot, and she acknowledged that it is not an easy task to build a culture that
prioritizes governance, particularly at scale:

From a cultural aspect, it’s tough when a community, especially as a company grows
quickly and is used to having a certain level of autonomy in general, not just with
data. As your company gets larger, you really have to implement more processes
and regulations to make sure that you are bringing everyone along and having them
understand the pain that a lack of governance and alignment can cause.

Zosia acknowledges that for most organizations data governance is also a cultural
shift:

If you are a data-driven company and it is a priority for your data to be clean and
usable when a product is released that is part of the acceptance criteria, then it is a lot
easier than if data is a byproduct or an afterthought that is troublesome when you have
to come to an engineering team and you’re like, “This is wrong.” My recommendation
is getting engineering leaders and anyone who’s involved in producing data as part of
your data governance conversations early on so they understand the pain that is caused
as well.

Building a Data Quality Strategy
Over the past several sections, we’ve discussed the technical, process-driven, and
organizational requirements necessary to scale a culture of data quality. Now, let’s
put it all together and lay the groundwork for building a data quality strategy from
scratch. Here are the critical steps data engineering and analytics leaders must take
when launching a data quality initiative at their company.

Make Leadership Accountable for Data Quality
Before you start trying to secure leadership and stakeholder buy-in, it’s important to
be transparent about the current state of your data quality strategy. Consider how you
might answer the following questions:

• How do you measure the data quality of the assets your company collects and•
stores?

• What are the key KPIs or goals you’re going to hold your data quality strategy•
accountable for meeting?

• Do you have cross-functional involvement from leadership and data users in•
other parts of the company?
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• Who at the company will be held accountable for meeting your strategy’s KPIs•
and goals?

• What checks and balances do you have to ensure KPIs are measured correctly•
and goals can be met?

In the same way that having visibility into your data pipelines makes it easy to ensure
high data quality, transparency into both your strategy and its incremental progress
will be critical when it comes to keeping everyone informed and accountable.

Set Data Quality KPIs
Before you tackle your data SLAs (as discussed in Chapter 6), it’s critical to under‐
stand and align on each part of the data life cycle and how data brings value to your
company. The outcome of each phase in this process will determine your correspond‐
ing data quality SLAs and measurements. For instance, raw data ingested by your
data lake or warehouse needs to fulfill different requirements than transformed data
rendered in a data warehouse.

Avoid focusing on data quality measurements. Instead, keep it simple. Measure for
tangible metrics like completeness, freshness, accuracy, consistency, and validity as
opposed to obscure “accuracy” scores or other homegrown measurements. These
types of frameworks will only lead to confusion down the road as SLAs shift to meet
company priorities.

Spearhead a Data Governance Program
If a data quality program launches but no one else at the company hears about it
(including leadership), will it have an impact? Probably not. With the exception of a
few noteworthy companies, data governance isn’t often a formalized role, particularly
in the context of data engineering.

To make sure that data users across the company are aware of why data quality
matters, we suggest developing a program for data quality champions to carry the
torch and shepherd others through data access, use, and storage best practices. Make
participation and evangelism easy and accessible. Be sure to communicate how data
quality affects their functional areas, from marketing to sales, and make it easy for
them to share and enforce with their team. Focus on short-term or quick wins to get
traction while promoting and executing on the long-term strategy.

Automate Your Lineage and Data Governance Tooling
With increasingly stringent compliance measures around data access and applica‐
tions, a manual approach to data quality monitoring as a vehicle for data gover‐
nance is not cutting it. Not only is manual data quality monitoring tedious and
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time-consuming, but these tools can’t keep pace with the speed of innovation across
the rest of the data stack (think: ML-enabled data modeling, speedy analytics dash‐
boards, and the data mesh).

Instead, we suggest investing in automated tools that can quickly validate, monitor,
and alert for data quality issues as they arise. Add the ability to set custom rules, and
these technologies can truly unlock the potential of data for your organization.

Create a Communications Plan
Now that all of the pieces are in place, the final step is to put together a robust and
comprehensive, program-level communications plan that will keep leadership in the
loop, stakeholders aligned with your project’s progress, and data stewards abreast of
their marching orders. A good communication plan will be bidirectional and keep
all involved in the loop on the status of relevant deliverables. A great communication
plan will instill confidence in even skeptical parties that your team is in command of
the situation, regardless of how far you are from your goals.

At the end of the day, the goal of your data quality strategy will be to ensure that
teams across the entire company feel empowered to use data that is trustworthy. In
fact, a robust and comprehensive data quality strategy makes all the difference when
it comes to doing just about anything in data, from scaling an effective data team to
building a great data platform.

Summary
Achieving data democratization is just as much of a technical process as it is a
cultural one. Regardless of where you fall on the RACI matrix of data personas,
chances are data quality plays an important role in your ability to succeed as a data
practitioner.

Democratizing data quality requires these critical steps:

• Treating data with the diligence of a production software product•
• Assembling a data team that can prioritize data quality at the source•
• Making data literacy a first-class citizen•
• Adopting process and technologies that can scale data governance•

In our opinion, the most meaningful conversations we’ve had on this topic stem
from experience: broken data pipelines, accidental compliance oversights, and stale
dashboards. After all, without suffering the pain firsthand, it can be hard to muster
the engineering energy and technical resources to prioritize it.
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Fortunately, the tide is turning. Increasingly, companies are hiring data reliability
engineers, data observability experts, and data literacy officers to spearhead these
initiatives and make it easier for data engineers and analysts to apply data quality best
practices to their day-to-day work.
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CHAPTER 9

Data Quality in the Real World:
Conversations and Case Studies

It’s great to talk about data quality in theory, but what does this desired state actually
look like in practice?

Over the past several chapters, we’ve walked through what it takes to achieve data
reliability at scale, from how to design a DataOps workflow to common SQL tests to
determine the volume and freshness of your data assets. We’ve sprinkled in a dose
of real-world case studies, but as we all know, data quality isn’t achieved in a text‐
book, and getting to “reliable data” depends on several other elements of your data
analytics and engineering practice. As technologies advance and companies become
more data-reliant, we need to consider how other industry-defining processes and
technologies affect our ability to increase data reliability.

In this chapter, we’ll discuss five topics that are top of mind for many of today’s data
leaders and share how data quality plays a critical part:

• The data mesh and where data quality fits in•
• Data quality’s role in the cloud-based data stack journey•
• Knowledge graphs as the key to more accessible data•
• Data discovery for distributed data architectures•
• When to get started with data quality•

Over the past several years, these five topics, technologies, and trends have become
increasingly common, often giving organizations the advantage necessary to tackle
data reliability in a more scalable and repeatable way. Let’s dive in.
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Building a Data Mesh for Greater Data Quality
In the age of self-service business intelligence, nearly every company considers them‐
selves a data-first company, but not every company is treating their data architecture
with the level of democratization and scalability it deserves.

Your company, for one, views data as a driver of innovation. Your boss was one of
the first in the industry to see the potential in Snowflake and Looker. Or maybe your
CDO spearheaded a cross-functional initiative to educate teams on data management
best practices and your CTO invested in a data engineering group. Most of all, how‐
ever, your entire data team wishes there were an easier way to manage the growing
needs of your organization, from fielding the never-ending stream of ad hoc queries
to wrangling disparate data sources through a central ETL pipeline.

Underpinning this desire for democratization and scalability is the realization that
your current data architecture (in many cases, a siloed data warehouse or a data
lake with some limited real-time streaming capabilities) may not be meeting your
needs. To address the limitations of these siloed infrastructures, many data teams are
moving toward a more distributed model of “federated governance.” Enter the data
mesh.

Much in the same way that software engineering teams transitioned from monolithic
applications to microservice architectures, the data mesh is, in many ways, the data
platform version of microservices. As first defined by Zhamak Dehghani, a Thought‐
works consultant and the original architect of the term, a data mesh is a type of
data platform architecture that embraces the ubiquity of data in the enterprise by
leveraging a domain-oriented, self-serve design.

The data mesh concept utilizes Eric Evans’ theory of domain-driven design, a flexible,
scalable software development paradigm that matches the structure and language of
your code with its corresponding business domain. Unlike traditional monolithic
data infrastructures that handle the consumption, storage, transformation, and out‐
put of data in one central data lake, a data mesh supports distributed, domain-specific
data consumers and views “data as a product,” with each domain handling their own
data pipelines. The tissue connecting these domains and their associated data assets is
a universal interoperability layer that applies the same syntax and data standards.

Instead of reinventing Zhamak’s very thoughtfully built wheel, we’ll boil down the
definition of a data mesh to a few key concepts and highlight how it differs from
traditional data architectures.
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If you haven’t already, we highly recommend reading Zhamak’s
groundbreaking article “How to Move Beyond a Monolithic Data
Lake to a Distributed Data Mesh”, checking out her recent book
on the topic, or watching Max Schulte’s tech talk on why Zalando
transitioned to a data mesh. You will not regret it.

At a high level, a data mesh (Figure 9-1) is composed of three separate components:
data sources, data infrastructure, and domain-oriented data pipelines managed by
functional owners. Underlying the data mesh architecture is a layer of universal
interoperability, reflecting domain-agnostic standards, as well as observability and
governance. The data mesh gives teams the ability to operationalize data across
functional domains, but with the ability to standardize governance (and what data
quality looks like) across these domains.

Figure 9-1. Data mesh visualization

Domain-Oriented Data Owners and Pipelines
Data meshes federate data ownership among domain data owners who are held
accountable for providing their data as products, while also facilitating communica‐
tion between distributed data across different locations.
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While the data infrastructure is responsible for providing each domain with the
solutions with which to process it, domains are tasked with managing ingestion,
cleaning, and aggregation to the data to generate assets that can be used by business
intelligence applications. Each domain is responsible for owning their ETL pipelines,
but a set of capabilities is applied to all domains that stores, catalogs, and maintains
access controls for the raw data. Once data has been served to and transformed by
a given domain, the domain owners can then leverage the data for their analytics or
operational needs.

Self-Serve Functionality
Data meshes leverage principles of domain-oriented design to deliver a self-serve data
platform that allows users to abstract the technical complexity and focus on their
individual data use cases.

As outlined by Zhamak, one of the main concerns of domain-oriented design is the
duplication of efforts and skills needed to maintain data pipelines and infrastructure
in each domain. To address this, the data mesh gleans and extracts domain-agnostic
data infrastructure capabilities into a central platform that handles the data pipeline
engines, storage, and streaming infrastructure. Meanwhile, each domain is responsi‐
ble for leveraging these components to run custom ETL pipelines, giving them the
support necessary to easily serve their data as well as the autonomy required to truly
own the process.

Interoperability and Standardization of Communications
Underlying each domain is a universal set of data standards that helps facilitate
collaboration between domains when necessary—and it often is. It’s inevitable that
some data (both raw sources and cleaned, transformed, and served data sets) will
be valuable to more than one domain. To enable cross-domain collaboration, the
data mesh must standardize on formatting, governance, discoverability, and metadata
fields, among other data features. Moreover, much like an individual microservice,
each data domain must define and agree on service-level agreements and quality
measures that they will “guarantee” to its consumers.

Why Implement a Data Mesh?
Until recently, many companies leveraged a single data warehouse connected to
myriad business intelligence platforms. Such solutions were maintained by a small
group of specialists and frequently burdened by significant technical debt.

In 2020, the architecture du jour was a data lake with real-time data availability and
stream processing, with the goal of ingesting, enriching, transforming, and serving
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data from a centralized data platform. For many organizations, this type of architec‐
ture falls short in a few ways:

• A central ETL pipeline gives teams less control over increasing volumes of data.•
• As every company becomes a data company, different data use cases require•

different types of transformations, putting a heavy load on the central platform.

Such data lakes lead to disconnected data producers, impatient data consumers,
and worst of all, a backlogged data team struggling to keep pace with the demands
of the business. Instead, domain-oriented data architectures, like data meshes, give
teams the best of both worlds: a centralized database (or a distributed data lake)
with domains (or business areas) responsible for handling their own pipelines. As
Zhamak argues, data architectures can be most easily scaled by being broken down
into smaller, domain-oriented components.

Data meshes provide a solution to the shortcomings of data lakes by allowing greater
autonomy and flexibility for data owners, facilitating greater data experimentation
and innovation while lessening the burden on data teams to field the needs of every
data consumer through a single pipeline.

Meanwhile, the data mesh’s self-serve infrastructure as a platform provides data teams
with a universal, domain-agnostic, and often automated approach to data standard‐
ization, data product lineage, data product monitoring, alerting, logging, and data
product quality metrics (in other words, data collection and sharing). Taken together,
these benefits provide a competitive edge compared to traditional data architectures,
which are often hamstrung by the lack of data standardization between both ingestors
and consumers.

To Mesh or Not to Mesh? That Is the Question
Nowadays, it seems like every data person falls into two camps: those who understand
the data mesh and those who don’t. Rest assured: if you’re in either camp, you’re not
alone!

Rarely in recent memory has a topic taken the data world by storm, spawning a
thriving community, hundreds of blog articles, and sighs of relief from data leaders
across industries struggling with democratization and scalability. But with this new
adoption comes new opportunities for misunderstanding around the true nature of
a data mesh—and how to build one. Teams handling a large amount of data sources
and a need to experiment with data (in other words, transform data at a rapid rate)
would be wise to consider leveraging a data mesh.
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Calculating Your Data Mesh Score
We put together a simple calculation to determine if it makes sense for your organiza‐
tion to invest in a data mesh. Please answer each question in the following with a
number and add them all together for a total, in other words, your data mesh score.

• Quantity of data sources: How many data sources does your company have?•
• Size of your data team: How many data analysts, data engineers, and product•

managers (if any) do you have on your data team?
• Number of data domains: How many functional teams (marketing, sales, oper‐•

ations, etc.) rely on your data sources to drive decision making, how many
products does your company have, and how many data-driven features are being
built? Add the total.

• Data engineering bottlenecks: How frequently is the data engineering team a•
bottleneck to the implementation of new data products on a scale of 1 to 10, with
1 being “never” and 10 being “always”?

• Data governance: How much of a priority is data governance for your organiza‐•
tion on a scale of 1 to 10, with 1 being “I could care less” and 10 being “It keeps
me up all night”?

In general, the higher your score, the more complex and demanding your company’s
data infrastructure requirements are, and in turn, the more likely your organization is
to benefit from a data mesh. If you scored above a 10, then implementing some data
mesh best practices probably makes sense for your company. If you scored above a
30, then your organization is in the data mesh sweet spot, and you would be wise to
join the data revolution.

Here’s how to break down your score:

• 1–15: Given the size and unidimensionality of your data ecosystem, you may not•
need a data mesh.

• 15–30: Your organization is maturing rapidly and may even be at a crossroads•
in terms of really being able to lean into data. We strongly suggest incorporating
some data mesh best practices and concepts so that a later migration might be
easier.

• 30 or above: Your data organization is an innovation driver for your company,•
and a data mesh will support any ongoing or future initiatives to democratize
data and provide self-serve analytics across the enterprise.

As data becomes more ubiquitous and the demands of data consumers continue
to diversify, we anticipate that data meshes will become increasingly common for
cloud-based companies with more than 300 employees.
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A Conversation with Zhamak Dehghani: The Role of Data
Quality Across the Data Mesh
While writing this book, we sat down with Zhamak Dehghani for a discussion about
all things data mesh. During the conversation, Zhamak dispelled many of its biggest
misconceptions, including whether or not the data mesh was a standalone technol‐
ogy, who should (or shouldn’t) be building one, and if data mesh is just another word
for data virtualization (hint: it’s not).

Here are just a few of the key takeaways from our conversation.

Can You Build a Data Mesh from a Single Solution?
Zhamak defines the data mesh as “a socio-technical shift—a new approach in how we
collect, manage, and share analytical data.” The data mesh is not a technical solution
or even subset of technologies—it’s an organizational paradigm for how we manage
and operationalize data, made up of several different technologies, whether open
source or SaaS.

You couldn’t build a microservice architecture with just a database. And you wouldn’t
build a data mesh with just a data warehouse or a BI tool. Instead, a data mesh can be
powered in part by these technologies—and many, many others.

In a nutshell, a data architecture is a data mesh if it includes these four basic elements:

• Distributing ownership of data from one centralized team to the people who are•
most apt and suitable to control it—often, the business domains where the data
comes from

• Giving those teams long-term accountability and equipping them with the prod‐•
uct thinking they need to treat data as a product

• Empowering teams with a self-serve data infrastructure•
• Addressing new problems that may arise with a new model of federated data•

governance

While it’s easy to lose the forest for the trees, applying this methodology can ensure
your mesh starts off on the right footing.

Is Data Mesh Another Word for Data Virtualization?
There’s confusion in the data community about how decentralized data ownership
actually works. As Lena describes, some technicians wonder if the concept of decen‐
tralized data ownership overlaps with the concept of data virtualization, in other
words, an approach to data management that allows an application to retrieve and
manipulate data across many silos.

A Conversation with Zhamak Dehghani: The Role of Data Quality Across the Data Mesh | 239

https://oreil.ly/TMJva
https://oreil.ly/Yf9JR


According to Zhamak, it used to be the case that virtualization sits on top of your
OLTP systems and your microservices or operational databases and exposes that data
as is or with some minor transformation. And when it comes to applying this to the
data mesh, it’s probably not a wise idea. As Zhamak explained:

Whether it’s a data mesh or an API base, you’re trying to expose a database that has
been optimized for a transactional purpose for analytical purposes. And predictive
analytics or historical trend modeling both require a very different view of the data. If
you think about using virtualization on top of your microservices database and expose
them and call that a mesh, that is probably a bad idea.

Does Each Data Product Team Manage
Their Own Separate Data Stores?
According to Zhamak, the answer to this question is no. And we would have to
agree—if each data product team manages their own store, the opportunity for
duplication—and poor data quality—is exponentially higher. And don’t get us started
on cost. Zhamak explained:

Data mesh would say that as a data product developer, I would want to have auto‐
nomy—to have all of the structural elements, the storage and compute, and query
system, and all of the things that allow me to serve my data to data scientists. But
that doesn’t mean I have to now have my own geo-location-separated storage layer. In
fact, if the mesh is an inter-organization setup with one cloud provider, you probably
wouldn’t do that. And you might have a single storage layer. However, they’re inde‐
pendent schemas, they’re independent access rights management, they’re independent
tenancy models that allow the data product to be deployed in an autonomous fashion.

The data store is often maintained by a central data engineering or infrastructure
team responsible for ensuring that the data mesh is functional and operationalized
for each domain. While analysts and data scientists in each domain are in charge of
building and maintaining products (say, dashboards, models, and reports) on top of
the data mesh, they’re not the ones managing the infrastructure making the analytics,
data science, and ML possible.

Is a Self-Serve Data Platform the Same
Thing as a Decentralized Data Mesh?
Large organizations are already implementing self-serve platforms for infrastructure
management, but according to Zhamak, the self-serve aspect of the data mesh is
different in a few key ways:

The majority of the service or data platforms built today are built for centralized data
teams—they’re built to help data specialists move through their backlog faster. They’re
built to serve a centralized team that’s trying to optimize ingestion from all corners of
the universe.
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Data platforms, in their current state, are often optimized for a different purpose than
the data mesh. Data platforms built to support the data mesh should be optimized to
give autonomy to domain teams and give generalist technologists the ability to create
data products. In short, data platforms should enable teams to manage their data
from end to end and directly serve their data consumers: data analysts, data scientists,
and other end users.

Is the Data Mesh Right for All Data Teams?
While more and more organizations are beginning to adopt or explore the data mesh,
Zhamak believes the model is “still fairly nascent in its evolution.” Organizations that
face the problem of scaling data reliability are the organizations where adopting the
data mesh makes the most sense. Early adopters tend to be engineering-focused and
open to investing in “both building and buying technology, because not all of the
elements are available to buy,” Zhamak said.

According to Zhamak, if your stakeholders feel the pain around finding the right data
and using it, and your innovation cycle is being slowed down, then you might be the
right candidate for looking into the data mesh.

Does One Person on Your Team “Own” the Data Mesh?
Introducing the data mesh model requires more than just technology. It takes cultural
buy-in across the organization. “I think data and all the data-driven initiatives and
data platform investments are so highly visible and so highly political in organiza‐
tions, especially large organizations, that there has to be top-down support and
top-down evangelism,” said Zhamak.

She attests that when organizations have a chief data officer or a chief data analytics
officer reporting directly to the CEO, they’re often more effective when it comes
to data mesh adoption at scale. Still, the domains are the ones expected to take on
ownership of their data, and as such will need to support this initiative, whether
that means dedicated resources or interorganizational cheerleading. “If the domains
aren’t on board, all we’re doing is overengineering the distribution of data among a
centralized team,” she said.

When you’re trying to grow adoption for the data mesh at your organization, teams
should get one to three domains that are aligned with the vision to serve as advocates
pushing the design and implementation forward. Usually, the infrastructure teams—
the practitioners and the engineers—aren’t the difficult ones to convince since they’re
often the ones feeling the pain.
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Does the Data Mesh Cause Friction Between
Data Engineers and Data Analysts?
Again, the answer is: no. In fact, it’s often the opposite!

Because the data mesh mandates the decentralization of data ownership, adopting
this distributed, domain-oriented model often leads to healthy reconciliation in areas
where there’s historically been friction.

For instance, when organizations have an engineering team responsible for pipelines,
and a data engineering group modeling data downstream, and then analysts further
downstream that are consuming the data, incidents can often lead to finger pointing.
But the data mesh’s universal standard of data governance ensures that there is agree‐
ment around data quality, data discovery, data product schema, and other critical
elements of data health and understanding.

According to Zhamak, such self-serve capabilities inherent to any good data mesh
include:

• Encryption for data at rest and in motion•
• Data product versioning•
• Data product schema•
• Data product discovery, catalog registration, and publishing•
• Data governance and standardization•
• Data production lineage•
• Data product monitoring, alerting, and logging•
• Data product quality metrics•

When packaged together, these functionalities and standardizations provide a robust
layer of observability—and trust. Zhamak explained:

The evolution that we saw in the operational world started with our own ad hoc
structured logging, which was a thing we already did as a good software engineering
practice. I really hope that, with lineage and metrics and SLOs, we develop some open
standards that we can use to convey these kinds of quality metrics, like your trust
matrix, or tracing lineage in a standardized fashion and creating a healthy ecosystem of
tooling on top of it.

In our opinion, organizational structures like data mesh actually allow for the right
kind of autonomy and discussion around governance, forcing your team to answer
such questions as: When and how should data be used? What are the standards that
we care about that we want to enable everyone to have? Or even: Which responsibili‐
ties should each domain own?
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Regardless of where you stand on the data mesh, there’s no question the topic has
inspired conversation around what it means to be a data professional, and what it
takes to truly evangelize and operationalize data at scale for your organization. In
fact, many companies we talk to have been applying data mesh concepts for longer
than they realize; they just didn’t have the words to describe it.

Case Study: Kolibri Games’ Data Stack Journey
It’s rare that you get a chance to sit down with a data leader to discuss the entire
evolution of a company’s data strategy. It’s even rarer when said data leader was
responsible for assembling their company’s data stack from its earliest iteration.
António Fitas, former head of Data Engineering at Berlin-based Kolibri Games, is
one such data leader. The company has had a wild ride, rocketing from a student
housing–based startup in 2016 to a headline-making acquisition by Ubisoft in 2020.

While a lot has changed in five years, one thing has always remained the same: the
company’s commitment to building an insights-driven culture. With a new release
almost every week, their mobile games are constantly changing and producing enor‐
mous amounts of data—handling 100 million events per day across 40 different event
types, some with hundreds of triggers.

Along the way, the company’s data organization grew from a team of one marketing
analyst to 10+ engineers, analysts, and scientists responsible for ensuring that their
data operations are reliable, scalable, and self-serve. To power this explosive growth,
the team is building a data mesh architecture backed by a data-driven culture that
would turn thousands of more mature companies green with envy.

Their story is a fascinating one and serves as a great resource for those getting
started on their data mesh journey. In this section, we’ll touch on how António’s
data organization evolved at every step, including what tech they used, which team
members they hired, and the data challenges they faced.

First Data Needs
In 2016, the Kolibri Games founders started building a game out of their student
apartments at the Karlsruhe Institute of Technology in Germany. They achieved early
success with their first mobile game, Idle Miner Tycoon, and the founders established
some basic goals and objectives related to data.

The primary goal was to establish basic business reporting to determine whether the
game was working properly, and whether the company was making any money, by:

• Reporting in-app purchase revenue•
• Reporting ad revenue•
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• Reporting game-specific KPIs•
• Reporting crashes and bugs•

As a lean start-up, the founders relied entirely on third-party tools (Figure 9-2),
including:

• Facebook Analytics•
• Ad partners•
• Firebase (to help fix app crashes and bugs)•
• GameAnalytics (for in-game KPIs, such as retention)•

Figure 9-2. Kolibri’s first data stack

Data quality wasn’t the first priority for the Kolibri team, manifesting in several
challenges down the road:

• Scattered analytics across different tools•
• No transparency about how KPIs were calculated•
• Reporting inconsistencies between different tools•
• Tech problems due to SDK integrations•
• Tech limitations, such as digging deeper into metrics and lack of flexibility•
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“This approach was far from perfect, but these were the first things we aimed to
tackle,” said António. “We were lucky that we got a lot of players in the game
coming organically, but we wanted to get more. For that, we wanted to ramp up our
marketing and user acquisition operations—with data.”

Pursuing Performance Marketing
As Idle Miner Tycoon grew in popularity, so did the team (Figure 9-3) required to
run the company—moving out of the student apartments into a proper office in
Karlsruhe. And as the organization focused on acquiring new customers, the team set
up data capabilities to measure and improve performance marketing.

Figure 9-3. The first “data team” at Kolibri, consisting of a single marketing manager

At this stage, the key objective for António’s team was to ramp up performance
marketing to get more users into the game while identifying which campaigns were
profitable by:

• Calculating return on ad spend for campaigns•
• Creating simple user lifetime value prediction•
• Building up paid ad bidding script to optimize campaign performance•

To gain insight into the company’s return on ad spend and user lifetime value,
the team added a third-party mobile measurement partner tool, AppsFlyer, a SaaS
mobile marketing analytics and attribution platform, to their arsenal, as depicted in
Figure 9-4. This tool helped the marketing manager know which user acquisition
campaigns were performing well and how much they cost, as well as how much
revenue the newly acquired players were generating. AppsFlyer also informed the
scripts that were running locally to optimize bid management operations.
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Figure 9-4. Kolibri’s data stack in 2017

Key data challenges at this point in their journey included:

• Lack of transparency•
• Proneness to error•
• No version control•
• Data even more scattered•

“We were basically blindfolded around those operations,” said António. “We didn’t
have any version control or engineering best practices around the code that we were
running for setting our bids.”

Still, Kolibri Games ended its second year with over €10M in annual revenue. To get
to the next level, it was time to invest in some improvements.

2018: Professionalize and Centralize
In its third year, the young company moved to Berlin, hired more developers and
designers—and António, who joined just in time for a splashy celebration of 50
million downloads. Together with another data engineer and the marketing team, a
professional data organization began to take shape.

The primary goal was to centralize data and professionalize performance marketing
by creating one tool to gather all information, provide transparency, and enable
deeper dives into the data by:
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• Investing in a proprietary solution to centralize data•
• Collecting raw data•
• Building up a central data warehouse•
• Setting up dashboards•

In 2018, Kolibri grew their team to include data engineers, a vital role that enabled
greater scalability and flexibility for their data architecture. António and one addi‐
tional data engineer (Figure 9-5) worked to build up the initial tech stack, while a
marketing analyst focused on building dashboards to enable performance marketing.

Figure 9-5. Kolibri’s data team grows in 2018

As António and his team built the first iteration of their data platform (Figure 9-6),
they used Azure for nearly all of their services. They built event telemetry that
generated data points for specific events or actions in a game, set up batch jobs
to integrate data from APIs into their data lake, and made their first tech switch:
migrating from Power BI to Looker to gain another layer of data manipulation and
out-of-the-box features like version control. At this point, the data platform included
the following components:

• Data factory (Azure)•
• Event hubs (Azure)•
• Stream analytics (Azure)•
• Data lake analytics (Azure)•
• Power BI, then Looker•
• SQL database•
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Figure 9-6. Data team begins to invest in cloud data technologies in 2018

Still, António and his team were dealing with a few key hurdles to truly becoming
data driven, including the overall reliability of their stack:

Our SQL database was becoming a limitation. The jobs that were integrating the data
were writing the data at the same time that our dashboards were running, or that an
analyst was doing an ad hoc query—and basically, the whole service started to become
very unpredictable and very slow. And we started seeing that some of our jobs were
failing a lot, and we had limited alerting or monitoring. We decided we wanted to get
data-oriented and start addressing some of the problems that we had.

Getting Data-Oriented
With another successful game launch, a rebrand, and global recognition under its
belt, Kolibri Games entered 2019 poised for even greater growth. The company hit
the twin milestones of 100 million downloads and 100 employees in July. With more
users and more products came more raw data, and António and his team knew they
were just scratching the surface of how data could drive the company forward.
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Goals at this point included creating insights for games by understanding player
behaviors, conducting experiments backed by data, and maturing the data tech stack
by:

• Building a monetization dashboard to show how much the company was earning•
with offers, shops, and ads

• Building progression and engagement dashboards to understand how players•
were interacting with the games (such as when they were dropping off and how
they interacted with certain features)

• Running A/B tests•
• Increasing performance of warehouse and maintainability of data pipelines•

António knew they needed more people (Figure 9-7) to make their massive amounts
of data useful. They added a head of game data and two BI developers to the data
platform team. The data engineers worked closely with infrastructure—maintaining
systems, integrating new tools, and maintaining streaming use cases—while building
frameworks for BI developers to work with data integration, data modeling, and
database visualization.

Figure 9-7. The state of Kolibri’s data team in 2019

The growing data team needed more flexibility and easier collaboration, so António
replaced some Azure services with Databricks (Figure 9-8). They tried using Spark
to leverage their data lake as their data warehouse but found the people working on
the platform preferred Python and SQL—and they didn’t see the performance they
expected in Looker while using Spark. So António and his team ended up replacing
their SQL database with Snowflake, which became the main computation engine for
all of their analytics.
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Figure 9-8. The Kolibri data team’s architecture in 2019

Still, there were a few key challenges that prevented their stack from sufficiently
scaling to meet the demands of their data science and BI teams:

• A/B tests were difficult to set up, missing transparency, and had no way to•
dashboard or present.

• No data-driven decisions were showing up in games.•

“Most of the decisions were still made out of intuition and community feedback,”
said António. “We continued to generate even more data, but we knew that we could
utilize it even more and build more use cases around it.”
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Getting Data-Driven
In early 2020, Kolibri Games was acquired by French gaming giant Ubisoft. With
more resources, António’s team continued to grow, layered machine learning capa‐
bilities into their platform, and became inspired by conversations about data mesh
architecture and domain-specific data ownership. To start building a data-driven cul‐
ture, they introduced data-specific service-level agreements and focused on increas‐
ing self-serve access to data.

A key initiative during this year was to make it easier for nondata teams to make
decisions fully data-driven to unlock the full potential of the company’s games,
specifically by including product managers to help track that:

• 90% of all decisions on Idle Miner Tycoon needed to be backed by data.•
• Time-to-insight needed to be less than one hour for 90% of questions.•
• 90% of all changes needed to be validated with analytics.•

To get there, the data platform team would:

• Improve the A/B testing process to help make informed decisions about features•
and changes to be implemented

• Improve personalization by creating game configurations for segments of players•
• Use predictive analytics to predict lifetime value and churn to adjust the game•

accordingly
• Enable people to answer data-related questions without having to consult a data•

analyst

As the data organization (Figure 9-9) focused on domain-specific data ownership,
it made sense to have new analyst hires embedded directly into the product team,
working closely with product managers to understand needs and align priorities to
reflect what the product actually needed. A third data engineer and two data scientists
also joined the data platform team, working specifically on ML algorithms and A/B
test data pipelines.
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Figure 9-9. In 2020, the data team was now nine people strong (including two scientists
and analyst)

With the company no longer in its infancy, António and his team needed faster
cleaning and easier transformation, now directly in the warehouse. António’s team
added data warehouse architecture into Snowflake, better defining where they were
applying business logic (Figure 9-10). They also moved from doing ETL to ELT,
doing cleaning and transformation directly in Snowflake. They combined that with
dbt, a data transformation tool, to collaborate between everyone working on the
platform, increasing transparency and visibility.
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Figure 9-10. Data team architecture continues to expand in 2020

The data engineering team also focused on abstracting data pipelines so product
analysts could essentially own the design and definition of new data events together
with a game development team. By following the defined guidelines set out by data
engineers, they could now get that data into the warehouse and model the data
without requiring a data engineer. António and his team also introduced Airflow as
the main orchestration for data integrations, all dbt models, and data validations.

At this stage in their data platform journey, a few key challenges rose to the top of the
list:

• Data trust•
• Software stability•
• Scaling personalization•
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António explained:

I think it was really good work when we tried to measure “Are we actually using
data for our product development?” Getting those KPIs around our questions and
measuring those kinds of things really helped people to think more about it and push
more for it. I think the exercise by itself proved to be really fruitful in terms of getting
more people to think about data….But what happened at this point was that we were
getting much more data, and many more new use cases around data, and a lot of new
models—but it was becoming difficult to monitor all of these and to make sure that
things were correct.

Building a Data Mesh
As 2021 unfolded, António and his team focused on building data trust and reliabil‐
ity—which is crucial to their mission of achieving a data mesh architecture with
domain-specific data ownership.

In 2021, the team’s goal was to help the company scale with reliable data while build‐
ing a data mesh architecture, increasing the speed of development and mitigation of
incidents, decreasing the number of incidents, and increasing player personalization
with further advanced analytics. António and his team planned to accomplish this by:

• Increasing testing capabilities•
• Building common release and development process•
• Implementing more monitoring and alerting•
• Focusing on advanced analytics•
• Collaborating to extend data platform capabilities around data monitoring and•

engineering best practices
• Building domain cross-functional teams•

Inspired by the data mesh concept, the company planned to expand the domain
teams (Figure 9-11) embedded with product and marketing by adding project man‐
agers who would help define the work for their team and BI developers to help inte‐
grate new and maintain existing data sources. The central data platform team would
continue to focus on building solutions, frameworks, maintaining infrastructure, and
advanced analytics.
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Figure 9-11. By 2021, António’s team becomes more closely aligned with the ever-
growing product and marketing teams

In 2021, the data team strived to centralize development and release processes (Fig‐
ure 9-12) so that the data platform, marketing, and product teams all followed the
same merge request and release into production processes. Kolibri’s data tech stack
invested in dbt and data observability to unlock greater benefits of the metadata layer
for richer transformations and greater visibility into data quality.

And finally, to solve for data quality, they decided to invest in a monitoring solution
that spanned the entirety of the data assets in their data warehouse, providing extra
capabilities about understanding the end-to-end lineage of data to speed up trouble‐
shooting and incident resolution.
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Figure 9-12. Kolibri’s data tech stack continues to grow in 2021

Five Key Takeaways from a Five-Year Data Evolution
Building a data-driven company is a marathon—not a sprint.

For António, implementing a data mesh and achieving end-to-end data trust was
a culmination of his team’s journey. Here are his key takeaways when it comes to
setting up your data team (no matter its shape or size) for success at each phase of its
evolution:

• “Building your own data stack pays off, as it gives you all of these capabilities and•
enables you to be data-driven on your product development or working on your
team.”

• “We’ve been through a lot of iterations over our data platform, so you have to•
choose and be able to understand when it’s the right time to change technology,
for which right amount of data, for which process that you’re running.”
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• “It’s very important to have a higher degree of data observability if you want to•
establish trust in your data. It’s important that you are able to understand when
there is a problem, and that you’re able to indicate that easily.”

• “It’s important to get the basics right before advancing to more advanced data•
applications. In our case, we should have hired analysts earlier to make more use
of the data.”

• “Establishing a data-driven culture is quite important and sometimes even more•
important than building the right tech stack.”

As more organizations adopt the data mesh and distributed architectures, the oppor‐
tunity for innovation, efficiency, and scalability has never been greater. Still, it’s
important to acknowledge that technology and process get you only so far when it
comes to implementing a data mesh and building out a distributed data team. At the
end of the day, becoming data-driven always starts—and ends—with culture. Now
let’s turn to how to use all that data to enhance the business.

Making Metadata Work for the Business
Over the last decade, data teams have become increasingly proficient at collecting
large quantities of data. While this has the potential to drive digital innovation and
more intelligent decision making, it has also inundated companies with data they
don’t understand or can’t use. All too often organizations hungering to become
data-driven can’t see the forest for the trees: data without a clear application or use
case is nothing more than a file in a database or a column in a spreadsheet.

In recent years, we’ve seen the rise of data: now, companies are collecting more and
more data about their data, in other words, metadata. By and large, this enthusiasm
around metadata is a huge win for the industry. ETL solutions like dbt make it easy
to track and use metadata, while cloud providers make interoperability of metadata
more seamless between data solutions in your stack.

Still, as we become more metadata-dependent, it’s important to remember not to
repeat these same mistakes. Just as data without context is nothing more than a
bunch of numbers, metadata by itself is useless—it’s just more information about
other information. Collect it all you want, but without a practical use case, metadata
is largely meaningless.

Take for example, lineage, a type of metadata that traces relationships between
upstream and downstream dependencies in your data pipelines. While impressive
(neon colors! nodes! sharp lines!), lineage without context is just eye candy, great for
a demo with your executives—but, let’s be honest, not much else. The value of lineage
doesn’t come from the simple act of having it (Figure 9-13), but instead lies in its
relevance to a particular use case or business application.
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Figure 9-13. Without context and metadata, lineage is just eye candy

Where can lineage be actually useful? Aside from looking nice in a fancy demo or
PowerPoint presentation, data lineage can be a powerful tool for understanding:

How to understand data changes that will impact consumers and determine the best
course of action to resolve that use case

Say for example you want to make a change to a particular field. Without line‐
age, you’re likely making that change blindly—hoping there are no downstream
repercussions (you: “Fingers crossed that no downstream consumers are going to
be surprised by this change!”).

By using field- and table-level lineage, you can see which specific tables, reports,
and—most importantly—users consuming those assets are going to be impacted
by this change.

How to troubleshoot the root cause of an issue when data assets break
In another scenario, you may be paged in the middle of the night about a broken
dashboard your team is supposed to present to execs the next morning. You need
a quick way to understand what broke upstream to render your Tableau graphs
completely useless.

But what exactly is the root cause of this problem? And which of the 100,000
tables you have in your data warehouse will you need to fix? With lineage, you
can immediately identify the upstream assets contributing to this data downtime
and pinpoint the root cause.

How to communicate the impact of broken data to consumers
And finally, let’s say data breaks (as it often does)—specifically, an ETL job was
completed, but the data in this column is now 80% null—essentially, a silent
failure. And now you need to highlight how this silent failure affects the users of
this data.
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How do you know who will be impacted and should be notified about this?
Lineage provides a quick and easy way to communicate what happened and
where so that you can keep stakeholders in the know while you resolve the issue.

Ultimately, lineage and metadata have the potential to be immensely valuable to
data teams and companies at large—but only when it’s applied directly to your
business.

At the end of the day, your metadata (including but not limited to lineage) should
answer more than the basic “who, what, where, when, why?” about your data (Fig‐
ure 9-14). It should enable your customers (internal or external) to be equipped with
up-to-date and accurate answers to questions that relate back to your customer’s pain
points and use cases, including:

• Does this data matter?•
• What does this data represent?•
• Is this data relevant and important to my stakeholders?•
• Can I use this data in a secure and compliant way?•
• Where does the answer to this question come from?•
• Who is relying on this asset when I’m making a change to it?•
• Can we trust this data?•

Figure 9-14. When captured holistically and in the context of business applications,
metadata has the potential to serve as a force multiplier for your entire company
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Many data teams are trying to answer these questions through a variety of solutions,
including APIs that hook into modeling and pipeline transformation tools, data cata‐
logs, documentation, and lineage. All four provide rich insights about your data, but
they’re missing one critical piece: its application to your business. Metadata without
a use case is like an elephant riding a bicycle: interesting and impressive but not very
useful (unless you’re running a circus).

The true power of metadata lies in where, when, and how we use it—specifically,
how we apply it to a specific, timely problem we are trying to solve. In addition
to collecting metadata and building metadata solutions, data teams also need to ask
themselves:

• What purpose is this metadata serving?•
• How can I apply it to solve real and relevant customer pain points?•

In our next section, we discuss a new approach to understanding and leveraging
metadata with business value in mind.

Unlocking the Value of Metadata with Data Discovery
Over the past few years, cloud data warehouses and lakes have emerged as a must-
have for the modern data stack. But while the technologies powering our access and
analysis of data have matured, the mechanics behind understanding this data in a
distributed environment have lagged behind.

Here’s where data catalogs fall short and how data discovery tools (or federated
catalogs) can help ensure your data environment doesn’t turn into a data swamp.
For more robust technical guidance about how to build and use a catalog, revisit
Chapter 2.

Data Warehouse and Lake Considerations
One of the first decisions data teams must make when building a data platform
(second only perhaps to “Why are we building this?”) is whether to choose a data
warehouse or lake to power storage and compute for their analytics.

While data warehouses provide structure that makes it easy for data teams to effi‐
ciently operationalize data (i.e., gleaning analytic insights and supporting machine
learning capabilities), that structure can make them inflexible and expensive for
certain applications. On the other hand, data lakes are infinitely flexible and custom‐
izable to support a wide range of use cases, but with that greater agility comes a host
of other issues related to data organization and governance.

As a result, data teams going the lake or even lakehouse route often struggle to
answer critical questions about their data such as:
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• Where does my data live?•
• Who has access to it?•
• How can I use this data?•
• Is this data up-to-date?•
• How is this data being used by the business?•

And as data operations mature and data pipelines become increasingly complex,
traditional data catalogs often fall short of how you would expect a data discovery
tool to answer these questions. Here’s why some of the best data engineering teams
are rethinking their approach to building data catalogs—and what types of data
discovery tools data lakes need instead.

Data Catalogs Can Drown in a Data Lake—or Even a Data Mesh
Data catalogs serve as an inventory of metadata and provide information about
data health, accessibility, and location. They help data teams answer questions about
where to look for data, what data represents, and how it can be used. But if we don’t
know how that data is organized, all of our best laid plans (or pipelines, rather) are
for naught.

As companies lean into lakes, they’re often compromising the organization and order
implicit in storing data in the warehouse. Data warehouses force data engineering
teams to structure or at least semi-structure their data, which makes it easy to catalog,
search for, and retrieve based on the needs of business users.

Historically, many companies have used data catalogs to enforce data quality and data
governance standards, as they traditionally rely on data teams to manually enter and
update catalog information as data assets evolve. In data lakes, data is distributed,
making it difficult to document as data evolves over the course of its life cycle.

Unstructured data is problematic as it relates to data catalogs because it’s not organ‐
ized, and if it is, it’s often not declared as organized. That may work for structured or
semi-structured data curated in a data warehouse, but in the context of a distributed
data lake, manually enforcing governance for data as it evolves does not scale without
some measure of automation.

Similarly, data stored in traditional catalogs has difficulty scaling—and evolving—to
meet the demands of distributed data architectures, like the data mesh. As discussed
earlier in this chapter, the data mesh posits that analytical data is processed and
transformed in distributed environments, with a universal layer of federated gover‐
nance and discovery across all domains. Due to their manual nature, data catalogs
generally have trouble updating and adapting to new information, making it hard to
understand the current state of data at any given stage in its life cycle.
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Moving from Traditional Data Catalogs to Modern Data Discovery
Understanding the relationships between disparate data assets—as they evolve over
time—is a critical but often lacking dimension of traditional data catalogs. While
modern data architectures, including data lakes, are often distributed, data catalogs
are usually not, treating data like a one-dimensional entity. Unstructured data doesn’t
have the kind of predefined model most data catalogs rely on to do their job and must
go through multiple transformations to be usable.

Still, companies need to know where their data lives and who can access it, and
be able to measure its overall health—even when stored in a lake instead of a
warehouse. Without that visibility into data lineage from a data discovery tool, teams
will continue to spend valuable time on firefighting and troubleshooting when data
issues arise further downstream.

Traditional data catalogs often can meet the demands of structured data in a ware‐
house, but what about data engineers navigating the complex waters of a data lake?
While many data catalogs have a UI-focused workflow, data engineers need the
flexibility to interact with their catalogs programmatically. They use catalogs for
managing schema and metadata and need an API-driven approach so they can
accomplish a wide range of data management tasks.

Moreover, data can enter a lake across multiple points of entry, and engineers need a
catalog that can adapt to and account for each one. And unlike warehouses, where the
data will be cleaned and processed before entry, data lakes take in raw data without
any assumptions of end-to-end health.

Within a lake, storing data can be cheap and flexible, but that makes knowing what
you have and how it’s being used a real challenge. Data may be stored in a variety
of ways, such as JSON or Parquet, and data engineers interact with data differently
depending on the job to be done. They may use Spark for aggregation jobs or Presto
for reporting or ad hoc queries—meaning there are many opportunities for broken
or bad data to cause failures. Without a data discovery tool and data lineage, those
failures within a data lake can be messy and hard to diagnose.

Within a lake, data can be interacted with in many ways, and a catalog has to be able
to provide an understanding of what’s being used and what’s not. When traditional
catalogs fall short, we can look to data discovery tools as a path forward.

Data discovery, in other words, a federated data catalog, is a new approach rooted
in the distributed domain-oriented architecture proposed by Dehghani’s data mesh
model. Under this framework, domain-specific data owners are held accountable for
their data as products and for facilitating communication between distributed data
across domains. By doing the following, modern data discovery tools fill voids where
traditional data catalogs fell short:
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Automating to scale across your data lake
Using machine learning, data discovery tools automate the tracing of table- and
field-level lineage, mapping upstream and downstream dependencies. As your
data evolves, data discovery tools ensure your understanding of your data and
how it’s being used evolves, too.

Providing real-time visibility into data health
Unlike a traditional data catalog, data discovery tools provide real-time visibility
into the data’s current state, as opposed to its “cataloged” or ideal state. Since
discovery encompasses how your data is being ingested, stored, aggregated, and
used by consumers, you can glean insights such as which data sets are outdated
and can be deprecated, whether a given data set is production-quality, or when a
given table was last updated.

Leveraging data lineage to understand the business impact of your data
This flexibility and dynamism make data discovery tools an ideal fit for bringing
data lineage to data lakes, allowing you to surface the right information at the
right time, and drawing connections between the many possible inputs and out‐
flows. With data lineage, you can resolve issues more quickly when data pipelines
do break, since frequently unnoticed issues like schema changes will be detected
and related dependencies mapped.

Empowering self-service discovery across domains
Data discovery tools also enable self-service, allowing teams to easily leverage
and understand their data without a dedicated support team. To ensure this
data is trustworthy and reliable, teams should also invest in data observability,
which uses machine learning and custom rules to provide real-time alerting
and monitoring when something does go wrong in your data lake or pipelines
downstream.

Ensuring governance and optimization across the data lake
Modern data discovery tools allow companies to understand not just what data is
being used, consumed, stored, and deprecated over the course of its life cycle but
also how, which is critical for data governance and lends insights that can be used
for optimizations across the lake.

From a governance perspective, querying and processing data in the lake often occurs
using a variety of tools and technologies (Spark on Databricks for this, Presto on
EMR for that, etc.), and as a result, there often isn’t a single, reliable source of truth
for reads and writes (like a warehouse provides). A proper data discovery tool can
serve as that source of truth. From an optimization standpoint, data discovery tools
also can make it easy for stakeholders to identify the most important data assets (the
ones constantly being queried!) as well as those that aren’t used, both of which can
provide insights for teams to optimize their pipelines.
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As companies continue to ramp up their ingestion, storage, and utilization of
data, technology that facilitates greater transparency and discoverability will be key.
Increasingly, some of the best catalogs are layering in distributed, domain-specific
discovery, giving teams the visibility required to fully trust and leverage data at all
stages of its life cycle. Personally, we couldn’t be more excited for what’s to come with
data discovery tools. With the right approach, maybe we can finally drop the “data
swamp” puns altogether?

Still, it doesn’t matter how “discoverable” your data is if you can’t trust it. Often, when
teams are building their data platform, data quality isn’t the first item on the list (you
have to be able to ingest, store, and process it, after all), but it helps to prioritize
data quality early on in your company’s data journey to avoid unnecessary—and
inconvenient—bouts of data downtime.

In the next section, we’ll discuss when it makes sense to start prioritizing data quality,
and how modern data technologies and methodologies—such as data discovery tools
and data mesh architectures—are more successful with data quality initiatives in
place.

Deciding When to Get Started with
Data Quality at Your Company
At this point in the book, you’ve become well-acquainted with the technologies,
processes, and metrics teams must apply to achieve higher data quality at scale.
We’ve also walked through real-world data reliability success stories of the data teams
at leading companies like Fox, Toast, and Blinkist that have applied all three with
promising results. Nevertheless, we’ve yet to address the “when.” In fact, one of the
most frequent questions we get from data leaders we talk to is: “When does it make
sense to invest in data quality?”

Chances are, your first thought when building a data platform probably isn’t “Can I
trust this data?” You’re likely more concerned with just driving adoption and getting
the thing up and running. So when it comes to understanding when you should
invest in data quality, the answer truly is “It depends.” The reality is that building
a data platform is a multistage journey and data teams have to juggle dozens of
competing priorities. Data observability may not make sense for a company with a
few dashboards connected to an on-premises database.

On the other hand, many organizations we’ve spoken with have increased their
investment in developing their data platform without seeing a corresponding increase
in data adoption and trust. If your company doesn’t use or trust your data, your best
laid plans for data platform domination are a pipe dream. To answer this question,
we’ve outlined seven leading indicators that it’s time to invest in data quality for your
data platform.
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You’ve Recently Migrated to the Cloud
Whether your organization is in the process of migrating to a data lake or between
cloud platforms (e.g., Amazon Redshift to Snowflake), maintaining data quality
should be high on your data team’s list of things to do.

After all, you are likely migrating for one of three reasons:

• Your current data platform is outdated, and as a result, data reliability is low, and•
no one trusts the data.

• Your current platform cannot scale alongside your business or support complex•
data needs without a ton of manual intervention.

• Your current platform is expensive to operate, and the new platform, when•
maintained properly, is cheaper.

Regardless of why you migrated, it’s essential to instill trust in your data platform
while maintaining speed. You should be spending more time building your data
pipelines and less time writing tests to prevent issues from occurring.

For AutoTrader UK, investing in data observability was a critical component of their
initial cloud database migration. “As we’re migrating trusted on-premises systems
to the cloud, the users of those older systems need to have trust that the new
cloud-based technologies are as reliable as the older systems they’ve used in the past,”
said Edward Kent, Principal Developer, AutoTrader UK.

Your Data Stack Is Scaling with More Data Sources,
More Tables, and More Complexity
The scale of your data product is not the only criterion for investing in data quality,
but it is an important one. As with any machine, the more moving parts you have,
the more likely things are to break unless the proper focus is given to reliability
engineering.

While there is no hard and fast rule for how many data sources, pipelines, or tables
your organization should have before investing in observability, a good guideline is
more than 50 tables. That being said, if you have fewer tables, but the severity of
data downtime for your organization is great, data observability is still a very sensible
investment.

Another important consideration is the velocity of your data stack growth. For
example, the advertising platform Choozle knew to invest in data observability as it
anticipated table sprawl with their new platform upgrade.

“When our advertisers connect to Google, Bing, Facebook, or another outside plat‐
form, Fivetran goes into the data warehouse and drops it into the reporting stack
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fully automated. I don’t know when an advertiser has created a connector,” said Adam
Woods, CTO of Choozle. “This created table sprawl, proliferation, and fragmentation.
We needed data monitoring and alerting to make sure all of these tables were synced
and up-to-date, otherwise we would start hearing from customers.”

Your Data Team Is Growing
The good news is your organization values data, which means you are hiring more
data folks and adopting modern tooling to your data stack. However, this often leads
to changes in data team structures (from centralized to decentralized), adoption of
new processes, and knowledge with data sets living among a few early members of the
data team.

If your data team is experiencing any of these problems, it’s a good time to invest in
a proactive approach to maintain data quality. Otherwise, technical debt will slowly
pile up over time, and your data team will invest a large amount of their time into
cleaning up data issues.

For example, one of our customers was challenged by what we call the “You’re Using
That Table?!” problem. As data platforms scale, it becomes harder for data analysts to
discern which tables are being actively managed versus those that are obsolete.

Data certification programs and end-to-end data lineage can help solve these issues.
It’s important to note that while a growing data team is a sign to invest in data quality,
even a one-person data team can benefit greatly from more automated approaches.

Your Team Is Spending at Least 30% of Their
Time Firefighting Data Quality Issues
When we started our company, Monte Carlo, we interviewed more than 100 data
leaders to understand their pain points around managing data systems. More than
60% indicated they were in the earlier stages of their data reliability journey, and their
teams spend the first half of their day firefighting data quality issues.

Multiple industry studies have confirmed: data engineers are spending too much of
their (valuable!) time fixing rather than innovating. During our research, we also
discovered that data engineering teams spend 30 to 50% of their time tackling broken
pipelines, errant models, and stale dashboards. Even organizations further along the
curve that have developed their own homegrown data quality platform are finding
their team spends too much time building and upgrading the platform—and that
gaps remain.
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Your Team Has More Data Consumers Than They Did One Year Ago
Your organization is growing at a rapid speed, which is awesome. Data is powering
your hiring decisions, product features, and predictive analytics. But, in most cases,
rapid growth leads to an increase in business stakeholders that rely on data, more
diverse data needs, and ultimately more data. And, with great data comes great
responsibility as the likelihood of bad data entering your data ecosystem increases.

That is the irony: the most data-driven organizations will have more data consumers
to spot any error when it arises. For example, at AutoTrader UK, more than 50%
of all employees are logging in and engaging with data in Looker every month,
including complex, higher-profile data products such as financial reporting. Typically,
an increase in data needs from stakeholders is a good indicator that you need to
proactively stay ahead of data quality issues to ensure data reliability for end users.

Your Company Is Moving to a Self-Service Analytics Model
You are moving to a self-service analytics model to free up data engineering time and
allow every business user to directly access and interact with data. Your data team
is excited since they no longer have to fulfill ad hoc requests from business users.
Likewise, your stakeholders are happy since a bottleneck is removed from having
access to data.

While this is exciting for your data team, your stakeholders need to trust the data. If
they don’t trust it, they won’t use it for decision making. And, ultimately if your end
users don’t trust the data, it defeats the purpose of moving to a self-service analytics
model.

There are two types of data quality issues: those you can predict (known unknowns)
and those you can’t (unknown unknowns). As data becomes more and more integral
to the day-to-day operations of data-driven organizations, the need for reliable data
only increases.

Data Is a Key Part of the Customer Value Proposition
Every application will soon become a data application. As a data leader, it’s exciting
when your company finds a new use case for data, especially if it’s customer-facing.
Personally, we couldn’t be more excited for this new norm.

Toast, a leading point of sale provider for restaurants, separates itself from its com‐
petitors based on the business insights it provides to its customers. Through Toast,
restaurants get access to hundreds of data points, such as how their business has done
over time, how their sales compared to yesterday, and who their top customers are.
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“We say our customers are all Toast employees,” said Noah Abramson, a data engi‐
neering manager at Toast. “Our team services all internal data requests from product
to go-to-market to customer support to hardware operations.”

While this is a huge value add, it also makes their data stack customer-facing. That
means it has to be treated with the same reliability and uptime standards as its core
product. When data quality isn’t prioritized the data team—and your customers—get
burned.

Data Quality Starts with Trust
Much like gas companies need to trust their oil rigs daily to provide gas and oil to
consumers, organizations need to trust their data to deliver clean and reliable data to
stakeholders. By following a proactive approach to data quality, your team can be the
first ones to know about data quality issues, well in advance of frantic Slack messages,
terse emails, and other trailing indicators of data downtime.

Otherwise, valuable engineering time is wasted firefighting data downtime, your
efforts at becoming a data-driven company will be hindered over time, and business
users will lose trust in data. While each situation varies based on your business, it’s
best to bake data quality into your data platform as early as possible.

Summary
In this chapter, we put a fresh lens on some of the most critical technologies and
topics when it comes to achieving high data quality, including the data mesh and
data discovery tools. We also walked through how one lean startup, Kolibri Games,
was able to build a data stack from scratch and retroactively address data reliability
concerns using smarter and more automated solutions, as well as a domain-oriented
approach to managing data.

We ended the chapter with a practical discussion of seven key indications that your
team should invest in data quality—sooner rather than later. Of course, every data
organization will differ when it comes to data needs, but we strongly encourage you
not to overlook these considerations when designing your data strategy for scale.

In Chapter 10—our final chapter—we’ll recap a few key learnings, share a powerful
new approach to justifying the effort and resources necessary to give data quality its
proper diligence, and share our predictions for the future of data reliability as they
relate to broader industry trends.
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CHAPTER 10

Pioneering the Future of
Reliable Data Systems

If Data Quality Fundamentals taught you anything about the larger state of analytics
and data engineering, it’s likely that data as an industry is going through a massive,
irreversible sea change.

Only five years ago, it wasn’t uncommon for data to live in siloes, accessed only by
functional teams on an ad hoc basis for discrete tasks such as understanding how
internal systems were being used, for example, or perhaps querying data about appli‐
cation usage over time. Now, analytical data is turning into the modern business’s
most critical and competitive form of currency. It’s no longer a matter of if your
company relies on data, but how much and for what use cases.

Still, it’s simply not enough to collect more data; you also have to trust it. Solutions
like cloud data warehouses and lakes, data catalogs, open source testing frameworks,
and data observability solutions are building out additional features and function‐
alities to bring data reliability to the center of the conversation. Warehouses like
Snowflake and Redshift make it easy to pull data quality metrics for freshness and
volume, while open source tools like dbt and Great Expectations enable practitioners
to quickly unit test their more critical data sets. Even catalogs like Alation and
Collibra can provide some insight into data integrity and discovery at static points in
time.

While these exciting new technologies have given data engineering teams more
leverage when it comes to solving for and scaling data trust, new features and shiny
tools can only get data teams so far; ultimately, data quality starts and ends with good
culture, robust process, and stakeholder buy-in.
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In our interview with Shane Murray, former SVP of Data and Analytics at the New
York Times, he went so far as to say that data quality initiatives should often be
prioritized before projects like catalogs and data discovery. Murray, who was with the
Times for over eight years, was no stranger to the side effects of data downtime.

“At the end of the day, if you don’t know whether the data you’re leveraging to
build products, power analytics, and help stakeholders make smarter decisions is
up-to-date or accurate, you’ll have a difficult time finding value in your stack,” he
told us. “Once data is being shared with downstream stakeholders, you really need to
ensure that it can be trusted.”

Data trust is critical to any successful data engineering or analytics initiative, yet it’s
often challenging to achieve, and even more difficult to maintain. As one of our
colleagues, Michael Segner, says: “Data trust is hard to develop but easy to lose.” And
with any new process or initiative, driving adoption, resources, and budget for data
quality can be even harder.

As a result, and despite the warnings from seasoned leaders like Murray at the New
York Times and other experts cited throughout our book, making the argument to
invest in data quality is often easier said than done: unless you can measure it.
Unfortunately, most organizations don’t start prioritizing data quality until after the
damage is done: a schema change that causes a downstream report to generate wonky
results, a freshness anomaly that pipes inaccurate data about user behavior to critical
marketing channels, or even a failed dbt model that causes your CEO to scratch her
head and question the validity of your analytics work.

In Chapter 5, we introduced an equation to calculate data downtime, which takes us
one step closer to understanding its impact. The calculator for data downtime boils
down to the number of data incidents times the average time to detection and the
time it takes to resolve them:

DDT = N(TTD + TTR)

where DDT is data downtime, N is the number of incidents, TTD is time to detec‐
tion, and TTR is time to resolution.

This calculation will tell you the amount of time it takes to identify and resolve a data
quality incident—and while this is useful for understanding the cost of downtime,
how do we actually assess the value of good data quality so that we can more easily
make the case for it? Barring any data downtime disasters, how do you make the case
for data quality?

As any engineering or product development team will tell you, adopting new pro‐
cesses and culture is a journey, not a sprint. And with data engineers and analysts
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juggling a million things every minute for even more stakeholders, it can be hard to
carve out time for proactive measures.

Be Proactive, Not Reactive
Perhaps we need look no further than a May 2022 data downtime incident involving
Unity Technologies, the gaming software company, to understand why architecting
for data reliability—instead of tackling it reactively—is a valuable use of your team’s
time today, and not tomorrow.

On May 11, 2022, Unity stock crashed 36% after news came to light that stale data
had been powering its ad monetization tool for well over a quarter. Compounding
over several quarters, the data quality incident cost the company $110 million in lost
revenue. If even some of the most innovative and tech-savvy companies can’t prevent
data downtime, the urgency is heightened for the rest of us. While having a data
incident fresh in our minds can add fuel to the fire when it comes to prioritizing data
trust, it pays to be proactive.

As Neil Diamond crooned in his 1978 hit, “Forever in Blue Jeans,” “Money doesn’t
talk, it walks,” and surely this applies to data quality, too. Only when money “walks”
away as a result of bad data does it become crystal clear just how valuable good data
is. So, the first step to making a case for data quality is to measure the financial
impact of data reliability on your business.

To make it easier for you to make the business case for data quality—and take a
proactive approach to preventing data downtime—we came up with an annual data
downtime labor cost calculation. In other words, what is the rough cost of tackling
data quality issues for your business? In short, this calculation boils down to: the
number of data engineers × 1,804 × $62 × hours of data downtime.

First, we need to calculate the number of hours per year your company tackles data
quality issues. As a proofpoint, the team at Monte Carlo discovered that 1 in 15 tables
per year are affected by a data incident for any given environment across a pool of
~150 companies. Supplementing this data, in a 2022 survey with Wakefield Research
that polled more than 300 data engineers, most respondents claimed 4 hours or more
for time to detection and, once found, an average of 9 hours for resolution.

It can be days or even weeks before many data issues are detected. At that point,
data teams launch a time-consuming root cause analysis process that involves several
steps including checking the lineage (if it exists), the code, the data, the operational
environment, and talking to peers. For the purposes of this calculation, let’s estimate
the average TTD and TTR to be a combined 8 hours for teams with low data quality
maturity, 6 hours for teams with average data quality maturity, and 4 hours with high
data quality maturity.
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Our calculation caps its data downtime result at 8,760 hours, which is the total
amount of hours in a year. If your organization has more than 16,425 tables that are
important and a low data quality maturity, you are experiencing data downtime (the
period where data is incomplete, erroneous, missing, or inaccurate) continuously all
year round.

The math
(Tables / 15) × (TTD + TTR). The value cannot exceed 8,760.

The variables
8 hours for low data quality maturity, 6 hours for average data quality, 4 hours for
high data quality maturity.

The justification
Customer conversations, an independent research survey, and in-depth experi‐
ence in the root cause analysis process.

Our calculation for the financial impact of data downtime—in other words, the
monetary cost of a data incident on your company—ranges between 20%, 35%, and
50% of a data engineer’s time based on if an organization has low, medium, or
high data quality maturity. That is then multiplied by the number of data engineers
employed by the company multiplied by the average number of hours worked per
year according to February 2022 Labor Department statistics (1,804) multiplied by
the average salary for a data engineer according to Glassdoor ($62 hourly):

The math
Number of data engineers × 1,804 × $62 × % data quality time

The variables
50% for low data quality maturity, 35% for average data quality maturity, 20% for
high data quality maturity

The justification
More than 150 formal data leader conversations, published case studies, the
Wakefield Research survey, and multiple industry studies

Let’s assume for the sake of explanation that you have 5,000 tables, average data
quality hygiene (you clean and test your data sufficiently, but you don’t floss every
night), 5 data engineers, and an average TTD and TTR of 8 hours. By that logic,
the amount of data downtime would be 2,664 hours per year, with a cost of $279,620
worth of labor.

Keep in mind that this calculation doesn’t even factor in opportunity cost (in other
words, the price you pay for making poor decisions with inaccurate data). As the
industry matures, we anticipate algorithms far smarter than us to be able to generate
predictions of the cost of these issues on the business.
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Predictions for the Future of Data Quality and Reliability
Building sound data practices into your organization is about more than being
proactive when it comes to data downtime. Understanding where the field is going
and proactively managing your organization’s goals and strategy is also critical.

As companies and employees increasingly democratize data access and make analyt‐
ics a critical part of every function, it goes without saying that the requirements and
approaches for solving data quality naturally evolve. In particular, we predict four key
trends that will impact the future of data quality for teams everywhere.

Data Warehouses and Lakes Will Merge
Our first prediction relates to the building block of modern data systems: the storage
layer. For decades, data warehouses and lakes have enabled companies to store (and
sometimes process) large volumes of operational and analytical data. While a ware‐
house stores data in a structured state, via schemas and tables, lakes primarily store
unstructured data.

However, as technologies mature and companies seek to “win” the data storage wars,
companies like AWS, Snowflake, Google, and Databricks are developing solutions
that marry the best of both worlds, blurring the boundaries between warehouse
and lake architectures. Additionally, more and more businesses are adopting both
warehouses and lakes—either as one solution or a patchwork of several.

Traditionally, data quality is easier to maintain in warehouses, where it’s easier to
natively track schema, volume, and freshness. Some warehouses will even handle
some of the extraction, cleaning, and transformation for you. On the other hand,
lakes are made up of several entrypoints, meaning layers where data is sorted and
aligned for operational use. While data lakes offer greater use cases and flexibility,
they also introduce additional pipeline complexity and more ways data can break.

Primarily to keep up with the competition, major warehouse and lake providers are
developing new functionalities that bring either solution closer to parity with the
other. While data warehouse software expands to cover data science and machine
learning use cases, lake companies are building out tooling to help data teams make
more sense out of raw data.

But what does this mean for data quality? In our opinion, this convergence of
technologies is ultimately good news. Kind of.

On the one hand, a way to better operationalize data with fewer tools means
there are—in theory—fewer opportunities for data to break in production. The lake‐
house demands greater standardization of how data platforms work, and therefore
opens the door for a more centralized approach to data quality and observability.
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Frameworks like ACID (atomicity, consistency, isolation, durability) and Delta Lake
make managing data contracts and change management at scale easier.

We predict that this convergence will be good for consumers (both financially and in
terms of resource management) but will also likely introduce additional complexity
to your data pipelines. While this centralization of data compute and processing
across SQL and non-SQL file formats tackles both BI and ML use cases, broader
adoption means more data users, which often leads to more data duplication, errors,
and downstream fire drills.

Emergence of New Roles on the Data Team
In 2012, Harvard Business Review named “data scientist” the sexiest job of the 21st
century. Shortly thereafter, in 2015, DJ Patil, a PhD and former data science lead
at LinkedIn, was hired as the United States’ first-ever Chief Data Scientist. And in
2017, Apache Airflow creator Maxime Beauchemin predicted the “downfall of the
data engineer” in a canonical blog post.

Long gone are the days of siloed database administrators or analysts. Data is emerg‐
ing as its own company-wide organization with bespoke roles like data scientists,
analysts, and engineers. In the coming years, we predict even more specializations
will emerge to handle the ingestion, cleaning, transformation, translation, analysis,
productization, and reliability of data.

This wave of specialization is not unique to data, of course. Specialization is common
to nearly every industry and signals a market maturity indicative of the need for scale,
improved speed, and heightened performance. Regardless of your role, however, data
quality should remain a priority because your ability to use and trust the data directly
influences what you can responsibly do with it.

The roles we predict will come to dominate the data organization over the next
decade include:

Data product manager
The data product manager is responsible for managing the life cycle of a given
data product and is often responsible for managing cross-functional stakehold‐
ers, product roadmaps, and other strategic tasks.

Analytics engineer
The analytics engineer, a term made popular by dbt Labs, sits between a data
engineer and analysts and is responsible for transforming and modeling the
data such that stakeholders are empowered to trust and use that data. Analytics
engineers are simultaneously specialists and generalists, often owning several
tools in the stack and juggling many technical and less technical tasks.
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Data reliability engineer
The data reliability engineer is dedicated to building more resilient data stacks,
primarily via data observability, testing, and other common approaches. Data
reliability engineers often possess DevOps skills and experience that can be
directly applied to their new roles.

Data designer
A data designer works closely with analysts to help them tell stories about
that data through business intelligence visualizations or other frameworks. Data
designers are more common in larger organizations and often come from prod‐
uct design backgrounds. Data designers should not be confused with database
designers, an even more specialized role that actually models and structures data
for storage and production.

So, how will the rise in specialized data roles—and bigger data teams—affect data
quality?

As the data team diversifies and use cases increase, so will stakeholders. Bigger data
teams and more stakeholders means more eyeballs are looking at the data. As one of
our colleagues, Prateek Chawla, a founding engineer at Monte Carlo, says: “The more
people look at something, the more likely they’ll complain about them.”

Even hiring a data reliability engineer won’t “solve” your data quality problem. But
helping these disparate team members and stakeholders understand how to work
with data in a way that avoids breakages and makes collaboration painless is a step in
the right direction.

Rise of Automation
Ask any data engineer: more automation is generally a positive thing. Automation
reduces manual toil, scales repetitive processes, and makes large-scale systems more
fault-tolerant. When it comes to improving data quality, there is a lot of opportunity
for automation to fill the gaps where testing, cataloging, and other more manual
processes fail.

Over the next several years, we foresee that automation will be increasingly applied to
several different areas of data engineering that affect data quality and governance:

Hardcoding data pipelines
Automated ingestion solutions make it easy—and fast—to ingest data and send it
to your warehouse or lake for storage and processing. In our opinion, there’s no
reason why an engineer should be spending their time moving raw SQL from a
CSV file to your data warehouse.
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Unit testing and orchestration checks
Unit testing is a classic problem of scale, and most organizations can’t possibly
cover all of their pipelines end-to-end—or even have a test ready for every
possible way data can go bad. One company Ryan once worked for had key
pipelines that went directly to a few strategic customers. They monitored data
quality meticulously, instrumenting more than 90 rules on each pipeline. Some‐
thing broke and suddenly 500,000 rows were missing—all without triggering one
of their alerts. In the future, we anticipate teams leaning into more automated
mechanisms of testing their data and orchestrating circuit breakers on broken
pipelines.

Moving data from staging to production environments
Take, for example, this scenario. We have data in streams that we write to S3.
To make that data available in our Snowflake environment, we need to manually
log in to Snowflake and define the external table that points to the S3 data. Some‐
times we would create the stream but forget to create the table in Snowflake. Or,
there would be a manual error that would break jobs. Imagine a world in which
the Snowflake table is created automatically when the stream is created. This
proactive approach would prevent downstream schema breaks and more reliable
pushes to production.

Root cause analysis
Often, when data breaks, the first step many teams take is to frantically ping
the data engineer who has the most organizational knowledge and hope they’ve
seen this type of issue before. The second step is to then manually spot check
thousands of tables. Both are painful. We hope for a future where data teams can
automatically run root cause analysis as part of the data reliability workflow with
a data observability platform or other type of DataOps tooling. Ideally, such a
solution would be able to aggregate metadata about the incident that teams can
then use to piece together a picture of what happened, and from there, resolve
the issue.

Data documentation, cataloging, and discovery
One of the next frontiers for the data stack is the semantic or descriptive layer.
In Chapter 2, we discussed the benefits of and challenges with traditional data
catalogs, but whether it’s through using a catalog, data discovery, or other tool,
there needs to be some sort of automated process for documenting data sets.
We now have decades of evidence to show that if data documentation isn’t
automated, then it doesn’t happen—at the very least not at the necessary scale.
That’s why we have the “You’re using that table?!?!” problem and why we are
treating data engineers like data catalogs by pinging them incessantly in Slack
about which table to use. We need to automate context generation for our data in
addition to upstream and downstream lineage.
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While this list just scratches the surface of areas where automation can benefit our
quest for better data quality, we think it’s a decent start.

More Distributed Environments and the Rise of Data Domains
As discussed in Chapter 1, distributed data paradigms like the data mesh make it
easier and more accessible for functional groups across the enterprise to leverage data
for specific use cases. The potential of domain-oriented ownership applied to data
management is high (faster data access, greater data democratization, more informed
stakeholders, etc.), but so are the potential complications.

Data teams need look no further than the microservice architecture for a sneak
peek of what’s to come after data mesh mania calms down and teams begin their
implementations in earnest. Such distributed approaches demand more discipline
both at the technical and cultural level when it comes to enforcing data governance.

Generally speaking, siphoning off technical components can increase data quality
issues. For instance, a schema change in one domain can cause a data fire drill
in another area of the business, or duplication of a critical table that is regularly
updated or augmented for one part of the business can cause pandemonium if used
by another. Without proactively generating awareness and creating context about
how to work with the data, it can be challenging to scale the data mesh approach.

While data mesh evangelizes a universal federation layer (in other words, agnostic
governance) across domains, teams must abide by specific contracts and use dedi‐
cated APIs, which can lead to complexity and confusion. This is why companies
determining whether to migrate to the data mesh should think long and hard about
whether they’ll be able to drive cross-organizational adoption and avoid the pitfalls of
half-baked microservice rollouts.

So Where Do We Go from Here?
In the coming years, we predict that achieving data quality will become both easier
and harder for organizations across industries, and we hope that this book has
prepared the reader to navigate these challenges as they drive their business’s strategy
forward. Increasingly complex systems and higher volumes of data begets complica‐
tion; innovations and advancements in data engineering technologies means greater
automation and improved ability to “cover our bases,” so to speak, when it comes to
preventing data downtime. Regardless of how you slice it, however, striving for some
measure of data reliability will become table stakes for even the most novice of data
teams.

We anticipate that data leaders will start measuring data quality as a vector of data
maturity (if they haven’t already), and in the process, work toward building more
reliable systems using many of the technologies and approaches outlined in this book.
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In the coming months and years, we hope to see more data organizations prioritize
data reliability as a foundational aspect of their data architectures, workflows, and
team culture. And when they do, our readers will be well prepared.

Until then, here’s wishing you no data downtime!

278 | Chapter 10: Pioneering the Future of Reliable Data Systems



Index

A
Abramson, Noah, 268
accessibility, balancing with trust, 209-210
accountability, 208
accuracy, anomaly detection and, 112-115
Airbnb, 119
Alberini, Francisco, 143
alerting and testing, 55-63

(see also data testing)
dbt unit testing, 56-59
Deequ unit testing, 60-63
Great Expectations unit testing, 59-60
machine learning and, 104

Amazon Redshift, 17
ambiguity, syntactic versus semantic, 52
Amundsen (data discovery and metadata

engine), 226
analytical data

batch versus stream processing, 45
defined, 14
operational data versus, 14-16

analytical data transformations
ensuring data quality during ETL, 54
ensuring data quality during transforma‐

tion, 55
running, 54

analytics engineers, 205, 274
anomaly detection, 69-118

accounting for false positives / false nega‐
tives, 105

building an algorithm for, 72-87
data incident management, 145-147
defined, 69

designing data quality monitors for ware‐
houses versus lakes, 117

detecting freshness incidents with data
monitoring, 110

F-scores, 111
frameworks for, 108-110
improving alerting with machine learning,

104
improving precision and recall, 106-110
incident detection and, 145-147
investigating a data anomaly, 94-99
known unknowns and unknown unknowns,

70-71
model accuracy and, 112-115
monitoring for freshness, 73-78
scaling with Python and machine learning,

99-115
for schema and lineage, 88-92
understanding distribution, 79-87
various useful approaches to, 116
visualizing lineage, 92

ANother Tool for Language Recognition
(ANTLR), 180

Apache Airflow
installing circuit breakers with, 66
managing data quality with, 63-67
scheduler SLAs, 63-66
SQL check operators, 67

Apache Hadoop, 46
Apache Kafka, 46

managing operational data transformations
across, 53

reasons to choose, 50
stream processing and, 49

279



Apache Spark, 19, 46, 60
API (application programming interface), col‐

lecting data from responses, 41
application logs, 40
application observability, 123
application programming interface (API), col‐

lecting data from responses, 41
assigning ownership (see ownership, assigning)
audit logging, 41
automation, rise of, 275-277
autoregression, 116
AutoTrader UK, 265, 267
AWS Kinesis

managing operational data transformations
across, 53

reasons to choose, 50
stream processing and, 48

AWS Lambda, 53

B
batch processing, stream processing versus, 45
Beauchemin, Maxime, 274
Beidel, Brandon, 214
blameless postmortems

best practices for, 158
data incident management, 157

Blinkist, 138-140
build versus buy decisions, 202
business case for data quality, 271
business intelligence analysts, 205
business intelligence and analytics, 130

C
case studies (see real-world applications)
CDO (chief data officer), 205
central limit theorem, 79
certification, 211-216
change management, 221
Cherny, Jessica, 195, 198
chief data officer (CDO), 205
Choozle, 265
circuit breakers

basics, 65
installing for Apache Airflow DAGs, 66

classification accuracy metrics (F-scores), 111
cleansing (see data cleaning)
cloud, migration to, 5, 265
clustering, 116
coercions (see type coercions)

commanders, data incident, 165
communication

change management and, 221
data mesh and, 236
data quality strategy and, 230
of status updates for incidence response, 164

compliance, prioritizing, 224-228
Convoy, 192
Coordinated Universal Time (UTC), 45
customer value proposition, data as key part of,

267

D
DAG (directed acyclic graph), 66
data analysts, data scientists versus, 7
data as a product (see data products)
data as a service or output, 192
data catalogs

automation of, 276
building, 33-37
designing, 32
in-house, 225
limitations, 131
moving from traditional catalogs to modern

data discovery, 262-264
open source, 226
prioritizing, 224-227
risks posed by data lakes/data meshes, 261
third-party, 226

data certification, 211-216
data cleaning, 43-45

assessing data set features, 44
data reconstruction, 44
defined, 120
normalization, 44
outlier removal, 44
time zone conversion, 45
type coercions, 45

data collection, 39-43
API responses, 41
application log data, 40
sensor data, 42

data debt, reducing, 173
data designers, 275
data discovery

automation of, 276
data catalogs and, 36-37, 261
data platform construction and, 131

280 | Index



data warehouse / data lake considerations,
260

moving from traditional data catalogs to
modern data discovery, 262-264

unlocking value of metadata with, 260-264
data documentation, automation of, 276
data domains, 277
data downtime, 1-3

calculating cost of, 133-134, 270
data pipeline complexity and, 6
as data quality metric, 22
decentralized teams as cause of, 7
defined, 1
growth in data sources, 6
labor cost calculation, 271
migration to the cloud and, 5
specialized teams as cause of, 6
understanding the rise of, 5-8
unreliable data and, 2
updating cost to reflect external factors, 134

data engineers, 206, 220
data governance

automating tooling for, 229
data catalogs and, 224-227
data platform construction and, 131
as data strategy element, 229
enforcing, 227
prioritizing, 224-228

data governance specialists, 206
data incident commanders, 165
data incident management, 143-159

assessing severity of incident, 163
blameless postmortem, 157
communicating status updates, 164
data certification programs and, 214
defining/aligning on data SLOs/SLIs to pre‐

vent future incidents, 165
establishing a routine of incident manage‐

ment, 160-165
incident detection, 145-147
incident response and mitigation, 159-166
PagerDuty case study, 166-168
resolution, 157
response, 147
root cause analysis, 148-157
routing notifications to appropriate team

members, 161-162
why data incident commanders matter, 165

data integration layer, 21

data lakehouses
as current industry trend, 10
defined, 129
origins and basic elements, 21

data lakes
common features, 19
data lakehouses and, 10
data normalization, 51
data warehouses versus, 16-22, 260
defined, 129
designing data quality monitors for ware‐

houses versus lakes, 117
origins and basic elements, 18-20
syncing data between data warehouses and,

21
using query logs for understanding data

quality in, 31
data lineage (see lineage)
data literacy, increasing, 222-224
data mesh

building, 234-236
calculating data mesh score, 238
components, 235
current industry trends, 8-10
data discovery and, 36
data engineer / data analyst relationship

and, 242
data virtualization versus, 239
Zhamak Dehghani on role of data quality,

239-243
determining appropriateness for data teams,

241
domain-oriented data owners and pipelines,

235
interoperability and standardization of

communications, 236
Kolibri Games case study, 254-255
reasons to implement, 236
self-serve data platforms versus decentral‐

ized data mesh, 240
self-serve functionality, 236

data modeling, data platform construction and,
129

data normalization, 50-54
data cleaning and, 44
handling heterogeneous data sources, 50
managing operational data transformations

across AWS Kinesis and Apache Kafka,
53

Index | 281



schema checking and type coercion, 52
syntactic versus semantic ambiguity in data,

52
warehouse data versus lake data, 51

data observability
data certification and, 211
five major pillars, 124
freshness, 73-78
schema and lineage, 87-99
trustworthy data systems and, 132

data pipelines
automation of, 275
complexity as cause of data downtime, 6
measuring/maintaining data quality in,

123-125
monitoring and anomaly detection, 69-118

data platforms
building, 127-132
business intelligence and analytics, 130
core layers, 127
data discovery/governance, 131
data transformation/modeling, 129
ingestion, 128

data product managers
data ownership and, 207
future role in data organization, 274
Uber case study, 193

data product teams, 240
data products (data as a product), 190-198

applying a product management mindset,
195

applying the data-as-a-product approach,
194-198

basics, 190
Convoy (case study), 192
finding the right team structure, 197
gaining stakeholder alignment, 194
important characteristics, 191
investing in self-serve tooling, 196
perspectives on, 191-198
prioritizing data quality and reliability, 196
Uber case study, 193

data quality (generally)
current industry trends and, 8-10
deciding when to get started with data qual‐

ity at your company, 264-268
defined, 4
democratizing (see democratizing data qual‐

ity)

importance of, 1-11
as priority for current businesses, 4-10
understanding the rise of data downtime,

5-8
data quality metrics

application observability and, 123
building trust by signing off on baseline

metrics for your data, 202
collecting, 22-32
defined, 22
F-scores, 111
how to pull, 23-30
monitoring across various parts of stack, 23
pulling from Snowflake, 24-30
query logs for understanding data quality in

the warehouse, 30
scalability, 23

data quality strategy, 228-230
automating lineage/data governance tool‐

ing, 229
communications plan for, 230
making leadership accountable for data

quality, 228
setting data quality KPIs, 229
spearheading a data governance program,

229
data reconstruction, 44
data reliability, 119

(see also reliability, architecting for; reliable
data systems)

defined, 119
defining with SLAs, 136
measuring with SLIs, 137
tracking with SLOs, 137

data reliability dashboard, 125
data reliability engineers, 275
data reliability life cycle, 144, 159
data reliability maturity curve, 196
data scientists, 7, 206, 274
data storage, data platform construction and,

129
data stores, 240
data storytelling, 194
data system (see reliable data systems)
data teams

considerations when scaling, 219-222
data mesh ownership and, 241
decentralization as cause of data downtime,

7

282 | Index



determining appropriate candidates for data
mesh, 241

emergence of new roles on, 274
generalists versus specialists, 220
investment in proactive approach to data

quality, 266
overcommunication as key to change man‐

agement, 221
prioritizing diversity, 220
risk of overvaluing single source of truth,

221
routing incident notifications to appropriate

team members, 161-162
specialization as cause of data downtime, 6
team structure / organization alignment for

data-as-a-product approach, 197
time spent firefighting data quality issues,

266
Toast case study: finding right structure for

data team, 216-222
training for data certification programs, 215

data testing, 120-123
dbt unit testing, 56-59
Deequ unit testing, 60-63
defined, 55
Great Expectations unit testing, 59-60
improving alerting with machine learning,

104
data transformations, 53

(see also analytical data transformations)
data platform construction and, 129
managing operational data transformations

across AWS Kinesis and Apache Kafka,
53

running analytical data transformations, 54
data virtualization, data mesh versus, 239
data warehouses

data lakehouses and, 10
data lakes versus, 16-22, 260
data normalization, 51
defined, 129
designing data quality monitors for ware‐

houses versus lakes, 117
drawbacks, 18
origins and basic elements, 17
query logs for understanding data quality

in, 30
syncing data between data lakes and, 21

DataOps, 5

dbt unit testing, 56-59
decentralized data architecture, 7
decentralized data mesh, self-serve data plat‐

forms versus, 240
Deequ, 60-63
Dehghani, Zhamak

on appropriate candidates for data mesh,
241

data mesh and, 8
on data mesh and data engineer / data ana‐

lyst relationship, 242
data mesh as defined by, 234
on data mesh versus data virtualization, 239
on data product teams managing separate

data stores, 240
on four basic elements of data mesh, 239
on role of data quality across the data mesh,

239-243
on self-serve data platform versus decentral‐

ized data mesh, 240
on team member owning the data mesh, 241

democratizing data quality, 189-231
assigning ownership for data quality,

204-208
balancing data accessibility with trust,

209-210
building a data quality strategy, 228-230
building trust in your data platform,

199-204
creating accountability for data quality, 208
increasing data literacy, 222-224
prioritizing data governance and compli‐

ance, 224-228
Toast case study, 216-222
treating your data like a product, 190

DevOps life cycle, 142
directed acyclic graph (DAG), 66
distributed environments, 277
distributional health of data, 79-87
diversity, of data teams, 220
Dixon, James, 19
domain data owners, 235
domain-driven design, 234
downtime (see data downtime)
downtime hourly cost, 134

E
ELT (extract-load-transform), 128
end-to-end lineage, building, 169-188

Index | 283



basic lineage requirements, 172
best practices for, 183
data lineage design, 173-180
field-level lineage for modern data systems,

170-183
Fox Networks case study, 183-187
parsing data, 180
user interface, 181-183

ensemble model framework, 117
entrypoint, 39
ETL (extract-transform-load), 22, 54, 128
Evans, Eric, 234
exponential smoothing, 116
extract-load-transform (ELT), 128
extract-transform-load (ETL), 22, 54, 128

F
F-scores, 107, 111
false negatives, 106
false positives, 106
Fitas, António, 243

(see also Kolibri Games)
Fox Networks (end-to-end lineage case study),

183-187
exercising controlled freedom when dealing

with stakeholders, 184
investing in data trust for self-serve analyt‐

ics, 187
investing in decentralized data team, 185
problem-solving technology versus shiny

new toys, 186
freshness

detecting freshness incidents with data
monitoring, 110

monitoring for, 26, 73-78
functional testing, 121
future of reliable data systems, 269-278

automation, 275-277
data domains, 277
data warehouse/data lake mergers, 273
distributed environments, 277
emergence of new roles on data team, 274
predictions for future of data quality/relia‐

bility, 273-277
proactive versus reactive approach, 271

G
Gaussian distribution, 79
generalists, on data teams, 220

generic tests, 58
Google BigQuery, 17
Google, MyDoom virus attack at, 169
governance (see data governance)
Great Expectations

advantages/limitations, 59
unit testing, 59-60

Guiliana, Kavite, 143
Gupte, Atul, 193, 194

H
hard thresholding, 116
heterogeneous data sources

normalizing data from, 50
warehouse data versus lake data, 51

Howson, Cindi, 189
HubSpot, 228
hyperparameter tuning, 116

I
incident detection

anomaly detection and, 145-147
data incident management and, 145-147

incident management (see data incident man‐
agement)

ingestion
data platform construction and, 128
measuring/maintaining high data reliability,

119-123
integration testing, 121
Intuit, 223
Ironclad, 195
issues (see quality issues, fixing at scale)

J
JMX (Java Management Extensions), 54
JSON (JavaScript Object Notation), 42

K
Kafka (see Apache Kafka)
Kent, Edward, 265
Kimball Group, 17
Kinesis (see AWS Kinesis)
known unknowns, 70-71
Kolibri Games

becoming data-driven, 251-254
building a data mesh, 254-255
data stack journey, 243-257

284 | Index



early phase of data orientation, 248-250
first data needs, 243-245
professionalization and centralization,

246-248
pursuing performance marketing, 245
takeaways from five-year data evolution,

256
Kossowski, Zosia, 228
Krishnamurthy, Gopi, 138-140

L
lakes (see data lakes)
lineage

anomaly detection for, 88-92
automating, 229
building monitors for schema and lineage,

87-99
defined, 171
end-to-end (see end-to-end lineage, build‐

ing)
in root cause analysis, 150
metadata and, 257
visualizing, 92

LinkedIn, 201
log levels, 41
logs, application observability and, 123
Lyft, 226

M
machine learning

improving data monitoring alerting with,
104

scaling anomaly detection with, 99-115
Mars Climate Orbiter, 2
metadata

data discovery for unlocking value of,
260-264

making metadata work for the business,
257-260

metrics (see data quality metrics)
MLflow, 108
monitoring, 69-118

building monitors for schema and lineage,
87-99

designing data quality monitors for ware‐
houses versus lakes, 117

detecting freshness incidents with data
monitoring, 110

improving alerting with machine learning,
104

Monte Carlo, 175, 271, 275
Murray, Shane, 270
MyDoom virus, 169

N
net promoter score, 126
noise

data incident management and, 167
sensor data and, 43

normal distribution, 79
normalization (see data normalization)

O
observability, 123

(see also data observability)
operational analytics, 163
operational data

analytical data versus, 14-16
defined, 14
managing transformations across AWS

Kinesis and Apache Kafka, 53
operational environment, in root cause analysis,

155
outlier removal, 44
overcommunication, as key to change manage‐

ment, 221
ownership, assigning

analytics engineer, 205
assignment of responsibility for data relia‐

bility, 207
business intelligence analyst, 205
chief data officer, 205
data certification and, 212
data engineer, 206
data governance lead, 206
data product manager, 207
data quality and, 204-208
data scientist, 206

P
PagerDuty

data challenges at, 166
data incident management case study,

166-168
DataOps landscape, 166

Index | 285



DevOps best practices to scale data incident
management, 167

parsing data, for end-to-end lineage, 180
Patil, DJ, 274
personally identifiable information (PII), 32,

173
phantom data, 163
Pinterest, 201
postmortems, blameless

best practices for, 158
data incident management, 157

precision
accuracy versus, 113
defined, 106
F-scores and, 111
improving, 106-110
recall and, 107, 111

product, data as (see data products)
Puttaswamy, Krishna, 119
Python, 72, 99-115
PyTorch, 108

Q
quality issues, fixing at scale, 141-168

data incident management, 143-159
data incident management at PagerDuty,

166-168
incident response and mitigation, 159-166
software development issues, 142-143

query history, 26-28
query logs

for understanding data quality in the lake,
31

for understanding data quality in the ware‐
house, 30

R
RACI (Responsible, Accountable, Consulted,

and Informed) matrix, 207
Raj, Manu, 166-168
RCA (see root cause analysis)
real-world applications, 233-268

Blinkist data reliability case study, 138-140
building a data mesh, 234-236
Convoy data-as-product case study, 192
deciding when to get started with data qual‐

ity at your company, 264-268
Fox Networks lineage case study, 183-187
Kolibri Games, 243-257

making metadata work for the business,
257-260

PagerDuty data incident management case
study, 166-168

Toast data team case study, 216-222
Uber data-as-a-product case study, 193

recall
accuracy versus, 113
defined, 107
F-scores and, 111
improving, 106-110
precision and, 107, 111

Red Ventures, 214
Redpoint Ventures, 221
reliability, architecting for, 119-140

Blinkist case study, 138-140
building your data platform, 127-132
developing trust in your data, 132-138
measuring/maintaining data quality in the

pipeline, 123-125
measuring/maintaining high data reliability

at ingestion, 119-123
understanding data quality downstream,

125-127
reliable data systems, 13-38

collecting data quality metrics, 22-32
data catalog construction, 33-37
data catalog design, 32
data warehouses versus data lakes, 16-22
future of, 269-278
operational versus analytical data, 14-16

response codes, 42
return on investment (ROI) on data quality,

133-135
calculating cost of data downtime, 133-134
updating data downtime cost to reflect

external factors, 134
ROI (see return on investment on data quality)
root cause analysis (RCA), 148-157

automation of, 276
data in, 153-154
data team as source of insights for, 156
examining code, 151-152
five steps in, 150
lineage in, 150
operational environment in, 155

rule definitions, 116

286 | Index



S
Sahami, Mehran, 112
Sanderson, Chad, 192, 193, 195
schema changes

anomaly detection for, 88-92
defined, 90

schema checking
building monitors for schema and lineage,

87-99
normalizing data, 52

schema on read access, 19, 31
schema on write access, 17
scikit-learn, 108
Scott, Robert Falcon, 2
seasonality, 84
SeatGeek, 195
self-serve analytics

company moving to, 267
investing in data trust for self-serve analyt‐

ics, 187
self-serve data platforms, 236, 240
self-serve tooling, 196
semantic ambiguity, 52
sensor data, 42
service-level agreements (see SLAs)
service-level indicators (see SLIs)
service-level objectives (see SLOs)
Shannon, Kyle, 195
single source of truth, risk of overvaluing, 221
singular tests, 57
site reliability engineering (SRE), 123, 169
Slack, 123
SLAs (service-level agreements), 125

for Apache Airflow task, 63-66
blameless postmortems and, 158
data certification programs and, 214
defining data reliability with, 136
for trustworthy data systems, 135-137

SLIs (service-level indicators), 125
defining/aligning to prevent future data

incidents, 165
measuring data reliability with, 137

SLOs (service-level objectives), 125, 135
defining/aligning to prevent future data

incidents, 165
tracking data reliability with, 137

Sloss, Benjamin Treynor, 169
Smith, Amy, 223
Snowflake, 18, 24-30

software development, fixing quality issues in,
142-143

Source to Target Mapping (STM), 185
specialists, on data teams, 220
SQL check operators, 67
Srinivas, Suresh, 119
STM (Source to Target Mapping), 185
storage layer, 273
strategy (see data quality strategy)
stream processing

Apache Kafka, 49
AWS Kinesis, 48
batch processing versus, 45
data quality for, 47-50

streaming data, 10
Stribblehill, Andrew, 143
swampification, 20, 31
syntactic ambiguity, 52

T
Tableau, 223
teams (see data teams)
TensorBoard, 109
TensorFlow, 108
testing (see alerting and testing; data testing)
throughput versus latency trade-off, 15
time to detection (TTD), 133, 165
time to resolution (TTR), 133, 165
time zone conversion, 45
timestamps, 41
timing of data quality decision

company moving to self-service analytics
model, 267

data as key part of customer value proposi‐
tion, 267

data quality and trust, 268
data stack scaling with more data sour‐

ces/tables/complexity, 265
data team is growing, 266
data team with more consumers than one

year ago, 267
migration to the cloud, 265
time spent firefighting data quality issues,

266
Toast

data as part of customer value proposition,
267

evolution of data team, 198

Index | 287



finding right structure for data team,
216-222

regrouping, recentralizing, and refocusing
on data trust, 218-219

scaling of data team, 219-222
supporting hypergrowth as decentralized

data operation, 217
team struggling to meet data demands, 217

traces, 123
transformations (see analytical data transfor‐

mations; data transformations)
troubleshooting, 141-168
true negatives, 105
true positives, 105
trust

aligning product goals with business goals,
199

balancing data accessibility with, 209-210
build versus buy decisions, 202
building in your data platform, 199-204
data quality and, 268
gaining feedback and buy-in from the right

stakeholders, 200
prioritizing long-term growth/sustainabil‐

ity, 201
signing off on baseline metrics, 202

trustworthy data systems, developing, 132-138
data observability, 132
measuring ROI on data quality, 133-135
setting SLAs/SLOs/SLIs, 135-138

TTD (time to detection), 133, 165
TTR (time to resolution), 133, 165
Tunguz, Tomasz, 221
Turner-Williams, Wendy, 223

Tverdohleb, Alex, 184-187
type coercions

cleaning data, 45
normalizing data, 52

U
Uber, 119, 193, 201
Ubisoft, 251
unit testing

automation of, 276
dbt, 56-59
Deequ, 60-63
defined, 121
Great Expectations, 59-60

Unity Technologies, 271
unknown unknowns, 70-71, 159
unsupervised learning, 105
user interface, 181-183
UTC (Coordinated Universal Time), 45

V
value proposition, data as key element, 267
volume, tracking, 26

W
Waldman, Greg, 198, 216-222
warehouses (see data warehouses)
Woods, Adam, 266

Z
z-score, 80
Zadeh, Mammad, 196

288 | Index



About the Authors
Barr Moses is the CEO and cofounder of Monte Carlo, a data reliability company. In
her decade-long career in data, Barr has served as commander of a data intelligence
unit in the Israeli Air Force, a consultant at Bain & Company, and VP of Operations
at Gainsight, where she built and led their data and analytics team. The instructor of
O’Reilly’s first course on data observability, an emerging discipline in data engineer‐
ing, Barr has worked with hundreds of data teams struggling with these problems.
Inspired by her time in the analytics trenches, she is building a product dedicated to
identifying, resolving, and preventing what she calls “data downtime,” periods of time
when data is missing, erroneous, or otherwise inaccurate. In other words: bad data. In
this book, she shares her experiences and learnings on how today’s data organizations
can achieve high data quality at scale through technological, organizational, and
cultural best practices.

Lior Gavish is CTO and cofounder of Monte Carlo. Prior to Monte Carlo, Lior
cofounded cybersecurity startup Sookasa, which was acquired by Barracuda in 2016.
At Barracuda, Lior was SVP of Engineering, launching award-winning ML products
for fraud prevention. Lior holds an MBA from Stanford and an MSc in computer
science from Tel-Aviv University.

Molly Vorwerck is the Head of Content at Monte Carlo. Prior to joining Monte
Carlo, Molly served as editor-in-chief of the Uber Engineering blog and lead program
manager for Uber’s Technical Brand team, where she spent countless hours helping
engineers, data scientists, and analysts write and edit content about their technical
work and experiences. She also led internal communications for Uber’s Chief Tech‐
nology Officer and strategy for Uber AI Labs’ research review program. In her spare
time, she freelances for USA Today, reads up on all the latest trends in data, and
volunteers for the California Historical Society.

Colophon
The animal on the cover of Data Quality Fundamentals is a grivet monkey (Chloroce‐
bus aethiops).

A member of the Cercopithecidae family of Old World monkeys, the grivet is more
closely related to apes than to New World monkeys such as lemurs and tarsiers.
Unlike apes, however, the grivet possesses a tail; it is also smaller than most apes.

Highly adaptable to various rural and urban environments, grivets mainly inhabit
the savanna woodlands of Sudan, Ethiopia, Eritrea, and Djibouti in eastern Africa.
Though common throughout this range, grivets are most prevalent near rivers, which
they rely on as sources of water during the dry season.



Grivet monkeys are primarily quadrupedal and terrestrial, traveling on four limbs as
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ted as pets on tombs. Today, despite some loss of suitable habitat due to large-scale
farming and land development, grivets have been categorized by IUCN as being of
least concern.
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