
The Value of Istio and Envoy
What You Get from an Istio Service Mesh.

by Zack Butcher

White Paper

www.tetrate.io

https://www.tetrate.io/
https://www.tetrate.io/

The Value of Istio and Envoy: What You Get from an Istio Service Mesh 2

Executive Summary

The transition to service-based models driving industry advancement has inadvertently led
to increased complexity in service management, networking, and security… problems only a
service mesh can solve. Istio is currently the industry-leading open source service mesh, and
relies on an Envoy proxy to support it.

We will address the what, why, and how of an Istio—and Envoy-based service mesh. This paper
will introduce you to:

• Why a service mesh is encouraged in service-based models

• The basics of its architecture

• An overview of features an Istio service mesh can provide

• What the service mesh is not going to fix

By the end, you should have a firm understanding of what an Istio service mesh is and how it works.

Intro

Do you want your teams to be able to work independently of each other for speed?

Sure!

Do you want to use several languages to serve specific needs, rather than shoe-
horning a language into fixing your problem, because you can’t use another?

Of course I do!

Do you want to be able to scale efficiently and faster?

Who the heck wouldn’t?

How about reducing downtime and increasing resilience?

These seem like very leading questions now.

If these are questions that resonate with your needs, then you’ve already started down the path of
moving to microservices. You’ve accepted that you want to have a development strategy built around
organizational and business capabilities. You’ve decided that you want to be flexible and more scalable
in areas that you decide, more productive, faster, and efficient. But...

1

2

3

4

The Value of Istio and Envoy: What You Get from an Istio Service Mesh 3

Microservices have become increasingly popular because companies want to become more agile, or
quick to deploy software and apps to users. But microservice architectures were designed to solve
organizational problems, not engineering ones. Whether you’re starting from scratch or migrating
an older system to this new, exciting method of architecting an application, it comes with additional
complexity and engineering concerns that need to be addressed properly to avoid abject chaos. Why
is this so complex? Two reasons: environments have changed, and they’re more dynamic. You can
apply changes faster, but traditional networking and security approaches won’t be as effective. The
network is a more integral part of the application and must be managed differently.

A service mesh manages the complexity. The service mesh architecture is a direct response to the
technical challenges caused by the organizational decision to move to a service-based architecture.
We believe that Istio, built on Envoy, is the most comprehensive service mesh offering and the best
on the market.

What is a service mesh?
A service mesh is an infrastructure layer and platform that sits on top of your service-based application
to make service-service communications faster, safer and more reliable. The mesh also gives
organizations a centralized, uniform way to manage, secure and connect microservices. We usually
break down a service mesh into three key areas of benefit: security, traffic control, and observability.
We’ll cover each area in depth in later sections.

“All magic comes with a price” - Rumplestiltskin

The Istio architecture in 2020

NodeNode

Istio AgentIstio Agent

Istiod

Discovery
Configuration
Certificates

Service A

Proxy

Service B

Proxy

https://www.tetrate.io/application-tools/tetrate-cloud-map/

The Value of Istio and Envoy: What You Get from an Istio Service Mesh 4

The basis of an Istio service mesh is an Envoy proxy, which sits next to each service instance, and we
call this a sidecar. This sidecar proxy is the foundation for the service mesh. It carries all the traffic
in or out of your application, allowing it to generate metrics, apply policy, and control traffic flow.
However, the more services that are deployed, the more sidecars in use, the complexity increases as
do the number of problems that can occur. This is where Istio comes in.

Istio acts as the control plane, making each sidecar aware of the others and provides centralized
control for all of them. We use the term “service mesh” because of Istio’s power to program the
sidecars, enforce policies, and collect telemetry.

Why a service mesh?
Microservices involve a lot of moving parts, and trying to control them at scale is like herding cats.
Remember, the network is an inherent part of your application—an issue that didn’t exist with
monoliths. A service mesh is what’s needed to consistently manage traffic, security, observability, and
resilience. Now you’re herding cats in a smaller pen where they’re easier to get hold of. The service
mesh moves these concerns into a common layer, out of the application and away from developers,
so that a platform operator can manage them on behalf of the entire organization.

Service mesh key functions

BUSINESS CAPABILITY DEBUGGING OPERATIONS SECURITY CONSISTENCY

To break it down to the key functions of the service mesh, it:

• Allows developers to focus on the business: There are so many things that can be removed
from the developers’ hands by moving to microservices and a service mesh. Because the sidecar
proxy is handling so many things, including security, traffic and observability, you don’t need to
migrate existing libraries into new languages. It gives developers the opportunity to explore a
variety of languages and frameworks to address software requirements.

• Allows focus on the application capability: Engineering time is better spent focusing on the

application capability than, for example, determining the retry count for the calls and building

https://www.tetrate.io/application-tools/getenvoy/

The Value of Istio and Envoy: What You Get from an Istio Service Mesh 5

it into the application. The service mesh platform abstracts that from the developer. This being
said, a service mesh will not hide bad code. In fact, with the mesh’s observability features, bad
code can be more obvious, so be warned!

• Improves debugging: The mesh handles each request individually, generating metrics and
logging it individually, meaning there is great observability of the actions happening in your
system. It helps you quickly identify whether an issue is application related or networking
specific, and helps reduce time to resolution.

• Improves operations, allowing you to:

 | Use outlier detection (passive health checks) in Envoy to automatically remove unhealthy
services from the load balancing pool to increase the overall availability and reliability of a
service

 | Implement circuit breaking to avoid cascading failures caused by overloading service
instances

 | Configure retry policies to resend failed requests to different service instances

 | Transparently observe your applications to get insight into unexpected dependencies and
service communication failures

 | Reduce downtime with:

 � Canary release as a testing method for service updates, which allows you to roll out
changes to a small part of your infrastructure and verify it works before pushing it to the
rest of your production environment

 � Dictate retries, stating the number of times the request will try different endpoints, to
make a successful connection

 | Use fault injection to test how your services would behave if there was a problem by
deliberately forcing one into the system.

• Improves security:

 | The mesh ensures that the traffic moving between services is encrypted by default, with a
strong (authenticatable) identity per application

 | Imposes policies at a granular level of service behaviors, not just connection level.

• Enforces consistency: App developers don’t have to build any of the above into the logic
anymore. The mesh does it for you. At a high level, the service mesh enables a services-first
network. You get a uniform way to secure, manage, connect, and monitor your system, all done
by the mesh.

The value of a service mesh stretches beyond just ‘greenfield’ microservice applications and is equally
supportive of monoliths. Why? Monoliths aren’t always a bad thing and suit certain business needs

The Value of Istio and Envoy: What You Get from an Istio Service Mesh 6

Secure Communication
A service mesh gives your organization powerful capabilities for enabling
encryption in transit, enforcing service-to-service access policy, and
auditing compliance to those policies.

mTLS

Istio provides every application a runtime identity in the form of a certificate. That certificate can be
used at runtime to perform mutual Transport Layer Security (mTLS)—requiring both the client and
the server to verify each other. This provides encryption in transit out of the box at greatly reduced
operational burden, and serves as the basis for...

Authentication and Authorization of Service-to-Service Communication

Each service in the mesh is given a verifiable identity—the certificate we mentioned above—which is
used at runtime to decide which of two services are allowed to communicate. Istio can go further, and
apply policy per request on request metadata—like a JSON Web Token (JWT), the request’s path, or
other headers—in addition to coarse grained access based on identity.

well. In some cases, there’s no need to consider a microservice application as a replacement. However,
if your business is making the move to microservices, it’ll take time and patience. More and more
frequently, a service mesh is becoming a key consideration to help with the move by bridging legacy
and new infrastructure.

How does a service mesh do it?
Let’s look deeper into how it works.

Service mesh is a dedicated infrastructure layer that controls service-to-service communication over a network.

SECURE COMMUNICATION OBSERVABILITY TRAFFIC MANAGEMENT

The Value of Istio and Envoy: What You Get from an Istio Service Mesh 7

Observability
If you’re using any number of services, you need to know exactly what
each of them are doing, and most importantly when they’re not doing
what they should. The very detailed observability that Istio enables lets
you gain insight into your service’s operations.

Metrics
Istio produces operational metrics about a service—the RED metrics:
rate of Requests, rate of Errors, Duration (as a distribution). These
three metrics can be used to determine if most services are healthy or not without needing a deep
understanding of the service’s underlying business logic. Istio produces these metrics consistently,
with identical dimensions, for every service in the mesh. This enables uniform tools (like dashboards)
that work for all services.

Distributed Traces

Traces are a great way to understand end-to-end request flows through your system as a user
experiences them. A service mesh can help with tracing by initiating traces at the edge of your
infrastructure and propagating trace data into your applications. A mesh can’t enable distributed
tracing by itself, though: to really get distributed tracing you must update your applications to
propagate trace data from incoming requests to outgoing requests itself. Most trace implementations
have clients per language that will help you do this in your application.

Access Logs
Envoy can produce per-request access logs on behalf of your applications. These logs can include
quite a lot of information about the request including the full Common Log format data, data about
how Envoy itself processed the request, and more. This logging can be centrally configured and is
consistent across the services in your mesh. This invariably allows you to build log processing pipelines
that are universally usable by your application teams.

Traffic Management
A service mesh provides fine-grain control over traffic in your network.
Today, you need to write code into your application to handle most of
the considerations listed, but a service mesh moves this functionality
out from a developer. Your organization can then centralize control in
the hands of the platform team, or delegate control to your individual
application teams (or, more likely, a mix of the two).

Live Configuration Update

In highly dynamic systems, it’s critical that we be able to react to events quickly—at the speed of
an API call, ideally. Istio and Envoy support live configuration reload without needing to restart. This

The Value of Istio and Envoy: What You Get from an Istio Service Mesh 8

means the new configuration you push into your mesh goes into effect quickly. Compare that to
today, where you have a bad retry loop in your code (because your retry logic probably is embedded
in the code, probably as a for loop) requires a code change, rebuild, and redeploy of a binary. That’s a
far longer time to mitigate a problem than pushing updated configuration.

Fine-Grained Traffic Routing

Because a service mesh’s sidecar intercepts your application’s traffic, we can apply client-side load
balancing. This means that individual instances of your service can make decisions like a traditional
load balancer would, but per request rather than per connection. For example, based on an HTTP
request’s headers you can choose to send the request to a staging version of your service rather than
the primary production version. Or you can split traffic by percentage to test a new version of your
service incrementally (“canarying” your service). You can choose to route traffic based on just about
any metadata about the request, including source or destination IP and port, HTTP headers, including
cookies, JWTs, host headers, etc.

Resiliency

We’ve mentioned that a mesh provides many tools for resiliency. The client-side load balancing enabled
by sidecar proxies let us perform retries with outlier detection (passive health checking) and circuit
breaking, on each request your application sends. This makes your system far more reliable overall
because individual instances of your service can react to transient failures independently and without
you intervening. Together these features can greatly boost the success rate of calls to services (even
external services you don’t own).

Fault Injection

How does your UI behave when your access control service is under load and takes 5 seconds to
return a result? What about when the backend it relies on fails at an elevated rate? Fault injection
means deliberately introducing failures in an individual service so you can understand how the rest of
your services behave in the presence of that failure. For example, you can configure a service to return
a 500 response code, or add an additional 5 seconds of latency, to half of the requests it receives.
This allows you to create consistent and repeatable tests that emulate past failures, or to reproduce
live failures in a controlled way. This can be done with the push of a button, and doesn’t require any
changes to your application’s code.

Traffic Shadowing

Traffic shadowing (or request mirroring) allows you to test new versions of a service with real production
traffic rather than simulated or test traffic. Envoy does this by sending traffic to a secondary service
in addition to its primary destination, but ignoring any results from the secondary service. This allows
for more accurate and truer-to-life testing than many other methods. Be careful that your secondary
service doesn’t act on requests it receives in a way that interferes with the primary service!

Get started quickly with Tetrate
Enterprise ready service mesh for any workload on any environment

Contact Us Schedule a Demo

About Tetrate

Tetrate enables a safe and fast modernization journey for enterprises. Built atop Envoy and Istio, its flagship
product, Tetrate Service Bridge, spans traditional and modern workloads so customers can get consistent
baked-in observability, runtime security, and traffic management—for all their workloads, on any environment.
In addition to the technology, Tetrate brings a world-class team that leads the open Envoy and Istio projects,
providing best practices and playbooks that enterprises can use to modernize their people and processes.

Location: Tetrate, 691 S Milpitas Blvd, Suite 217, Milpitas, CA 95035, USA

www.tetrate.io | info@tetrate.io

Copyright © 2020 Tetrate

Getting Started
We hope that this paper has given you an overview of what service mesh
can do for you, but let’s be clear that service mesh isn’t going to solve
all of your problems. An Istio and Envoy service mesh has a substantial
collection of features and capabilities that should be used carefully and
with consideration. Efforts to use all of them at once may not result in a
successful implementation, so think about what you’re trying to achieve,
and what specific problems you’re trying to solve. Start with something
that you can test the value of, and move forward from there.

Tetrate has a wealth of resources, knowledge and expertise on Istio and Envoy. To find out more of
what’s available and what support we can offer, contact us at info@tetrate.io.

Learn more about Tetrate products: www.tetrate.io

Istio

https://www.tetrate.io/contact/
https://www.tetrate.io/contact/
https://www.tetrate.io/
mailto:info%40tetrate.io?subject=
mailto:info%40tetrate.io?subject=
https://www.tetrate.io/

