
Implementing
Automated Secrets
Detection for
Application Security

How do we secure the new way of building software? Applications
are no longer standalone monoliths, they now rely on thousands of
building blocks: cloud infrastructure, databases, SaaS components
such as Stripe, Slack, HubSpot… This is a significant shift in software
development.

Dev & Ops teams from large organizations use thousands of secrets
like API keys and other credentials in order to interconnect these
components together. As a result, they now have access to more
sensitive information than companies can keep track of.

The risk is that these secrets are now spreading everywhere. We call
“secret sprawl” the unwanted distribution of secrets in all the systems
developers use. Think about secrets hardcoded in centralized Version
Control Systems, referred to in project management boards, shared
through messaging systems, inside a Dropbox or within a Wiki. Secret
sprawl is even more difficult to control with growing development
teams, sometimes spread over multiple geographies. Not even taking
into consideration that developers are under hard pressure due to
a growing number of technologies to master and shortened release
cycles.

In this whitepaper, we look at the implications of secret sprawl, and
present solutions for Application Security to further secure the SDLC
by implementing automated secrets detection in their DevOps
pipeline.

Implementing Automated
Secrets Detection for Application
Security

What developers call a “secret”
is anything that allows access to
a system, often programmatically.
API keys, private keys, database
credentials, security certificates
are perfect examples. Secrets are
keys to the kingdom: they give
access to cloud infrastructure,
SaaS components, databases,
internal portals or microservices…

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 2/19

Table of content

UNDERSTANDING THE BENEFITS OF MITIGATING
SECRET SPRAWL 4

What are the threats associated with secret
sprawl? 4

A focus on secrets in source code: why are
they so bad? 5

CHALLENGES ASSOCIATED WITH SECRET SPRAWL 8

1 — The git history makes it more complicated
than first thought 8

2 — Enforcing good security practices at
the organization level is hard 8

3 — Homegrown tools and scripts are hard
to build, maintain and keep up-to-date 9

GITGUARDIAN | AUTOMATED SECRETS DETECTION
THROUGHOUT THE SDLC 10

Where in the SDLC to implement automated
secrets detection? 10

Why is it hard to detect secrets? 12

Remediating exposed secrets 15

ABOUT GITGUARDIAN 16

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 3/19

WHAT ARE THE THREATS ASSOCIATED WITH SECRET SPRAWL?

No company wants credit card numbers in plaintext in databases, PII in
application logs, bank account credentials in a Google Doc. Secrets
benefit from the same kind of protective measures.

As a general security principle, where feasible, data should remain safe
even if it leaves the devices, systems, infrastructure or networks that
are under organizations’ control, or if they are compromised.

It is no surprise that credential stealing is a well-known adversary
technique described in the MITRE ATT&CK framework.

Understanding the benefits
of mitigating secret sprawl

MITRE ATT&CK T1081 :
Credential Access /
Credentials in Files

“ Adversaries may search local file systems and
remote file shares for files containing passwords.
These can be files created by users to store their
own credentials, shared credential stores for a
group of individuals, configuration files containing
passwords for a system or service, or source code/
binary files containing embedded passwords. ”

Of course the term «passwords» must be taken in the broadest
sense, and Application Security professionals prefer to talk
about secrets. Secrets accessed by malicious threat actors can
lead to information leakage and allow lateral movement or
privilege escalation, as secrets very often lead to other secrets.
Furthermore, once an attacker has the credentials to operate
like a valid user, it is extremely difficult to detect the abuse and
the threat can become persistent.

Source :
https://attack.mitre.org/techniques/
T1081/

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 4/19

https://attack.mitre.org/techniques/T1081/
https://attack.mitre.org/techniques/T1081/

A FOCUS ON SECRETS IN SOURCE CODE: WHY ARE THEY SO BAD?

Surprisingly, secrets stored in source code is the current state of the
world… although this is admittedly a bad thing.

 • Source code is made to be duplicated and distributed, therefore
lives in multiple places. Source code is a leaky asset and you
never know where it is going to end up: it can be cloned to a
compromised workstation or server, intentionally or accidentally
published in whole or in part, uploaded to your website, released
to a customer, pasted in Slack, end up in your package manager
or mobile application…

 • Additionally, it would just take one compromised developer
account to compromise all the secrets they have access to.

 • Hardcoded credentials make it very difficult to know what
secrets a developer accessed, and almost impossible to roll keys
after they leave.

SPOTLIGHT ON UBER
[1/2]

The Uber case is an interesting textbook case. We are leaving
to the press the dramatic figures about the damage that
hackers caused, because all security professionals know how
serious credential theft can be. It is difficult however to find
precise, reliable data about how hackers really operated, so we
will focus on that instead. We’re including below the link to the
FTC report, which is to our knowledge one of the best sources
of information on this case to date.

The first reported leak was due to a credential left in a public
repository:

“ First, on or about May 12, 2014, an intruder accessed
Uber’s Amazon S3 Datastore using an access
key that was publicly posted and granted full
administrative privileges to all data and documents
stored within Uber’s Amazon S3 Datastore.”

Source :
https://www.ftc.gov/system/files/
documents/federal_register_
notices/2018/04/152_3054_uber_
revised_consent_analysis_pub_frn.
pdf

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 5/19

https://www.ftc.gov/system/files/documents/federal_register_notices/2018/04/152_3054_uber_revised_consent_analysis_pub_frn.pdf
https://www.ftc.gov/system/files/documents/federal_register_notices/2018/04/152_3054_uber_revised_consent_analysis_pub_frn.pdf
https://www.ftc.gov/system/files/documents/federal_register_notices/2018/04/152_3054_uber_revised_consent_analysis_pub_frn.pdf
https://www.ftc.gov/system/files/documents/federal_register_notices/2018/04/152_3054_uber_revised_consent_analysis_pub_frn.pdf
https://www.ftc.gov/system/files/documents/federal_register_notices/2018/04/152_3054_uber_revised_consent_analysis_pub_frn.pdf

The second one was due to a credential exposed in a private
repository that was compromised due to poor password
hygiene and lack of MFA:

“ Second, between October 13, 2016 and November
15, 2016, intruders accessed Uber’s Amazon S3
Datastore using an AWS access key that was posted
to a private GitHub repository. (…) Uber did not
have a policy prohibiting engineers from reusing
credentials, and did not require engineers to enable
multi-factor authentication when accessing Uber’s
GitHub repositories. The intruders who committed
the 2016 breach said that they accessed Uber’s
GitHub page using passwords that were previously
exposed in other large data breaches, whereupon
they discovered the AWS access key they used to
access and download files from Uber’s Amazon S3
Datastore. ”

SPOTLIGHT ON UBER
[2/2]

Here are some key takeaways:

 • Independent study.

 • Large scale study: millions of repositories and billions
of files scanned, with over 200k credentials detected.

 • Keys leaked at a rate of thousands per day.

 • Conservative approach, targeting only 15 different types
of API keys and 4 asymmetric private key types.

“ Consequently, our work is not exhaustive but rather
demonstrates a lower bound on the problem of
secret leakage on GitHub. The full extent of the
problem is likely much worse than we report. ”

 • Secrets are often leaked accidentally, not intentionally.

 • High confidence that most of these secrets are indeed
sensitive.

 • Developer inexperience (measured as a small number of
repos with few contributions on GitHub) is not strongly
correlated with leakage.

“ HOW BAD CAN IT GIT ? ” :
the NCSU study that reports
thousands of credentials
leaked on public GitHub…
Per day.

Source :
https://www.ndss-symposium.org/
wp-content/uploads/2019/02/
ndss2019_04B-3_Meli_paper.pdf

Source :
https://www.ftc.gov/system/files/
documents/federal_register_
notices/2018/04/152_3054_uber_
revised_consent_analysis_pub_frn.
pdf

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 6/19

https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04B-3_Meli_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04B-3_Meli_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04B-3_Meli_paper.pdf
https://www.ftc.gov/system/files/documents/federal_register_notices/2018/04/152_3054_uber_revised_consent_analysis_pub_frn.pdf
https://www.ftc.gov/system/files/documents/federal_register_notices/2018/04/152_3054_uber_revised_consent_analysis_pub_frn.pdf
https://www.ftc.gov/system/files/documents/federal_register_notices/2018/04/152_3054_uber_revised_consent_analysis_pub_frn.pdf
https://www.ftc.gov/system/files/documents/federal_register_notices/2018/04/152_3054_uber_revised_consent_analysis_pub_frn.pdf
https://www.ftc.gov/system/files/documents/federal_register_notices/2018/04/152_3054_uber_revised_consent_analysis_pub_frn.pdf

GitLab’s Security Trends
analysis found that 18%
of projects hosted on GitLab
had identified leaked
secrets.

This is still a lower bound, calculated using extremely simple
detectors!

Source :
https://about.gitlab.com/
blog/2020/04/02/security-trends-in-
gitlab-hosted-projects/

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 7/19

https://about.gitlab.com/blog/2020/04/02/security-trends-in-gitlab-hosted-projects/
https://about.gitlab.com/blog/2020/04/02/security-trends-in-gitlab-hosted-projects/
https://about.gitlab.com/blog/2020/04/02/security-trends-in-gitlab-hosted-projects/

1. THE GIT HISTORY MAKES IT MORE COMPLICATED
THAN FIRST THOUGHT

Most vulnerabilities like cryptography weaknesses or SQL injection
vulnerabilities only express themselves the moment the code is
deployed. Exposed secrets are unlike these vulnerabilities, because
any secret reaching version control system must be considered
compromised and requires immediate attention. This is true even if
the code is never deployed. Implementing secrets detection is not only
about scanning the most actual version of your master branch before
deployment. It is also about scanning through every single commit of
your git history, covering every branch, even development or test ones.

Why do code reviews fail at secrets detection?

 • Reviewers are only concerned with the difference between
current and proposed states of the code, not with the entire
history of the project. If a commit adds a secret and another one
later deletes it, this has a zero net effect that is not of any
interest to reviewers. But the vulnerability is there!

 • Reviewers prefer to focus on errors that cannot be automatically
detected, like design flaws. As a general principle, security
automation should be implemented wherever it can, so that
humans focus on where they bring the most value.

2. ENFORCING GOOD SECURITY PRACTICES
AT THE ORGANIZATION LEVEL IS HARD

Difficulty increases with the size of the organization, number of
repositories, number of development teams and their geographies, …

Best practices to prevent secret sprawl include:

 • Educating developers on why they must not hardcode secrets in
code, ticketing systems, share them through messaging systems
or in a Dropbox or a Wiki.

 • Educating developers on how to safely store, share and retrieve
secrets.

 • Implementing automated secrets detection.

Challenges associated
with secret sprawl

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 8/19

Of course, educating developers to not hardcode secrets in source
code is a great starting point, but it is hardly scalable and still leaves
too much space for human errors. Plus code reviews notably fail at
detecting secrets, and take time and energy that would rather be
spent on things where developers deliver the most value.

3. HOMEGROWN TOOLS AND SCRIPTS ARE HARD TO BUILD,
MAINTAIN AND KEEP UP-TO-DATE

Some companies have built internal tools, often derived from Open
Source. There are many Open Source tools that help you find leaked
secrets, like truffleHog. Build vs Buy is an old dichotomy and you
probably already have an opinion about it. An enterprise-grade
solution is expected to provide precision, coverage and ease-of-use
guarantees that come with tight integration into your workflows,
without the burden of having to maintain it and keep it up-to-date.

A LOT OF SOURCE CODE
LIVES IN THE HISTORY

This Django contributions graph is very common. There are as
many additions than there are deletions! Deletions does not
mean that the code cannot be accessed anymore. Deleted only
means buried!

Source :
https://github.com/django/django/
graphs/code-frequency

[Django contributions graph]

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 9/19

https://github.com/django/django/graphs/code-frequency
https://github.com/django/django/graphs/code-frequency

Like SAST, DAST, dependency scanning or container scanning, secrets
detection takes hard work and is an Application Security category in
itself. But it’s even more than that. Let us guide you through some of
the key principles to automate secrets detection throughout your
SDLC, and all the tools developers use (such as Slack, file sharing,
ticketing systems).

WHERE IN THE SDLC TO IMPLEMENT AUTOMATED SECRETS
DETECTION?

The git protocol uses “hooks” to trigger certain actions at certain times
in the software development process.

There are client-side hooks, that execute locally on developers’
workstations, and server-side hooks, that execute on the centralized
version control system.

Here are some general principles about fitting security into your
DevOps pipeline:

 • The earlier a security vulnerability is uncovered, the less costly it
is to correct. Hardcoded secrets are no exceptions. If the secret is
uncovered after the secret reaches centralized version control
server-side, it must be considered compromised, which requires
rotating (revoking and redistributing) the exposed credential.
This operation can be complex and involve multiple stakeholders.

GitGuardian: automated secrets
detection throughout the SDLC

[Life of an incremental code revision (or “commit”)]

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 10/19

 • People bend the rules, often in an effort to collaborate better
together and do their job. Security must not be a blocker. It should
allow flexibility and enable information to flow, yet enable
visibility and control. On one hand, security measures will be
bypassed, sometimes for the worst. But on the other hand,
it is also good sometimes that the developer can take the
responsibility to bypass them. Secrets detection is probabilistic:
algorithms achieve a tradeoff between not raising false alerts
and not missing keys. Which means that even the best algorithms
can fail and need human judgement.

The previous principles advocate for the following:

 • Client-side secrets detection early in the software development
process is a nice to have: implement pre-commit or pre-push
hooks when possible. The good thing with pre-commits is that the
secret is never added to the local repository. This comes in handy
since removing a secret from the git history can be very tricky,
even client-side (server-side is even harder and requires to force
push). Whereas the good thing with pre-push is that you’ve got
an Internet connection there, allowing you to make API calls for
example. This is not necessarily the case when committing.

 • Server-side secrets detection is a must have: depending on the
size of your organization, enforcing client-side secrets detection
might not be an easy task, as this requires access to your
developers’ workstations. We’ve heard many times from
Application Security professionals that this is not something
they felt confident to do. In any case, keep in mind that client-side
hooks can (and must, secret detection being probabilistic) be easy
to bypass, hence the absolute necessity for server-side checks
where the ultimate threat lies.

GitGuardian integrates natively with GitHub or GitLab (server-side)
as a post-receive check.

You can also integrate GitGuardian anywhere in your SDLC using our
API, which can be self-hosted on premise. For example, the API can be
used to create a pre-push check or be integrated seamlessly in a CI
pipeline.

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 11/19

WHY IS IT HARD TO DETECT SECRETS?

Secrets detection is probabilistic: some secrets are easier to find than
others. There is a tradeoff between low number of false alerts and low
number of missed credentials.

Good secrets detection is a two-step process: harvest presumed
credentials first, then get rid of your worst candidates. Each step can
be achieved through a variety of methods, but it is really the subtle
combination of all these methods that achieves the best performance!

HOW TO GET STARTED
IMPLEMENTING SECRETS
DETECTION?

With the nature of git comes a unique challenge. Most security
vulnerabilities only express themselves in the actual version of
the source code, once used in production. But old commits can
contain valid secrets.

 • First, scan existing code history (all commits from
all branches in all projects) to start on a clean basis.

 • Then continuously scan all incremental changes, every
time a new commit is pushed to any branch of any
project.

Method Pros Cons

Entropy: look for strings that appear
random

 • Good for penetration testing, open
sourcing a project or bug bounties
because it brings a lot of results.
These results must be reviewed
manually.

 • Lots of false alerts (it is very
frequent to see URLs, file paths,
database IDs or other hashes with
high entropy), which makes it
impossible to use this method
alone in an automated pipeline.

 • Some keys are inevitably missed
because the entropy threshold to
be applied depends on the charset
used to generate the key and its
length.

STEP 1 : HARVEST CANDIDATES

Regular expressions: match known,
distinct patterns

 • Low number of false alerts.

 • Known patterns make it easier to
later check if the secret is valid or
not or if this is an example or test
key (see Step 2).

 • Unknown key types will be missed

 • Credentials without a distinct
pattern will be missed, which
means lots of missed credentials!
Think about passwords that can
be virtually any string in many
possible contexts, APIs that don’t
have a distinct format, …

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 12/19

Method Pros Cons

Look for known sensitive patterns
in the context of the candidate. The
idea is to aggregate weak signals.
For example, a sensitive filename,
combined with an assignment
variable containing the word “key”
in it, and the import of a Python
wrapper for the Datadog API.

 • Often allows to associate a
presumed credential with a given
service depending on the code
surrounding it. This is helpful to
validate the candidate by doing an
API call, see next method!

 • The notion of “context” is difficult
to define (think of a large commit
patch or file for example, or a
variable declared in one location
and used somewhere else in the
repository).

STEP 2: FILTER BAD CANDIDATES

STEP 3: GITGUARDIAN’S SECRET SAUCE!

Validate the candidate by doing an
API call against the associated
service.

 • There can be no more doubt,
your candidate is valid! Plus you
can use the opportunity to gather
information about permissions
associated with the key and
account owner. This information
is useful for prioritization and
remediation purposes.

 • You need to know the associated
service, or at least come up with
a list of potential services.

 • Not all credentials can be easily
checked programmatically. Think
about OAuth strings, private keys,
usernames and passwords, …

 • Some services are not accessible
from anywhere (like outside of
a given private network), so the
credential might be considered
invalid despite still posing a
threat.

Use a dictionary of anti-patterns to
get rid of certain example or test
keys. The presumed credential
should not contain linguistic
sequences of characters.

 • Allows to filter certain credentials
like those containing “EXAMPLE”
or “TEST” or “XXXX” in them, or
those found in test files or
directories.

 • There is no real con, this method
is always good to implement, but
won’t be able to filter all examples
or test keys.

We’ve raised hundreds of thousands of alerts already, including
pro bono alerts on public GitHub.

When raising alerts, we gather both implicit and explicit
feedback:

 • Explicit feedback when a developer or security team
marks an alert as a false alert

 • Implicit feedback when a developer takes down a public
repository or deletes a public commit a few minutes after
we sent an alert.

This feedback is then injected into our algorithms!

GITGUARDIAN’S SECRET
SAUCE!

Which is not a secret anymore
(as can be seen on our Twitter
account!).

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 13/19

https://twitter.com/gitguardian?lang=en
https://twitter.com/gitguardian?lang=en

FINDING A SECRET IN
SOURCE CODE IS LIKE
FINDING A NEEDLE
IN A HAYSTACK

WHAT ABOUT THE
PROGRAMMING LANGUAGE
THAT IS ANALYZED?
[1/2]

There are a lot more sticks than there are needles, and you
don’t know how many needles might be in the haystack. In the
case of secrets detection, you don’t even know what all the
needles look like!

As a cybersecurity vendor, customers often ask us about the
precision of our secrets detection algorithms. «What is the
percentage of the secrets that you detect that are actual
secrets?». This question is perfectly legitimate, especially in
the context of security teams being overwhelmed with too
many alerts.

Alarm fatigue is not the only pain. Considering the impact that a
single undetected credential leak can have for an organization,
we’re also often asked: “How many secrets do you miss?”.

Ideally, you want your detection system to achieve at the same
time:

 • A low number of false alerts raised, and

 • A low number of secrets missed.

Balancing the equation to ensure that the algorithm captures
as many secrets as possible without flagging too many false
results is an intricate and extremely difficult challenge that
takes a dedicated team.

This is the easy part of secrets detection, which, for the most
part, is not language specific. Of course, there are some
subtleties to take into account, like the way variables are
assigned in any programming language. But there is no need to
support all the different syntaxes in their greatest details. The
same algorithms can be applied to any project, in any
programming language.

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 14/19

A few other aspects to consider:

 • When building algorithms for probabilistic scenarios,
they will change over time. There is no perfect solution
that can remain the same, trends will change, secrets will
change, data will change, formats will change and
therefore, your algorithm will need to change.

 • You might want to be able to implement custom
detectors, for example in order to detect API keys giving
access to internal microservices specific to your
company.

WHAT ABOUT THE
PROGRAMMING LANGUAGE
THAT IS ANALYZED?
[2/2]

REMEDIATING EXPOSED SECRETS

Every time a secret is pushed to the git server, it must be considered
compromised and revoked. In large organizations, remediating is often
a shared responsibility between Development, Operations and
Application Security teams. Revoking the secret might require special
rights or approvals, some secrets might be harder to revoke than
others, secrets need to be renewed and redistributed without
impacting production systems and development work.

Apart from revoking the exposed secret, depending on your
organization’s policies, the git history might need a clean up, even if
the secret is no longer active. This requires a ‘git push --force’, which
comes with some risks as well since it might break ongoing changes
derived from the working copy or cause irreparable data loss. This is a
tradeoff, with no correct answer!

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 15/19

About GitGuardian

GitGuardian is a cybersecurity startup solving the issue of secrets
sprawling within organizations, a widespread problem that leads to
some secrets ending up in compromised places or in the public space.
The company solves this issue by automating secrets detection for
Application Security and Data Loss Prevention purposes. GitGuardian
raised 12M$ in October 2019 and is backed by prominent investors
including Scott Chacon, Co-Founder of GitHub, and Solomon Hykes,
Founder of Docker. GitGuardian provides two tools aimed at securing
two different perimeters.

The first product, GitGuardian Public Monitoring, scans all public
GitHub, at scale, in real-time. The product links developers with their
companies, and then monitors these developers, especially on their
personal repositories, where 80% of the corporate leaks on GitHub
occur. Companies often don’t know that these repositories exist, don’t
have visibility on them, let alone the authority to enforce security
measures there. The product comes in the form of a SaaS dashboard
used by Incident Response, Threat Intelligence and Application Security
teams to find leaked credentials, investigate and remediate quickly.

The second product, GitGuardian Internal Repositories Monitoring,
scans corporate repositories, private or Open Source. The product is
natively integrated with GitHub and GitLab. It includes an API as well to
integrate anywhere in your SDLC and tools used by your developers.
The product comes in the form of a dashboard used by Application
Security teams to detect credentials and collaborate with developers
to remediate quickly. Available in SaaS and On Prem.

HOW WE SELL
CYBERSECURITY SOFTWARE
AT GITGUARDIAN:
our Manifesto
[1/2]

Purchasing security software is hard and trust is an important
factor. Our commitments:

 • We help first: if you don’t want to jump directly in a call
with our sales reps, we are happy to share materials with
you upfront. This way you can evaluate whether or not
having a conversation with our reps is worth your time.

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 16/19

THIS IS HOW WE SELL
CYBERSECURITY SOFTWARE
AT GITGUARDIAN:
our Manifest
[2/2]

SOLOMON HYKES
Co-Founder of Docker

 • Consultative approach: we will come up early in the sales
process with a structured, straightforward questionnaire
to help you evaluate your needs and requirements, weigh
them so that you can compare us with your alternatives.

 • Radical transparency: we are always keen on sharing
the technical details of what we do with your technical
teams. Even our secret sauce is, well, not a secret
anymore!

 • Directness: if we feel we are not a good fit for your needs,
we will let you know early in the process, and suggest
relevant alternatives.

 • Products that are easy to test:

 — For GitGuardian Public Monitoring: we’ve been
monitoring the whole GitHub public activity and
detecting secrets leaked there for over three years
now. During the sales process, if you allow us to do so,
we will show your security team the GitGuardian
dashboard populated with actual data from your
company’s perimeter.

 — For GitGuardian Private Monitoring: you will be given
access to a free trial with unlimited features for you
to test the product in real conditions before
potentially buying.

 • Simple, predictable pricing. You don’t need a degree in
maths to understand our quotation!

“ Securing your systems starts with securing
your software development process. GitGuardian
understands this, and they have built a pragmatic
solution to an acute security problem. Their
credentials monitoring system is a must-have
for any serious organization.”

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 17/19

REFERENCES

GitGuardian | WHITEPAPER | Implementing Automated Secrets Detection for Application Security 18/19

	Understanding the benefits of mitigating secret sprawl
	What are the threats associated with secret sprawl?
	A focus on secrets in source code: why are they so bad?

	Challenges associated with secret sprawl
	1.	�The git history makes it more complicated than first thought
	2. 	�Enforcing good security practices at the organization level is hard
	3. 	�Homegrown tools and scripts are hard to build, maintain and keep up-to-date

	GitGuardian: automated secrets detection throughout the SDLC
	Where in the SDLC to implement automated secrets detection?
	Why is it hard to detect secrets?
	Remediating exposed secrets

	About GitGuardian

