
EBOOK

The Three Phases
of Observability

2

EBOOK

What is observability?
Gartner defines observability as the evolution of monitoring into a
process that offers insight into digital business applications, speeds
innovation, and enhances customer experience. 1 Infact, the rise in
popularity of the DevOps movement and Cloud-Native architecture
is to enable digital businesses to become more competitive and
great observability is a foundational requirement of this.

The need for observability was inherently born out of the DevOps
movement — before DevOps, not many engineers needed to think
about operating the systems that they built. Now that engineers
both build and operate, it’s critical to start thinking about building
systems that are easier to observe.

When we look at the outcome an engineer is trying to ultimately
achieve with observability, it can be broken down into answering
three critical questions:

1. �How quickly do I get notified when something is wrong?
Is it BEFORE a user/customer has a bad experience?

2. �How easily and quickly can I triage the problem and understand
its impact?

3. How do I find the underlying cause so I can fix the problem?

Regardless of what instrumentation exists and what tools or
solutions are employed, the ability to answer the above three
questions in order to remediate production issues as quickly as
possible is fundamentally what we believe observability
should be focused on.

OBSERVABILITY IS BOTH A PRACTICE
AND A PROPERTY, AIDED BY TOOLING
AND DATA

1 Source: Innovation Insight for Observability
 https://www.gartner.com/en/documents/3991053/innovation-insight-for-observability

The term observability can be used to

describe both a practice (or process),

and to describe the property (or state) of

a service. Observability, like DevOps, is a

core competency of distributed systems

engineering. It is the practice that cloud

native developers do on a daily basis in

increasingly complex systems as they

answer the types of questions outlined

above. Observability is also a property of a

system — whether or not it produces data

that can be used to answer any question

that a developer asks of it. It is much easier

to maintain and manage an observable

system than a non-observable one.

Observability

Practice

Property

Tooling Data

3

EBOOK

Why do companies need
observability? Why now?
The need to introspect and understand systems and services is
not new — many of the basic goals of observability have been
in practice for decades. What’s changed is the nature of the
applications and infrastructure that teams are operating.
Cloud-native applications running on containers and microservices
have a completely different architecture and are designed to be
more scalable, reliable, and flexible than legacy apps. Cloud-hosted
monitoring and application performance monitoring (APM) were
born in a pre-cloud-native world — one that had very different
underlying assumptions. Cloud-native has forced organizations to
revisit how they perform monitoring and observility because:

Data is growing in scale and cardinality.
Cloud-native environments emit a massive amount of
observability data — somewhere between 10x and 100x
more than traditional VM-based environments.

Systems are more flexible and ephemeral.
Both the usage patterns and retention requirements are
vastly different to what they were pre-cloud-native.

Services and systems have greater
interdependencies.
Breaking services down into microservices leads to more
complex dependencies that engineers must understand
in order to troubleshoot problems. This also results in a
greater need to correlate and connect infrastructure to
applications to business metrics.

All of this has led to an explosion in complexity that makes it nearly
impossible to reliably and efficiently operate cloud-native services
without dramatically increasing overhead or finding a new approach.

EBOOK

4

EBOOK

What observability is not
Today, there are many who define observability as a collection of data types — the three
pillars: logs, metrics and distributed traces. While these are all critical inputs to observability,
they are not observability solutions in and of themselves. Rather than focusing on outcome,
this siloed approach to observability is overly focused on technical instrumentation and
underlying data formats.

Simply having systems emit all three data types doesn’t guarantee better outcomes — for
example if a system emits metrics, logs and traces, there is no guarantee that you get
notified in a timely manner, nor is there a guarantee you can triage issues quickly. What’s
more, many companies find little correlation between the amount of observability data
produced and the value derived from this data — i.e., more logs or metrics doesn’t equate
to more value, even though it almost always equates to increased costs.

5

EBOOK

Break observability down
into three phases
We’re not the first to criticize the three pillars. We agree with much of
the critique that others like Charity Majors and Ben Sigelman have put
out there. Instead of the three pillars of observability, we’ve developed
an approach to observability that is focused on the outcomes instead
of the inputs and we call it the three phases. The phases are focused
on positive observability outcomes and the steps teams can take to
achieve these goals.

During each phase, the focus is on alleviating the customer impact
— or remediating the problem — as fast as possible. Remediation is
the act of alleviating the customer pain and restoring the service to
acceptable levels of availability and performance. At each phase,
the engineer is looking for enough information to remediate the issue,
even if they don’t yet understand the root cause. Each phase maps to
answering one of the three critical questions we believe is required to
achieve great observability.

How quickly do I get notified when something is wrong?
Is it BEFORE a user/customer has a bad experience?

How easily and quickly can I triage
it to know what the impact is?

How do I find the underlying
cause so I can fix the problem?

“�Too many companies look at their

observability strategy and tick off the boxes:

I have logs, I have metrics. I have traces.

However, this doesn’t necessarily mean

you have observability, let alone great

observability. Producing more of each

of data type also doesn’t lead to better

observability. We think that an outcome

based approach for the end user, which is

the developer, is a better way to think

about observability as a whole.”

MARTIN MAO
Co-founder and CEO, Chronosphere

6

EBOOK

Phase 1: Know about the problem
The first step to resolving an issue is knowing the issue exists —
ideally before your customer does. Often, knowing an issue is
occurring is enough to trigger a remediation. For example, if
you deploy a new version of a service and an alert triggers for
that service, rolling back the deployment is the quickest path to
remediating the issue without needing to understand the full
impact or diagnose the root cause during the incident. Those
can be examined after the issue is remediated, when there isn’t
active customer impact. Introducing changes to a system is
the largest source of production issues, so knowing about
problems as these changes are introduced is key

Keys to success:
Fast alerting: Shrink the time between a problem
occurring and a notification firing.

Scope notifications to just the teams that need to act:
Scope the problem and route it to the right teams from
the start.

Improve signal to noise ratio: Ensure that alerts are
actionable.

Automate alert set-up: Most services or hosts produce
the same metric data which means automated or
templatized alerting can help engineers know about
problems without a complicated set-up process.

“�Fundamentally, what observability is trying

to achieve is to create a model, or a map,

of your system and your business in a

way that humans can understand. The

telemetry and data you produce should

help people understand the system and

mitigate problems faster.”

ROB SKILLINGTON
Co-founder and CTO, Chronosphere

Tools and data:
 ✓ Alerts

 ✓ �Metrics (native metrics as well as metrics
generated from logs and traces)

7

EBOOK

Phase 2: Triage the problem
The goal of this phase is to quickly understand the context and
impact of an issue. Once an alert goes off, if it is not obvious that
a recent change to the system needs to be rolled back, the next
step is to understand the business impact and the severity. Often,
understanding the scope of the issue can lead to remediation. For
example, if you determine that only customers in one experiment
group are impacted, turning off that experiment would likely
remediate the issue. Or, if requests to one availability zone or
cluster are impacted, you can reroute requests to the other zones
or clusters.

To help engineers triage issues, they need to be able to quickly
put the alert into context of understanding how many customers
or systems are impacted, and to what degree. Great observability
allows engineers to pivot the data and shine a spotlight on the
contextualized data to diagnose issues.

Keys to success:
Contextualized dashboards: Having alerts directly link to
dashboards that show not only the source of the alert, but
related and relevant contextual data.

High cardinality pivots: Allowing engineers to further
slice and dice the data allows them to further isolate the
problem.

Leverage existing instrumentation: It’s not practical
to always assume that every use-case is instrumented
perfectly, so it’s important to be able to leverage existing
instrumentation, but have them link as best possible for
best contextualization.

“�If you emit 10 times the amount of logs or

metrics as you did before, it doesn’t mean

you have a 10 times better mean time to

resolution (MTTR). There’s a mismatch

in terms of the amount of data being

produced and return on investment.”

MARTIN MAO
Co-founder and CEO, Chronosphere

Tools and data:
 ✓ Dashboards ✓ �Metrics ✓ Logs

8

EBOOK

Phase 3: Understand the problem
This phase occurs ideally after remediation, when engineers
can take the time to locate and understand underlying issues
without the pressure of a ticking clock of customer expectations.
With an ever increasing volume of microservices, doing a post
mortem on an incident is often an exercise in navigating a twisted
web of dependencies and trying to determine which service owner
you need to work with.

Great observability gives engineers direct line of sight linking
their metrics and alerts to the potential culprits. Additionally, it
provides insights that can help fix underlying problems to
prevent recurrence of incidents.

Keys to success:
Easy understanding of service dependencies:
Identifying the direct upstream and downstream
dependencies of the service experiencing the active
issue.

Ability to jump between tools and data types: For
complex issues, you need to repeatedly jump between
details given by logs and traces to the trends and
outliers given by metrics on dashboards and ideally in
a single tool.

Time to root cause: Sometimes it’s impossible to avoid
having to perform root cause analysis during an incident
and in those situations, having probable causes surface
in alert notifications or during triage using dashboards
reduces time to root cause.

Tools and data:
 ✓ Traces ✓ �Logs

 ✓ Metrics	 ✓ Dashboards

9

EBOOK

Conclusion
Great observability can lead to competitive

advantage, world-class customer experiences, faster

innovation, and happier developers. But organizations

can’t achieve great observability by just focusing on

the input and data (three pillars). By focusing on the

three phases and the outcomes outlined here, teams

can achieve the promise of great observability.

Ready to learn more? Book your demo
today by visiting chronosphere.io.

