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C H A P T E R  1:   Introduction The world of machine learning is evolving so fast that it ’s not easy to find 
real-world use cases that are relevant to what you’re working on. That’s why 
we’ve collected together these blogs from industry thought leaders with 
practical use cases you can put to work right now. This how-to reference 
guide provides everything you need — including code samples — so you can 
get your hands dirty exploring machine learning on the Databricks platform.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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Introduction
The phrase “dynamic time warping,” at first read, might evoke images of Marty McFly driving his DeLorean at 88 MPH in 
the “Back to the Future” series. Alas, dynamic time warping does not involve time travel; instead, it ’s a technique used to 
dynamically compare time series data when the time indices between comparison data points do not sync up perfectly.

As we’ll explore below, one of the most salient uses of dynamic time warping is in speech recognition — determining 
whether one phrase matches another, even if the phrase is spoken faster or slower than its comparison. You can  
imagine that this comes in handy to identify the “wake words” used to activate your Google Home or Amazon Alexa  
device — even if your speech is slow because you haven’t yet had your daily cup(s) of coffee.

Dynamic time warping is a useful, powerful technique that can be applied across many different domains. Once you 
understand the concept of dynamic time warping, it ’s easy to see examples of its applications in daily life, and its  
exciting future applications. Consider the following uses:

•  F I N A N C I A L  M A R K E T S :  Comparing stock trading data over similar time frames, even if they do not match up 
perfectly. For example, comparing monthly trading data for February (28 days) and March (31 days).

•  W E A R A B L E  F I T N E S S  T R A C K E R S :  More accurately calculating a walker’s speed and the number of steps,  
even if their speed varied over time.

•  R O U T E  C A L C U L AT I O N:  Calculating more accurate information about a driver’s ETA, if we know something  
about their driving habits (for example, they drive quickly on straightaways but take more time than average to  
make left turns).

Data scientists, data analysts and anyone working with time series data should become familiar with this technique,  
given that perfectly aligned time-series comparison data can be as rare to see in the wild as perfectly “tidy” data.

In this blog series, we will explore:

•  The basic principles of dynamic time warping

•  Running dynamic time warping on sample audio data

•  Running dynamic time warping on sample sales data using MLflow

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.265630156.2112692442.1591844546-225663068.1585060489
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Dynamic time warping
The objective of time series comparison methods is to produce a distance metric 
between two input time series. The similarity or dissimilarity of two-time series is 
typically calculated by converting the data into vectors and calculating the Euclidean 
distance between those points in vector space.

Dynamic time warping is a seminal time series comparison technique that has been 
used for speech and word recognition since the 1970s with sound waves as the source; 
an often cited paper is Dynamic time warping for isolated word recognition based on 
ordered graph searching techniques.

Background
This technique can be used not only for pattern matching, but also anomaly detection 
(e.g., overlap time series between two disjoint time periods to understand if the shape 
has changed significantly or to examine outliers). For example, when looking at the 
red and blue lines in the following graph, note the traditional time series matching (i.e., 
Euclidean matching) is extremely restrictive. On the other hand, dynamic time warping 
allows the two curves to match up evenly even though the X-axes (i.e., time) are not 
necessarily in sync.  Another way is to think of this is as a robust dissimilarity score 
where a lower number means the series is more similar.

Two-time series (the base time series and new time series) are considered similar when 
it is possible to map with function f(x) according to the following rules so as to match the 
magnitudes using an optimal (warping) path.

E U C L I D E A N  M AT C H I N G

D Y N A M I C  T I M E  WA R P I N G  M AT C H I N G Source: Wiki Commons 
File: Euclidean_vs_DTW.jpg

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://ieeexplore.ieee.org/document/1171695
https://ieeexplore.ieee.org/document/1171695
https://commons.wikimedia.org/wiki/File:Euclidean_vs_DTW.jpg
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Sound pattern matching
Traditionally, dynamic time warping is applied to audio clips to determine the similarity  
of those clips. For our example, we will use four different audio clips based on two 
different quotes from a TV show called “The Expanse.” There are four audio clips (you  
can listen to them below but this is not necessary) — three of them (clips 1, 2 and 4) are 
based on the quote:

“Doors and corners, kid. That’s where they get you.”

And one clip (clip 3) is the quote:

“You walk into a room too fast, the room eats you.”

Below are visualizations using  matplotlib  of the four audio clips:

•  C L I P  1:  This is our base time series based on the quote “Doors and corners, kid. 
That ’s where they get you.”

•  C L I P  2 :  This is a new time series [v2] based on clip 1 where the intonation and 
speech pattern is extremely exaggerated.

•  C L I P  3:  This is another time series that ’s based on the quote “You walk into a room 
too fast, the room eats you.” with the same intonation and speed as clip 1.

•  C L I P  4:  This is a new time series [v3] based on clip 1 where the intonation and 
speech pattern is similar to clip 1.

        Clip 1  |   Doors and corners, kid. 
That’s where they get you. [v1]

        Clip 3  |   You walk into a room too fast, 
the room eats you.

        Clip 2  |   Doors and corners, kid. 
That’s where they get you. [v2]

        Clip 4  |   Doors and corners, kid. 
That’s where they get you. [v3]

        Clip 1  |   Doors and corners, kid. 
That’s where they get you. [v1]

        Clip 3  |   You walk into a room too fast, 
the room eats you.

        Clip 2  |   Doors and corners, kid. 
That’s where they get you. [v2]

        Clip 4  |   Doors and corners, kid. 
That’s where they get you. [v3]

Quotes are from “The Expanse”

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://www.imdb.com/title/tt3230854/
https://www.amazon.com/The-Expanse-Season-1/dp/B018BZ3SCM
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid_thats-where-they-get-you.wav
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid_thats-where-they-get-you-2.wav
https://dennyglee.files.wordpress.com/2019/03/you-walk-into-a-room-too-fast_the-room-eats-you.wav
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid.wav
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The code to read these audio clips and visualize them using matplotlib can be 
summarized in the following code snippet.

from scipy.io import wavfile
from matplotlib import pyplot as plt
from matplotlib.pyplot import figure

# Read stored audio files for comparison
fs, data = wavfile.read(“/dbfs/folder/clip1.wav”)

# Set plot style
plt.style.use(‘seaborn-whitegrid’)

# Create subplots
ax = plt.subplot(2, 2, 1)
ax.plot(data1, color=’#67A0DA’)
...

# Display created figure
fig=plt.show()
display(fig)

The full code base can be found in the notebook Dynamic Time Warping Background.

As noted below, when the two clips (in this case, clips 1 and 4) have different intonations 
(amplitude) and latencies for the same quote.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.26621182.2112692442.1591844546-225663068.1585060489
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If we were to follow a traditional Euclidean matching (per the following graph), even if we 
were to discount the amplitudes, the timings between the original clip (blue) and the new 
clip (yellow) do not match.

With dynamic time warping, we can shift time to allow for a time series comparison 
between these two clips.

E U C L I D E A N  M AT C H I N G D Y N A M I C  T I M E  WA R P I N G

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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For our time series comparison, we will use the  fastdtw  PyPi library; the instructions 
to install PyPi libraries within your Databricks workspace can be found here: Azure | AWS. 
By using fastdtw, we can quickly calculate the distance between the different time series.

from fastdtw import fastdtw

# Distance between clip 1 and clip 2
distance = fastdtw(data_clip1, data_clip2)[0]
print(“The distance between the two clips is %s” % distance)

The full code base can be found in the notebook Dynamic Time Warping Background.

Some quick observations:

•  As noted in the preceding graph, clips 1 and 4 have the shortest distance as the audio 
clips have the same words and intonations

•  The distance between clips 1 and 3 is also quite short (though longer than when 
compared to clip 4) even though they have different words, they are using the same 
intonation and speed

•  Clips 1 and 2 have the longest distance due to the extremely exaggerated intonation 
and speed even though they are using the same quote

As you can see, with dynamic time warping, one can ascertain the similarity of two 
different time series.

Next
Now that we have discussed dynamic time warping, let ’s apply this use case to detect 
sales trends.

B A S E Q U E R Y D I S TA N C E

Clip 1 Clip 2 480148446.0

 Clip 3 310038909.0

 Clip 4 293547478.0

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://pypi.org/project/fastdtw/
https://docs.azuredatabricks.net/user-guide/libraries.html#pypi-libraries
https://docs.databricks.com/user-guide/libraries.html?_ga=2.202207314.2112692442.1591844546-225663068.1585060489#pypi-libraries
https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.266370253.2112692442.1591844546-225663068.1585060489
https://databricks.com/blog/2019/04/30/using-dynamic-time-warping-and-mlflow-to-detect-sales-trends.html
https://databricks.com/blog/2019/04/30/using-dynamic-time-warping-and-mlflow-to-detect-sales-trends.html
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Background
Imagine that you own a company that creates 3D-printed products. Last year, you knew that drone propellers were 
showing very consistent demand, so you produced and sold those, and the year before you sold phone cases. The new 
year is arriving very soon, and you’re sitting down with your manufacturing team to figure out what your company 
should produce for next year. Buying the 3D printers for your warehouse put you deep into debt, so you have to make sure 
that your printers are running at or near 100% capacity at all times in order to make the payments on them.

Since you’re a wise CEO, you know that your production capacity over the next year will ebb and flow — there will be 
some weeks when your production capacity is higher than others. For example, your capacity might be higher during the 
summer (when you hire seasonal workers), and lower during the third week of every month (because of issues with the 3D 
printer filament supply chain). Take a look at the chart below to see your company’s production capacity estimate:

Your job is to choose a product for which 
weekly demand meets your production 
capacity as closely as possible. You’re looking 
over a catalog of products that includes last 
year’s sales numbers for each product, and you 
think this year’s sales will be similar.

If you choose a product with weekly demand that 
exceeds your production capacity, then you’ll 
have to cancel customer orders, which isn’t good 
for business. On the other hand, if you choose a product without enough weekly demand, you won’t be able to keep your 
printers running at full capacity and may fail to make the debt payments.

Dynamic time warping comes into play here because sometimes supply and demand for the product you choose will be 
slightly out of sync. There will be some weeks when you simply don’t have enough capacity to meet all of your demand, but 
as long as you’re very close and you can make up for it by producing more products in the week or two before or after, your 
customers won’t mind. If we limited ourselves to comparing the sales data with our production capacity using Euclidean 
matching, we might choose a product that didn’t account for this, and leave money on the table. Instead, we’ll use dynamic 
time warping to choose the product that ’s right for your company this year.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://pages.databricks.com/rs/094-YMS-629/images/dtw-mlflow-sales.zip?_ga=2.232208604.2112692442.1591844546-225663068.1585060489
https://pages.databricks.com/rs/094-YMS-629/images/dtw-mlflow-sales.zip?_ga=2.232208604.2112692442.1591844546-225663068.1585060489
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Load the product sales data set
We will use the weekly sales transaction data set found in the UCI Data Set Repository 
to perform our sales-based time series analysis. (Source attribution: James Tan, 
jamestansc@suss.edu.sg, Singapore University of Social Sciences)

import pandas as pd

# Use Pandas to read this data
sales_pdf = pd.read_csv(sales_dbfspath, header=’infer’)

# Review data
display(spark.createDataFrame(sales_pdf))

Each product is represented by a row, and each week in the year is represented by a 
column. Values represent the number of units of each product sold per week. There are 
811 products in the data set.

Calculate distance to optimal time series by product code

# Calculate distance via dynamic time warping between product 
code and optimal time series
import numpy as np
import _ucrdtw

def get_keyed_values(s):
    return(s[0], s[1:])

def compute_distance(row):
    return(row[0], _ucrdtw.ucrdtw(list(row[1][0:52]), 
list(optimal_pattern), 0.05, True)[1])

ts_values = pd.DataFrame(np.apply_along_axis(get_keyed_values, 1, 
sales_pdf.values))
distances = pd.DataFrame(np.apply_along_axis(compute_distance, 1, 
ts_values.values))
distances.columns = [‘pcode’, ‘dtw_dist’]

Using the calculated dynamic time warping ‘distances’ column, we can view the 
distribution of DTW distances in a histogram.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://archive.ics.uci.edu/ml/datasets/Sales_Transactions_Dataset_Weekly
https://archive.ics.uci.edu/ml/index.php
mailto:jamestansc%40suss.edu.sg?subject=
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From there, we can identify the product codes closest to the optimal sales trend (i.e., 
those that have the smallest calculated DTW distance). Since we’re using Databricks, we 
can easily make this selection using a SQL query. Let ’s display those that are closest.

%sql
-- Top 10 product codes closest to the optimal sales trend
select pcode, cast(dtw_dist as float) as dtw_dist from distances order 
by cast(dtw_dist as float) limit 10

After running this query, along with the corresponding query for the product codes that 
are furthest from the optimal sales trend, we were able to identify the two products that 
are closest and furthest from the trend. Let ’s plot both of those products and see how 
they differ.

As you can see, Product #675 (shown in the orange triangles) represents the best match 
to the optimal sales trend, although the absolute weekly sales are lower than we’d like 
(we’ll remedy that later). This result makes sense since we’d expect the product with the 
closest DTW distance to have peaks and valleys that somewhat mirror the metric we’re 
comparing it to. (Of course, the exact time index for the product would vary on a week-
by-week basis due to dynamic time warping). Conversely, Product #716 (shown in the 
green stars) is the product with the worst match, showing almost no variability.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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Finding the optimal product: Small DTW distance and  
similar absolute sales numbers
Now that we’ve developed a list of products that are closest to our factory’s projected 
output (our “optimal sales trend”), we can filter them down to those that have small 
DTW distances as well as similar absolute sales numbers. One good candidate would be 
Product #202, which has a DTW distance of 6.86 versus the population median distance 
of 7.89 and tracks our optimal trend very closely.

# Review P202 weekly sales  
y_p202 = sales_pdf[sales_pdf[‘Product_Code’] == ‘P202’].values[0]
[1:53]

Using MLflow to track best and worst products,  
along with artifacts
MLflow is an open-source platform for managing the machine learning lifecycle, 
including experimentation, reproducibility and deployment. Databricks notebooks 
offer a fully integrated MLflow environment, allowing you to create experiments, log 
parameters and metrics, and save results. For more information about getting started 
with MLflow, take a look at the excellent documentation.

MLflow’s design is centered around the ability to log all of the inputs and outputs of 
each experiment we do in a systematic, reproducible way. On every pass through the 
data, known as a “Run,” we’re able to log our experiment’s:

•  PA R A M E T E R S :  The inputs to our model

•  M E T R I C S :  The output of our model, or measures of our model’s success

•  A R T I FA C T S :  Any files created by our model — for example, PNG plots or  
CSV data output

•  M O D E L S :  The model itself, which we can later reload and use to serve predictions

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://mlflow.org/
https://www.mlflow.org/docs/latest/index.html
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In our case, we can use it to run the dynamic time warping algorithm several times 
over our data while changing the “stretch factor,” the maximum amount of warp that 
can be applied to our time series data. To initiate an MLflow experiment, and allow for 
easy logging using  mlflow.log_param() ,  mlflow.log_metric() ,  mlflow.log_
artifact() , and  mlflow.log_model() , we wrap our main function using:

with mlflow.start_run() as run:
    ...

as shown in the abbreviated code at right.

import mlflow

def run_DTW(ts_stretch_factor):
    # calculate DTW distance and Z-score for each product
    with mlflow.start_run() as run:
        
        # Log Model using Custom Flavor
        dtw_model = {‘stretch_factor’ : float(ts_stretch_factor), 
‘pattern’ : optimal_pattern}       
        mlflow_custom_flavor.log_model(dtw_model, artifact_
path=”model”)

        # Log our stretch factor parameter to MLflow
        mlflow.log_param(“stretch_factor”, ts_stretch_factor)

        # Log the median DTW distance for this run
        mlflow.log_metric(“Median Distance”, distance_median)

        # Log artifacts - CSV file and PNG plot - to MLflow
        mlflow.log_artifact(‘zscore_outliers_’ + str(ts_stretch_
factor) + ‘.csv’)
        mlflow.log_artifact(‘DTW_dist_histogram.png’)

    return run.info

stretch_factors_to_test = [0.0, 0.01, 0.025, 0.05, 0.1, 0.25, 
0.5]
for n in stretch_factors_to_test:
    run_DTW(n)

With each run through the data, we’ve created a log of the “stretch factor” parameter 
being used, and a log of products we classified as being outliers based upon the Z-score 
of the DTW distance metric. We were even able to save an artifact (file) of a histogram 
of the DTW distances. These experimental runs are saved locally on Databricks and 
remain accessible in the future if you decide to view the results of your experiment at 
a later date.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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Now that MLflow has saved the logs of each experiment, we can go back through and 
examine the results. From your Databricks notebook, select the “Runs” icon in the upper 
right-hand corner to view and compare the results of each of our runs.

Not surprisingly, as we increase our “stretch factor,” our distance metric decreases. 
Intuitively, this makes sense: As we give the algorithm more flexibility to warp the time 
indices forward or backward, it will find a closer fit for the data. In essence, we’ve traded 
some bias for variance.

Logging models in MLflow
MLflow has the ability to not only log experiment parameters, metrics and artifacts (like 
plots or CSV files), but also to log machine learning models. An MLflow model is simply a 
folder that is structured to conform to a consistent API, ensuring compatibility with other 
MLflow tools and features. This interoperability is very powerful, allowing any Python 
model to be rapidly deployed to many different types of production environments.

MLflow comes preloaded with a number of common model “flavors” for many of the 
most popular machine learning libraries, including scikit-learn, Spark MLlib, PyTorch, 
TensorFlow and others. These model flavors make it trivial to log and reload models after 
they are initially constructed, as demonstrated in this blog post. For example, when using 
MLflow with scikit-learn, logging a model is as easy as running the following code from 
within an experiment:

mlflow.sklearn.log_model(model=sk_model, artifact_path=”sk_model_
path”)

MLflow also offers a “Python function” flavor, which allows you to save any model 
from a third-party library (such as XGBoost or spaCy) or even a simple Python 
function itself, as an MLflow model. Models created using the Python function flavor live 
within the same ecosystem and are able to interact with other MLflow tools through the 
Inference API. Although it ’s impossible to plan for every use case, the Python function 
model flavor was designed to be as universal and flexible as possible. It allows for custom 
processing and logic evaluation, which can come in handy for ETL applications. Even 
as more “official” model flavors come online, the generic Python function flavor will still 
serve as an important “catchall,” providing a bridge between Python code of any kind and 
MLflow’s robust tracking toolkit.

Logging a model using the Python function flavor is a straightforward process. Any 
model or function can be saved as a model, with one requirement: It must take in 
a pandas DataFrame as input, and return a DataFrame or NumPy array. Once that 
requirement is met, saving your function as an MLflow model involves defining a Python 
class that inherits from PythonModel, and overriding the  .predict()  method with your 
custom function, as described here.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://databricks.com/blog/2018/09/21/how-to-use-mlflow-to-reproduce-results-and-retrain-saved-keras-ml-models.html
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#creating-custom-pyfunc-models
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Loading a logged model from one of our runs
Now that we’ve run through our data with several different stretch factors, the natural 
next step is to examine our results and look for a model that did particularly well 
according to the metrics that we’ve logged. MLflow makes it easy to then reload 
a logged model and use it to make predictions on new data, using the following 
instructions:

 1.  Click on the link for the run you’d like to load our model from

2.  Copy the ‘Run ID’

3.  Make note of the name of the folder the model is stored in. In our case, it ’s simply 
named “model”

4.  Enter the model folder name and Run ID as shown below:

import custom_flavor as mlflow_custom_flavor

loaded_model = mlflow_custom_flavor.load_model(artifact_path=’model’, 
run_id=’e26961b25c4d4402a9a5a7a679fc8052’)

To show that our model is working as intended, we can now load the model and use it to 
measure DTW distances on two new products that we’ve created within the variable  
 new_sales_units :

# use the model to evaluate new products found in ‘new_sales_units’
output = loaded_model.predict(new_sales_units)
print(output)

Next steps
As you can see, our MLflow model is predicting new and unseen values with ease. And 
since it conforms to the Inference API, we can deploy our model on any serving platform 
(such as Microsoft Azure ML or Amazon Sagemaker), deploy it as a local REST API end 
point, or create a user-defined function (UDF) that can easily be used with Spark-SQL. 
In closing, we demonstrated how we can use dynamic time warping to predict sales 
trends using the Databricks Unified Data Analytics Platform. Try out the Using Dynamic 
Time Warping and MLflow to Predict Sales Trends notebook with Databricks Runtime for 
Machine Learning today.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://mlflow.org/docs/latest/models.html#deploy-a-python-function-model-on-microsoft-azure-ml
https://mlflow.org/docs/latest/models.html#deploy-a-python-function-model-on-amazon-sagemaker
https://mlflow.org/docs/latest/models.html#deploy-a-python-function-model-as-a-local-rest-api-endpoint
https://mlflow.org/docs/latest/models.html#deploy-a-python-function-model-as-a-local-rest-api-endpoint
https://mlflow.org/docs/latest/models.html#export-a-python-function-model-as-an-apache-spark-udf
https://databricks.com/product/unified-analytics-platform
https://pages.databricks.com/rs/094-YMS-629/images/dtw-mlflow-sales.zip?_ga=2.224353752.2112692442.1591844546-225663068.1585060489
https://pages.databricks.com/rs/094-YMS-629/images/dtw-mlflow-sales.zip?_ga=2.224353752.2112692442.1591844546-225663068.1585060489
https://databricks.com/blog/2018/06/05/distributed-deep-learning-made-simple.html
https://databricks.com/blog/2018/06/05/distributed-deep-learning-made-simple.html
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C H A P T E R  3:   Fine-Grained Time Series 
Forecasting at Scale With 
Prophet and Apache Spark™ 
 
by B I L A L  O B E I D A T ,  
B R Y A N  S M I T H  and  
B R E N N E R  H E I N T Z 
 
January 27, 2020 
 
 

Try this time series forecasting notebook  

in Databricks

Advances in time series forecasting are enabling retailers to generate more reliable demand forecasts. The challenge 
now is to produce these forecasts in a timely manner and at a level of granularity that allows the business to make precise 
adjustments to product inventories. Leveraging Apache Spark™ and Facebook Prophet, more and more enterprises facing 
these challenges are finding they can overcome the scalability and accuracy limits of past solutions.

In this post, we’ll discuss the importance of time series forecasting, visualize some sample time series data, then build 
a simple model to show the use of Facebook Prophet. Once you’re comfortable building a single model, we’ll combine 
Prophet with the magic of Apache Spark™ to show you how to train hundreds of models at once, allowing us to create 
precise forecasts for each individual product-store combination at a level of granularity rarely achieved until now.

Accurate and timely forecasting is now more important than ever
Improving the speed and accuracy of time series analyses in order to better forecast demand for products and services is 
critical to retailers’ success. If too much product is placed in a store, shelf and storeroom space can be strained, products 
can expire, and retailers may find their financial resources are tied up in inventory, leaving them unable to take advantage 
of new opportunities generated by manufacturers or shifts in consumer patterns. If too little product is placed in a store, 
customers may not be able to purchase the products they need. Not only do these forecast errors result in an immediate 
loss of revenue to the retailer, but over time consumer frustration may drive customers toward competitors.

New expectations require more precise time series forecasting methods and models
For some time, enterprise resource planning (ERP) systems and third-party solutions have provided retailers with demand 
forecasting capabilities based upon simple time series models. But with advances in technology and increased pressure 
in the sector, many retailers are looking to move beyond the linear models and more traditional algorithms historically 
available to them.

 |         New capabilities, such as those provided by Facebook Prophet, are emerging from 
the data science community, and companies are seeking the flexibility to apply 
these machine learning models to their time series forecasting needs.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://pages.databricks.com/rs/094-YMS-629/images/Fine-Grained-Time-Series-Forecasting.html?_ga=2.220205147.2112692442.1591844546-225663068.1585060489
https://pages.databricks.com/rs/094-YMS-629/images/Fine-Grained-Time-Series-Forecasting.html?_ga=2.220205147.2112692442.1591844546-225663068.1585060489
https://databricks.com/spark/about
https://facebook.github.io/prophet/
https://facebook.github.io/prophet/
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This movement away from traditional forecasting solutions requires retailers and the like 
to develop in-house expertise not only in the complexities of demand forecasting but 
also in the efficient distribution of the work required to generate hundreds of thousands 
or even millions of machine learning models in a timely manner. Luckily, we can use 
Spark to distribute the training of these models, making it possible to predict not just 
overall demand for products and services, but the unique demand for each product in 
each location.

Visualizing demand seasonality in time series data
To demonstrate the use of Prophet to generate fine-grained demand forecasts for 
individual stores and products, we will use a publicly available data set from Kaggle. It 
consists of 5 years of daily sales data for 50 individual items across 10 different stores.

To get started, let ’s look at the overall yearly sales trend for all products and stores.  
As you can see, total product sales are increasing year over year with no clear sign of 
convergence around a plateau.

Next, by viewing the same data on a monthly basis, we can see that the year-over-year 
upward trend doesn’t progress steadily each month. Instead, we see a clear seasonal 
pattern of peaks in the summer months, and troughs in the winter months. Using the 
built-in data visualization feature of Databricks Collaborative Notebooks, we can see the 
value of our data during each month by mousing over the chart.

At the weekday level, sales peak on Sundays (weekday 0), followed by a hard drop on 
Mondays (weekday 1), then steadily recover throughout the rest of the week.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://www.kaggle.com/c/demand-forecasting-kernels-only/data
https://databricks.com/product/collaborative-notebooks
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Getting started with a simple time series forecasting model 
on Facebook Prophet
As illustrated in the charts above, our data shows a clear year-over-year upward trend 
in sales, along with both annual and weekly seasonal patterns. It ’s these overlapping 
patterns in the data that Prophet is designed to address.

Facebook Prophet follows the scikit-learn API, so it should be easy to pick up for anyone 
with experience with sklearn. We need to pass in a 2 column pandas DataFrame as input: 
the first column is the date, and the second is the value to predict (in our case, sales). 
Once our data is in the proper format, building a model is easy:

import pandas as pd
from fbprophet import Prophet

# instantiate the model and set parameters
model = Prophet(
    interval_width=0.95,
    growth=’linear’,
    daily_seasonality=False,
    weekly_seasonality=True,
    yearly_seasonality=True,
    seasonality_mode=’multiplicative’
)

# fit the model to historical data
model.fit(history_pd)

Now that we have fit our model to the data, let ’s use it to build a 90-day forecast. In the 
code below, we define a data set that includes both historical dates and 90 days beyond, 
using prophet’s  make_future_dataframe  method:

future_pd = model.make_future_dataframe(
    periods=90,
    freq=’d’,
    include_history=True
)

# predict over the dataset
forecast_pd = model.predict(future_pd)

That’s it! We can now visualize how our actual and predicted data line up as well as 
a forecast for the future using Prophet’s built-in .plot method. As you can see, the 
weekly and seasonal demand patterns we illustrated earlier are in fact reflected in the 
forecasted results.

predict_fig = model.plot(forecast_pd, xlabel=’date’, 
ylabel=’sales’)
display(fig)

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases


2 0T H E  B I G  B O O K  O F  M A C H I N E  L E A R N I N G  U S E  C A S E S

This visualization is a bit busy. Bartosz Mikulski provides an excellent breakdown of it that is well worth checking out. In a nutshell, 
the black dots represent our actuals with the darker blue line representing our predictions and the lighter blue band representing our 
(95%) uncertainty interval.

H I S T O R I C A L 
D ATA

F O R E C A S T E D 
D ATA

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://www.mikulskibartosz.name/prophet-plot-explained/
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Training hundreds of time series forecasting models in 
parallel with Prophet and Spark
Now that we’ve demonstrated how to build a single time series forecasting model, we  
can use the power of Apache Spark to multiply our efforts. Our goal is to generate not 
one forecast for the entire data set, but hundreds of models and forecasts for each 
product-store combination, something that would be incredibly time consuming to 
perform as a sequential operation.

Building models in this way could allow a grocery store chain, for example, to create 
a precise forecast for the amount of milk they should order for their Sandusky store 
that differs from the amount needed in their Cleveland store, based upon the differing 
demand at those locations.

How to use Spark DataFrames to distribute the processing of time series data
Data scientists frequently tackle the challenge of training large numbers of models using  
a distributed data processing engine such as Apache Spark. By leveraging a Spark cluster,  
individual worker nodes in the cluster can train a subset of models in parallel with other 
worker nodes, greatly reducing the overall time required to train the entire collection of 
time series models.

Of course, training models on a cluster of worker nodes (computers) requires more cloud 
infrastructure, and this comes at a price. But with the easy availability of on-demand 
cloud resources, companies can quickly provision the resources they need, train their 
models, and release those resources just as quickly, allowing them to achieve massive 
scalability without long-term commitments to physical assets.

 

The key mechanism for achieving distributed data processing in Spark is the DataFrame. 
By loading the data into a Spark DataFrame, the data is distributed across the workers in 
the cluster. This allows these workers to process subsets of the data in a parallel manner, 
reducing the overall amount of time required to perform our work.

Of course, each worker needs to have access to the subset of data it requires to do its 
work. By grouping the data on key values, in this case on combinations of store and item, 
we bring together all the time series data for those key values onto a specific worker 
node.

store_item_history
    .groupBy(‘store’, ‘item’)
    # . . .

We share the groupBy code here to underscore how it enables us to train many 
models in parallel efficiently, although it will not actually come into play until we set 
up and apply a UDF to our data in the next section.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://databricks.com/spark/about
https://docs.databricks.com/clusters/index.html?_ga=2.22040824.2112692442.1591844546-225663068.1585060489
https://databricks.com/glossary/what-are-dataframes
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Leveraging the power of pandas user-defined functions
With our time series data properly grouped by store and item, we now need to train a 
single model for each group. To accomplish this, we can use a pandas user-defined 
function (UDF), which allows us to apply a custom function to each group of data in our 
DataFrame.

This UDF will not only train a model for each group, but also generate a result set 
representing the predictions from that model. But while the function will train and predict 
on each group in the DataFrame independent of the others, the results returned from 
each group will be conveniently collected into a single resulting DataFrame. This will 
allow us to generate store-item level forecasts but present our results to analysts and 
managers as a single output data set.

As you can see in the following abbreviated Python code, building our UDF is relatively 
straightforward. The UDF is instantiated with the  pandas_udf  method that identifies 
the schema of the data it will return and the type of data it expects to receive. Immediately  
following this, we define the function that will perform the work of the UDF.

Within the function definition, we instantiate our model, configure it and fit it to the data 
it has received. The model makes a prediction, and that data is returned as the output of 
the function.

@pandas_udf(result_schema, PandasUDFType.GROUPED_MAP)
def forecast_store_item(history_pd):

    # instantiate the model, configure the parameters
    model = Prophet(
        interval_width=0.95,
        growth=’linear’,
        daily_seasonality=False,
        weekly_seasonality=True,
        yearly_seasonality=True,
        seasonality_mode=’multiplicative’
    )

    # fit the model
    model.fit(history_pd)

    # configure predictions
    future_pd = model.make_future_dataframe(
        periods=90,
        freq=’d’,
        include_history=True
    )

    # make predictions
    results_pd = model.predict(future_pd)

    # . . .

    # return predictions
    return results_pd

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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Now, to bring it all together, we use the  groupBy  command we discussed earlier to 
ensure our data set is properly partitioned into groups representing specific store and 
item combinations. We then simply  apply  the UDF to our DataFrame, allowing the UDF 
to fit a model and make predictions on each grouping of data.

The data set returned by the application of the function to each group is updated to 
reflect the date on which we generated our predictions. This will help us keep track of 
data generated during different model runs as we eventually take our functionality into 
production.

from pyspark.sql.functions import current_date

results = (
    store_item_history
    .groupBy(‘store’, ‘item’)
    .apply(forecast_store_item)
    .withColumn(‘training_date’, current_date())
    )

Next steps
We have now constructed a time series forecasting model for each store-item 
combination. Using a SQL query, analysts can view the tailored forecasts for each 
product. In the chart below, we’ve plotted the projected demand for product #1 across 10 
stores. As you can see, the demand forecasts vary from store to store, but the general 
pattern is consistent across all of the stores, as we would expect.

As new sales data arrives, we can efficiently generate new forecasts and append these to 
our existing table structures, allowing analysts to update the business’s expectations as 
conditions evolve.

To learn more, watch the on-demand webinar entitled How Starbucks Forecasts Demand 
at Scale With Facebook Prophet and Azure Databricks.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://databricks.com/p/webinar/starbucks-forecast-demand-at-scale-facebook-prophet-azure-databricks
https://databricks.com/p/webinar/starbucks-forecast-demand-at-scale-facebook-prophet-azure-databricks
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C H A P T E R  4:   Doing Multivariate Time 
Series Forecasting With 
Recurrent Neural Networks 
 
Using Keras’ implementation of  
Long Short-Term Memory (LSTM)  
for time series forecasting 
 
by V E D A N T  J A I N 
 
September 10, 2019 
 

Try this notebook in Databricks

Time series forecasting is an important area in machine learning. It can be difficult to build accurate models because 
of the nature of the time-series data. With recent developments in the neural networks aspect of machine learning, we 
can tackle a wide variety of problems that were either out of scope or difficult to do with classical time series predictive 
approaches. In this post, we will demonstrate how to use Keras’ implementation of Long Short-Term Memory (LSTM) for 
time series forecasting and MLfLow for tracking model runs.

What are LSTMs?
LSTM is a type of Recurrent Neural Network (RNN) that allows the network to retain long-term dependencies at a given 
time from many timesteps before. RNNs were designed to that effect using a simple feedback approach for neurons 
where the output sequence of data serves as one of the inputs. However, long-term dependencies can make the network 
untrainable due to the vanishing gradient problem. LSTM is designed precisely to solve that problem.

Sometimes accurate time series predictions depend on a combination of both bits of old and recent data. We have to 
efficiently learn even what to pay attention to, accepting that there may be a long history of data to learn from. LSTMs 
combine simple DNN architectures with clever mechanisms to learn what parts of history to “remember” and what to 
“forget” over long periods. The ability of LSTMs to learn patterns in data over long sequences makes them suitable for time 
series forecasting.

For the theoretical foundation of LSTM’s architecture, see here (Chapter 4).

Choose the right problem and right data set
There are innumerable applications of time series — from creating portfolios based on future fund prices to demand 
prediction for an electricity supply grid and so on. In order to showcase the value of LSTM, we first need to have the right 
problem and more importantly, the right data set. Say we want to learn to predict humidity and temperature in a house 
ahead of time so a smart sensor can proactively turn on the A/C, or you just want to know the amount of electricity you 
will consume in the future so you can proactively cut costs. Historical sensor and temperature data ought to be enough 
to learn the relationship, and LSTMs can help, because it won’t just depend on recent sensor values, but more importantly 
older values, perhaps sensor values from the same time on the previous day. For this purpose,  we will use experimental 
data about appliances’ energy use in a low-energy building.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://pages.databricks.com/rs/094-YMS-629/images/Blog_%20A%20Multivariate%20Time%20Series%20Forecasting%20Appliance%20Energy%20Usage.html?_ga=2.157627769.2112692442.1591844546-225663068.1585060489
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
http://www.cs.toronto.edu/~graves/preprint.pdf
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Experiment
The data set we chose for this experiment is perfect for building regression models of 
appliances’ energy use. The house temperature and humidity conditions were monitored 
with a ZigBee wireless sensor network. It is at 10-minute intervals for about 4.5 months. 
The energy data was logged with m-bus energy meters. Weather from the nearest airport 
weather station (Chievres Airport, Belgium) was downloaded from a public data set 
from Reliable Prognosis (rp5.ru), and merged together with the experimental data sets 
using the date and time column. The data set can be downloaded from the UCI Machine 
Learning repository.

We’ll use this to train a model that predicts the energy consumed by household 
appliances for the next day.

Data modeling
Before we can train a neural network, we need to model the data in a way the network 
can learn from a sequence of past values. Specifically, LSTM expects the input data 
in a specific 3D tensor format of test sample size by timesteps by the number of input 
features. As a supervised learning approach, LSTM requires both features and labels in 
order to learn. In the context of time series forecasting, it is important to provide the past 
values as features and future values as labels, so LSTMs can learn how to predict the 
future. Thus, we explode the time series data into a 2D array of features called ‘X’, where 
the input data consists of overlapping lagged values at the desired number of timesteps 
in batches. We generate a 1D array called ‘y’ consisting of only the labels or future values 
that we are trying to predict for every batch of input features. The input data also should 
include lagged values of ‘y’ so the network can also learn from past values of the labels. 
See the following image for further explanation:

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://archive.ics.uci.edu/ml/machine-learning-databases/00374/
https://archive.ics.uci.edu/ml/machine-learning-databases/00374/
https://archive.ics.uci.edu/ml/machine-learning-databases/00374/
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Our data set has 10-minute samples. In the image above, we have chosen length = 3, 
which implies we have 30 minutes of data in every sequence (at 10-minute intervals). 
By that logic, features ‘X’ should be a tensor of values [X(t), X(t+1), X(t+2)], [X(t+2), X(t+3), 
X(t+4)], [X(t+3), X(t+4), X(t+5)]…and so on. And our target variable ‘y’ should be [y(t+3), 
y(t+4), y(t+5)…y(t+10)] because the number of timesteps or length is equal to 3, so we will 
ignore values y(t), y(t+1), y(t+2). Also, in the graph, it ’s apparent that for every input row, 
we’re only predicting one value out in the future, i.e., y(t+n+1); however, for more realistic 
scenarios you can choose to predict further out in the future, i.e., y(t+n+L),  as you will see 
in our example below.

The Keras API has a built-in class called TimeSeriesGenerator that generates batches 
of overlapping temporal data. This class takes in a sequence of data points gathered at 
equal intervals, along with time series parameters such as stride, length of history, etc. to 
produce batches for training/validation.

So, let ’s say for our use case, we want to learn to predict from 6 days’ worth of past data 
and predict values some time out in the future, let ’s say, 1 day. In that case, length is equal 
to 864, which is the number of 10-minute timesteps in 6 days (24x6x6). Similarly, we also 
want to learn from past values of humidity, temperature, pressure, etc., which means that 
for every label we will have 864 values per feature. Our data set has a total of 28 features. 
When generating the temporal sequences, the generator is configured to return batches 
consisting of 6 days’ worth of data every time. To make it a more realistic scenario, we 
choose to predict the usage 1 day out in the future (as opposed to the next 10-minute time 
interval), we prepare the test and train data set in a manner that the target vector is a set 
of values 144 timesteps (24x6x1) out in the future. For details, see the notebook, section 2: 
Normalize and prepare the data set.

The shape of the input set should be (samples, timesteps, input_dim) [https://keras.io/
layers/recurrent/]. For every batch, we will have all 6 days’ worth of data, which is 864 
rows. The batch size determines the number of samples before a gradient update takes 
place.

# Create overlapping windows of lagged values for training and 
testing datasets
timesteps = 864
train_generator = TimeseriesGenerator(trainX, trainY, 
length=timesteps, sampling_rate=1, batch_size=timesteps)
test_generator = TimeseriesGenerator(testX, testY, 
length=timesteps, sampling_rate=1, batch_size=timesteps)

For a full list of tuning parameters, see here.

Model training
LSTMs are able to tackle the long-term dependency problems in neural networks, using  
a concept known as Backpropogation through time (BPTT). To read more about BPTT, see 
here.

Before we train a LSTM network, we need to understand a few key parameters provided 
in Keras that will determine the quality of the network.

 1.  E P O C H S :  Number of times the data will be passed to the neural network

2.  S T E P S  P E R  E P O C H:  The number of batch iterations before a training epoch is 
considered finished

3.  A C T I VAT I O N S :  Layer describing which activation function to use

4.  O P T I M I Z E R :  Keras provides built-in optimizers

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://keras.io/layers/recurrent/
https://keras.io/layers/recurrent/
https://keras.io/preprocessing/sequence/
https://en.wikipedia.org/wiki/Backpropagation_through_time
http://ir.hit.edu.cn/~jguo/docs/notes/bptt.pdf
https://keras.io/activations/
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers
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units = 128
num_epoch = 5000
learning_rate = 0.00144

with mlflow.start_run(experiment_id=3133492, nested=True):

  model = Sequential()
   model.add(CuDNNLSTM(units, input_shape=(train_X.shape[1], 
train_X.shape[2])))

  model.add(LeakyReLU(alpha=0.5))
  model.add(Dropout(0.1))
  model.add(Dense(1))

adam = Adam(lr=learning_rate)
# Stop training when a monitored quantity has stopped improving.
callback = [EarlyStopping(monitor=”loss”, min_delta = 0.00001, 
patience = 50, mode = ‘auto’, restore_best_weights=True), 
tensorboard]

# Using regression loss function ‘Mean Standard Error’ and 
validation metric ‘Mean Absolute Error’
model.compile(loss=”mse”, optimizer=adam, metrics=[‘mae’])

In order to take advantage of the speed and performance of GPUs, we use the CUDNN 
implementation of LSTM. We have also chosen an arbitrarily high number of epochs.  
This is because we want to make sure that the data undergoes as many iterations as 
possible to find the best model fit. As for the number of units, we have 28 features, so  
we start with 32. After a few iterations, we found that using 128 gave us decent results.

 

For choosing the number of epochs, it ’s a good approach to choose a high number to 
avoid underfitting. In order to circumvent the problem of overfitting, you can use built 
in callbacks in Keras API; specifically EarlyStopping. EarlyStopping stops the model 
training when the monitored quantity has stopped improving. In our case, we use loss 
as the monitored quantity and the model will stop training when there’s no decrease of 
1e-5 for 50 epochs. Keras has built-in regularizers (weighted, dropout) that penalize the 
network to ensure a smoother distribution of parameters, so the network does not rely 
too much on the context passed between the units. See image below for layers in the 
network.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://keras.io/callbacks/
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In order to send the output of one layer to the other, we need an activation function. In 
this case, we use LeakyRelu, which is a better variant of its predecessor, the Rectifier 
Linear Unit or Relu for short.

Keras provides many different optimizers for reducing loss and updates weights 
iteratively over epochs. For a full list of optimizers, see here. We choose the Adam 
version of stochastic gradient descent.

An important parameter of the optimizer is learning_rate, which can determine the 
quality of the model in a big way. You can read more about the learning rate here. We 
experimented with various values such as 0.001(default), 0.01, 0.1, etc. and found that 
0.00144 gave us the best model performance in terms of speed of training and minimal 
loss. You can also use the LearningRateSchedular callback in order to tweak the learning 
rate to the optimal value. We used MLflow to track and compare results across multiple 
model runs.

Model evaluation and logging using MLflow
As you can see Keras implementation of LSTMs takes in quite a few hyperparameters. 
In order to find the best model fit, you will need to experiment with various 
hyperparameters, namely units, epochs, etc. You will also want to compare past model 
runs and measure model behavior over time and changes in data. MLflow is a great tool 
with an easy-to-use UI that allows you to do the above and more. Here you can see how 
easy it is to use MLflow to develop with Keras and TensorFlow, log an MLflow run and 
track experiments over time.

Data scientists can use MLflow to keep track of the various model metrics and any 
additional visualizations and artifacts to help make the decision of which model should 
be deployed in production. They can compare two or more model runs to understand the 
impact of various hyperparameters, until they conclude on the most optimal model.

The data engineers will then be able to easily retrieve the chosen model along with the 
library versions used for training to be deployed on new data in production. The final 
model can be persisted with the python_function flavor. It can then be used as an 
Apache Spark UDF, which once uploaded to a Spark cluster, will be used to score future 
data. You can find the full list of model flavors supported by MLflow here.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://keras.io/layers/advanced-activations/
https://keras.io/optimizers/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://en.wikipedia.org/wiki/Learning_rate
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/LearningRateScheduler
https://www.mlflow.org/docs/latest/models.html#python-function-python-function
https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
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Summary
•  LSTM can be used to learn from past values in order to predict future occurrences. 

LSTMs for time series don’t make certain assumptions that are made in classical 
approaches, so it makes it easier to model time series problems and learn nonlinear 
dependencies among multiple inputs.

•  When creating a sequence of events before feeding into the LSTM network, it is 
important to lag the labels from inputs, so the LSTM network can learn from past 
data. TimeSeriesGenerator class in Keras allows users to prepare and transform the 
time series data set with various parameters before feeding the time lagged data set 
to the neural network.

•  LSTM has a series of tunable hyperparameters, such as epochs, batch size, etc., 
which are imperative to determining the quality of the predictions. Learning rate is 
an important hyperparameter that controls how the model weights get updated and 
the speed at which the model learns. It is very important to determine an optimal 
value for the learning rate in order to get the best model performance. Consider 
using the LearingRateSchedular callback parameter in order to tweak the learning 
rate to the optimal value.

•  Keras provides a choice of different optimizers to use with respect to the type of 
problem you’re solving. Generally, Adam tends to do well. Using MLflow UI, the user 
can compare model runs side by side to choose the best model.

•  For time series, it ’s important to maintain temporality in the data so the LSTM 
network can learn patterns from the correct sequence of events. Therefore, it is 
important not to shuffle the data when creating test and validation sets and also 
when fitting the model.

•  Like all machine learning approaches, LSTM is not immune to bad fitting, which is 
why Keras has EarlyStopping callback. With some degree of intuition and the right 
callback parameters, you can get decent model performance without putting too 
much effort in tuning hyperparameters.

•  RNNs, specifically LSTMs, work best when given large amounts of data. So, when 
little data is available, it is preferable to start with a smaller network with a few 
hidden layers. Smaller data also allows users to provide a larger batch of data to 
every epoch, which can yield better results.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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C H A P T E R  5:   Detecting Financial Fraud  
at Scale With Decision Trees 
and MLflow on Databricks 
 
by E L E N A  B O I A R S K A I A ,  
N A V I N  A L B E R T  and D E N N Y  L E E 
 
May 2, 2019 
 

Try this notebook in Databricks

Detecting fraudulent patterns at scale using artificial intelligence is a challenge, no matter the use case. The massive 
amounts of historical data to sift through, the complexity of the constantly evolving machine learning and deep learning 
techniques, and the very small number of actual examples of fraudulent behavior are comparable to finding a needle in a 
haystack while not knowing what the needle looks like. In the financial services industry, the added concerns with security 
and the importance of explaining how fraudulent behavior was identified further increase the complexity of the task.

To build these detection patterns, a team of domain experts comes up with a set of rules based on how fraudsters typically 
behave. A workflow may include a subject matter expert in the financial fraud detection space putting together a set of 
requirements for a particular behavior. A data scientist may then take a subsample of the available data and select a set of 
deep learning or machine learning algorithms using these requirements and possibly some known fraud cases. To put the 
pattern in production, a data engineer may convert the resulting model to a set of rules with thresholds, often implemented 
using SQL.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://pages.databricks.com/rs/094-YMS-629/images/financial-fraud-detection-decision-tree.html?_ga=2.261331150.2112692442.1591844546-225663068.1585060489
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This approach allows the financial institution to present a clear set of characteristics 
that led to the identification of a fraudulent transaction that is compliant with the 
General Data Protection Regulation (GDPR). However, this approach also poses numerous 
difficulties. The implementation of a fraud detection system using a hardcoded set of 
rules is very brittle. Any changes to the fraud patterns would take a very long time to 
update. This, in turn, makes it difficult to keep up with and adapt to the shift in fraudulent 
activities that are happening in the current marketplace.

Additionally, the systems in the workflow described above are often siloed, with the 
domain experts, data scientists and data engineers all compartmentalized. The data 
engineer is responsible for maintaining massive amounts of data and translating the 
work of the domain experts and data scientists into production level code. Due to a 
lack of a common platform, the domain experts and data scientists have to rely on 
sampled down data that fits on a single machine for analysis. This leads to difficulty in 
communication and ultimately a lack of collaboration.

 
 
 
 
 
 

In this blog, we will showcase how to convert several such rule-based detection use 
cases to machine learning use cases on the Databricks platform, unifying the key players 
in fraud detection: domain experts, data scientists and data engineers. We will learn how 
to create a machine learning fraud detection data pipeline and visualize the data in real-
time leveraging a framework for building modular features from large data sets. We will 
also learn how to detect fraud using decision trees and Apache Spark MLlib. We will then 
use MLflow to iterate and refine the model to improve its accuracy.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
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Solving with machine learning
There is a certain degree of reluctance with regard to machine learning models in 
the financial world as they are believed to offer a “black box” solution with no way of 
justifying the identified fraudulent cases. GDPR requirements, as well as financial 
regulations, make it seemingly impossible to leverage the power of data science. 
However, several successful use cases have shown that applying machine learning to 
detect fraud at scale can solve a host of the issues mentioned above.

Training a supervised machine learning model to detect financial fraud is very difficult 
due to the low number of actual confirmed examples of fraudulent behavior. However, the 
presence of a known set of rules that identify a particular type of fraud can help create 
a set of synthetic labels and an initial set of features. The output of the detection pattern 
that has been developed by the domain experts in the field has likely gone through 
the appropriate approval process to be put in production. It produces the expected 
fraudulent behavior flags and may, therefore, be used as a starting point to train a 
machine learning model. This simultaneously mitigates three concerns:

 1.  The lack of training labels,

2.  The decision of what features to use,

3.  Having an appropriate benchmark for the model.

Training a machine learning model to recognize the rule-based fraudulent behavior 
flags offers a direct comparison with the expected output via a confusion matrix. 
Provided that the results closely match the rule-based detection pattern, this approach 
helps gain confidence in machine learning–based fraud prevention with the skeptics. 
The output of this model is very easy to interpret and may serve as a baseline discussion 
of the expected false negatives and false positives when compared to the original 
detection pattern.

Furthermore, the concern with machine learning models being difficult to interpret 
may be further assuaged if a decision tree model is used as the initial machine learning 
model. Because the model is being trained to a set of rules, the decision tree is likely 
to outperform any other machine learning model. The additional benefit is, of course, 
the utmost transparency of the model, which will essentially show the decision-
making  process for fraud, but without human intervention and the need to hard code 
any rules or thresholds. Of course, it must be understood that the future iterations of 
the model may utilize a different algorithm altogether to achieve maximum accuracy. 
The transparency of the model is ultimately achieved by understanding the features 
that went into the algorithm. Having interpretable features will yield interpretable and 
defensible model results.

The biggest benefit of the machine learning approach is that after the initial modeling 
effort, future iterations are modular and updating the set of labels, features or model 
type is very easy and seamless, reducing the time to production. This is further 
facilitated on the Databricks Collaborative Notebooks where the domain experts, data 
scientists, and data engineers may work off the same data set at scale and collaborate 
directly in the notebook environment. So let ’s get started!

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://databricks.com/product/collaborative-notebooks
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Ingesting and exploring the data
We will use a synthetic data set for this example. To load the data set yourself, please 
download it to your local machine from Kaggle and then import the data via Import Data — 
Azure and AWS.

The PaySim data simulates mobile money transactions based on a sample of real 
transactions extracted from one month of financial logs from a mobile money service 
implemented in an African country. The below table shows the information that the data 
set provides:

Exploring the data
C R E AT I N G  T H E  D ATA F R A M E S :  Now that we have uploaded the data to Databricks File 
System (DBFS), we can quickly and easily create DataFrames using Spark SQL.

# Create df DataFrame which contains our simulated financial fraud 
detection dataset
df = spark.sql(“select step, type, amount, nameOrig, oldbalanceOrg, 
newbalanceOrig, nameDest, oldbalanceDest, newbalanceDest from sim_
fin_fraud_detection”)

Now that we have created the DataFrame, let ’s take a look at the schema and the first 
thousand rows to review the data.

# Review the schema of your data
df.printSchema()
root
|-- step: integer (nullable = true)
|-- type: string (nullable = true)
|-- amount: double (nullable = true)
|-- nameOrig: string (nullable = true)
|-- oldbalanceOrg: double (nullable = true)
|-- newbalanceOrig: double (nullable = true)
|-- nameDest: string (nullable = true)
|-- oldbalanceDest: double (nullable = true)
|-- newbalanceDest: double (nullable = true)

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://www.kaggle.com/ntnu-testimon/paysim1
https://www.kaggle.com/ntnu-testimon/paysim1
https://docs.azuredatabricks.net/user-guide/importing-data.html#import-data
https://docs.databricks.com/user-guide/importing-data.html?_ga=2.224810073.2112692442.1591844546-225663068.1585060489#import-data
https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html?_ga=2.258430153.2112692442.1591844546-225663068.1585060489
https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html?_ga=2.258430153.2112692442.1591844546-225663068.1585060489
https://databricks.com/glossary/what-are-dataframes
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Types of transactions
Let’s visualize the data to understand the types of transactions the data captures and 
their contribution to the overall transaction volume.

%sql
-- Organize by Type
select type, count(1) from financials group by type

 
To get an idea of how much money we are talking about, let ’s also visualize the data based 
on the types of transactions and on their contribution to the amount of cash transferred 
(i.e., sum(amount)).

%sql
select type, sum(amount) from financials group by type

Rules-based model
We are not likely to start with a large data set of known fraud cases to train our model.  
In most practical applications, fraudulent detection patterns are identified by a set of 
rules established by the domain experts. Here, we create a column called “label” based 
on these rules.

# Rules to Identify Known Fraud-based
df = df.withColumn(“label”, 
                   F.when(
                     (
                       (df.oldbalanceOrg <= 56900) & (df.type == 
“TRANSFER”) & (df.newbalanceDest <= 105)) | ( (df.oldbalanceOrg 
> 56900) & (df.newbalanceOrig <= 12)) | ( (df.oldbalanceOrg > 
56900) & (df.newbalanceOrig > 12) & (df.amount > 1160000)
                           ), 1
                   ).otherwise(0))

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases


3 5T H E  B I G  B O O K  O F  M A C H I N E  L E A R N I N G  U S E  C A S E S

Visualizing data flagged by rules
These rules often flag quite a large number of fraudulent cases. Let ’s visualize the 
number of flagged transactions. We can see that the rules flag about 4% of the cases and 
11% of the total dollar amount as fraudulent.

%sql
select label, count(1) as ‘Transactions’, sun(amount) as ‘Total 
Amount’ from financials_labeled group by label

Selecting the appropriate machine learning models
In many cases, a black box approach to fraud detection cannot be used. First, the domain 
experts need to be able to understand why a transaction was identified as fraudulent. 
Then, if action is to be taken, the evidence has to be presented in court. The decision tree 
is an easily interpretable model and is a great starting point for this use case. Read this 
blog “The wise old tree” on decision trees to learn more.

# Split our dataset between training and test datasets
(train, test) = df.randomSplit([0.8, 0.2], seed=12345)

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://pallav-routh.netlify.com/post/the-wise-old-tree/
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Creating the ML model pipeline
To prepare the data for the model, we must first convert categorical variables to numeric 
using  .StringIndexer . We then must assemble all of the features we would like 
for the model to use. We create a pipeline to contain these feature preparation steps 
in addition to the decision tree model so that we may repeat these steps on different 
data sets. Note that we fit the pipeline to our training data first and will then use it to 
transform our test data in a later step.

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import DecisionTreeClassifier

# Encodes a string column of labels to a column of label indices
indexer = StringIndexer(inputCol = “type”, outputCol = 
“typeIndexed”)

# VectorAssembler is a transformer that combines a given list of 
columns into a single vector column
va = VectorAssembler(inputCols = [“typeIndexed”, “amount”, 
“oldbalanceOrg”, “newbalanceOrig”, “oldbalanceDest”, 
“newbalanceDest”, “orgDiff”, “destDiff”], outputCol = “features”)

# Using the DecisionTree classifier model
dt = DecisionTreeClassifier(labelCol = “label”, featuresCol = 
“features”, seed = 54321, maxDepth = 5)

# Create our pipeline stages
pipeline = Pipeline(stages=[indexer, va, dt])

# View the Decision Tree model (prior to CrossValidator)
dt_model = pipeline.fit(train)

Visualizing the model
Calling  display()  on the last stage of the pipeline, which is the decision tree model, 
allows us to view the initial fitted model with the chosen decisions at each node. This 
helps to understand how the algorithm arrived at the resulting predictions.

display(dt_model.stages[-1])

Visual representation of the Decision Tree model

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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Model tuning
To ensure we have the best fitting tree model, we will cross-validate the model with 
several parameter variations. Given that our data consists of 96% negative and 4% 
positive cases, we will use the Precision-Recall (PR) evaluation metric to account for the 
unbalanced distribution.

from pyspark.ml.tuning import CrossValidator, ParamGridBuilder

# Build the grid of different parameters
paramGrid = ParamGridBuilder() \
.addGrid(dt.maxDepth, [5, 10, 15]) \
.addGrid(dt.maxBins, [10, 20, 30]) \
.build()

# Build out the cross validation
crossval = CrossValidator(estimator = dt,
                          estimatorParamMaps = paramGrid,
                          evaluator = evaluatorPR,
                          numFolds = 3)  
# Build the CV pipeline
pipelineCV = Pipeline(stages=[indexer, va, crossval])

# Train the model using the pipeline, parameter grid, and preceding 
BinaryClassificationEvaluator
cvModel_u = pipelineCV.fit(train)

Model performance
We evaluate the model by comparing the Precision-Recall (PR) and area under the  
ROC curve (AUC) metrics for the training and test sets. Both PR and AUC appear to be 
very high.

# Build the best model (training and test datasets)
train_pred = cvModel_u.transform(train)
test_pred = cvModel_u.transform(test)

# Evaluate the model on training datasets
pr_train = evaluatorPR.evaluate(train_pred)
auc_train = evaluatorAUC.evaluate(train_pred)

# Evaluate the model on test datasets
pr_test = evaluatorPR.evaluate(test_pred)
auc_test = evaluatorAUC.evaluate(test_pred)

# Print out the PR and AUC values
print(“PR train:”, pr_train)
print(“AUC train:”, auc_train)
print(“PR test:”, pr_test)
print(“AUC test:”, auc_test)

---
# Output:
# PR train: 0.9537894984523128
# AUC train: 0.998647996459481
# PR test: 0.9539170535377599
# AUC test: 0.9984378183482442

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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To see how the model misclassified the results, let ’s use Matplotlib and pandas to 
visualize our confusion matrix.

 
 

Balancing the classes

We see that the model is identifying 2,421 more cases than the original rules identified. 
This is not as alarming, as detecting more potential fraudulent cases could be a good 
thing. However, there are 58 cases that were not detected by the algorithm but were 
originally identified. We are going to attempt to improve our prediction further by 
balancing our classes using undersampling.  That is, we will keep all the fraud cases and 
then downsample the non-fraud cases to match that number to get a balanced data set. 
When we visualized our new data set, we see that the yes and no cases are 50/50.

# Reset the DataFrames for no fraud (`dfn`) and fraud (`dfy`)
dfn = train.filter(train.label == 0)
dfy = train.filter(train.label == 1)

# Calculate summary metrics
N = train.count()
y = dfy.count()
p = y/N

# Create a more balanced training dataset
train_b = dfn.sample(False, p, seed = 92285).union(dfy)

# Print out metrics
print(“Total count: %s, Fraud cases count: %s, Proportion of 
fraud cases: %s” % (N, y, p))
print(“Balanced training dataset count: %s” % train_b.count())

---
# Output:
# Total count: 5090394, Fraud cases count: 204865, Proportion of 
fraud cases: 0.040245411258932016
# Balanced training dataset count: 401898
---

# Display our more balanced training dataset
display(train_b.groupBy(“label”).count())

C O N F U S I O N  M AT R I X ( U N B A L A N C E D T E S T )
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Updating the pipeline
Now let ’s update the ML pipeline and create a new cross validator. Because we are using 
ML pipelines, we only need to update it with the new data set and we can quickly repeat 
the same pipeline steps.

# Re-run the same ML pipeline (including parameters grid)
crossval_b = CrossValidator(estimator = dt,
estimatorParamMaps = paramGrid,
evaluator = evaluatorAUC,
numFolds = 3)
pipelineCV_b = Pipeline(stages=[indexer, va, crossval_b])

# Train the model using the pipeline, parameter grid, and 
BinaryClassificationEvaluator using the `train_b` dataset
cvModel_b = pipelineCV_b.fit(train_b)

# Build the best model (balanced training and full test datasets)
train_pred_b = cvModel_b.transform(train_b)
test_pred_b = cvModel_b.transform(test)

# Evaluate the model on the balanced training datasets
pr_train_b = evaluatorPR.evaluate(train_pred_b)
auc_train_b = evaluatorAUC.evaluate(train_pred_b)

# Evaluate the model on full test datasets
pr_test_b = evaluatorPR.evaluate(test_pred_b)
auc_test_b = evaluatorAUC.evaluate(test_pred_b)

# Print out the PR and AUC values
print(“PR train:”, pr_train_b)
print(“AUC train:”, auc_train_b)
print(“PR test:”, pr_test_b)
print(“AUC test:”, auc_test_b)

---
# Output: 
# PR train: 0.999629161563572
# AUC train: 0.9998071389056655
# PR test: 0.9904709171789063
# AUC test: 0.9997903902204509

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://databricks.com/glossary/what-are-ml-pipelines
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Review the results
Now let ’s look at the results of our new confusion matrix. The model misidentified only 
one fraudulent case. Balancing the classes seems to have improved the model.

 
 

Model feedback and using MLflow

Once a model is chosen for production, we want to continuously collect feedback to 
ensure that the model is still identifying the behavior of interest. Since we are starting 
with a rule-based label, we want to supply future models with verified true labels based 
on human feedback. This stage is crucial for maintaining confidence and trust in the 
machine learning process. Since analysts are not able to review every single case, we 
want to ensure we are presenting them with carefully chosen cases to validate the 
model output. For example, predictions, where the model has low certainty, are good 
candidates for analysts to review. The addition of this type of feedback will ensure the 
models will continue to improve and evolve with the changing landscape.

MLflow helps us throughout this cycle as we train different model versions. We can keep 
track of our experiments, comparing the results of different model configurations and 
parameters. For example, here we can compare the PR and AUC of the models trained 
on balanced and unbalanced data sets using the MLflow UI. Data scientists can use 
MLflow to keep track of the various model metrics and any additional visualizations and 
artifacts to help make the decision of which model should be deployed in production. 
The data engineers will then be able to easily retrieve the chosen model along with the 
library versions used for training as a .jar file to be deployed on new data in production. 
Thus, the collaboration between the domain experts who review the model results, the 
data scientists who update the models, and the data engineers who deploy the models in 
production, will be strengthened throughout this iterative process.

Conclusion
We have reviewed an example of how to use a rule-based fraud detection label and 
convert it to a machine learning model using Databricks with MLflow. This approach 
allows us to build a scalable, modular solution that will help us keep up with ever-
changing fraudulent behavior patterns. Building a machine learning model to identify 
fraud allows us to create a feedback loop that allows the model to evolve and identify 
new potential fraudulent patterns. We have seen how a decision tree model, in particular, 
is a great starting point to introduce machine learning to a fraud detection program due 
to its interpretability and excellent accuracy.

A major benefit of using the Databricks platform for this effort is that it allows for data 
scientists, engineers and business users to seamlessly work together throughout the 
process. Preparing the data, building models, sharing the results, and putting the models 
into production can now happen on the same platform, allowing for unprecedented 
collaboration. This approach builds trust across the previously siloed teams, leading to 
an effective and dynamic fraud detection program.

Try this notebook by signing up for a free trial in just a few minutes and get started 
creating your own models.
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C H A P T E R  6:   Automating Digital Pathology 
Image Analysis With Machine 
Learning on Databricks 
 
by A M I R  K E R M A N Y  and  
F R A N K  A U S T I N  N O T H A F T 
 
January 31, 2020 
 

Try this notebook in Databricks

With technological advancements in imaging and the availability of new efficient computational tools, digital pathology 
has taken center stage in both research and diagnostic settings. Whole Slide Imaging (WSI) has been at the center of this 
transformation, enabling us to rapidly digitize pathology slides into high-resolution images. By making slides instantly 
shareable and analyzable, WSI has already improved reproducibility and enabled enhanced education and remote 
pathology services.

Today, digitization of entire slides at very high resolution can occur inexpensively in less than a minute. As a result, more 
and more healthcare and life sciences organizations have acquired massive catalogues of digitized slides. These large 
data sets can be used to build automated diagnostics with machine learning, which can classify slides — or segments 
thereof — as expressing a specific phenotype, or directly extract quantitative biomarkers from slides. With the power of 
machine learning and deep learning, thousands of digital slides can be interpreted in a matter of minutes. This presents 
a huge opportunity to improve the efficiency and effectiveness of pathology departments, clinicians and researchers to 
diagnose and treat cancer and infectious diseases.

3 common challenges preventing wider adoption of digital pathology workflows
While many healthcare and life sciences organizations recognize the potential impact of applying artificial intelligence to 
whole slide images, implementing an automated slide analysis pipeline remains complex. An operational WSI pipeline must 
be able to routinely handle a high throughput of digitizer slides at a low cost. We see three common challenges preventing 
organizations from implementing automated digital pathology workflows with support for data science:

 1.  S L O W  A N D  C O S T LY  D ATA  I N G E S T  A N D  E N G I N E E R I N G  P I P E L I N E S :  WSI images are usually very large 
(typically 0.5–2 GB per slide) and can require extensive image preprocessing.

2.  T R O U B L E  S C A L I N G  D E E P  L E A R N I N G  T O  T E R A B Y T E S  O F  I M A G E S :  Training a deep learning model across a 
modestly sized data set with hundreds of WSIs can take days to weeks on a single node. These latences prevent rapid 
experimentation on large data sets. While latency can be reduced by parallelizing deep learning workloads across 
multiple nodes, this is an advanced technique that is out of the reach of a typical biological data scientist.

3.  E N S U R I N G  R E P R O D U C I B I L I T Y  O F  T H E  W S I  W O R K F L O W:  When it comes to novel insights based on patient 
data, it is very important to be able to reproduce results. Current solutions are mostly ad hoc and do not allow 
efficient ways of keeping track of experiments and versions of the data used during machine learning model training.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://databricks.com/notebooks/wsi-image-segmentation-transfer-pandasudf.html
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In this blog, we discuss how the Databricks Unified Data Analytics Platform can be used 
to address these challenges and deploy end-to-end scalable deep learning workflows on 
WSI image data. We will focus on a workflow that trains an image segmentation model 
that identifies regions of metastases on a slide. In this example, we will use Apache 
Spark to parallelize data preparation across our collection of images, use pandas UDF to 
extract features based on pretrained models (transfer learning) across many nodes, and 
use MLflow to reproducibly track our model training.

End-to-end machine learning on WSI
To demonstrate how to use the Databricks platform to accelerate a WSI data processing 
pipeline, we will use the Camelyon16 Grand Challenge data set. This is an open-access  
data set of 400 whole slide images in TIFF format from breast cancer tissues to 
demonstrate our workflows. A subset of the Camelyon16 data set can be directly 
accessed from Databricks under /databricks-datasets/med-images/camelyon16/  
(AWS | Azure). To train an image classifier to detect regions in a slide that contain  
cancer metastases, we will run the following three steps, as shown in Figure 1:

 1.  PAT C H  G E N E R AT I O N:  Using coordinates annotated by a pathologist, we crop 
slide images into equally sized patches. Each image can generate thousands of 
patches and is labeled as tumor or normal.

2.  D E E P  L E A R N I N G:  We use transfer learning to use a pretrained model to extract 
features from image patches and then use Apache Spark to train a binary classifier 
to predict tumor vs. normal patches.

3.  S C O R I N G:  We then use the trained model that is logged using MLflow to project a 
probability heat map on a given slide.

Similar to the workflow Human Longevity used to preprocess radiology images, we will 
use Apache Spark to manipulate both our slides and their annotations. For model training, 
we will start by extracting features using a pretrained InceptionV3 model from Keras.  
To this end, we leverage pandas UDFs to parallelize feature extraction. For more 
information on this technique see Featurization for Transfer Learning (AWS | Azure).  
Note that this technique is not specific to InceptionV3 and can be applied to any other 
pretrained model.

Figure 1: Implementing an end-to-end solution for training and deployment of a DL model based on WSI data

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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https://camelyon16.grand-challenge.org/
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Image preprocessing and ETL
Using open-source tools such as Automated Slide Analysis Platform, pathologists can 
navigate WSI images at very high resolution and annotate the slide to mark sites that are 
clinically relevant. The annotations can be saved as an XML file, with the coordinates of 
the edges of the polygons containing the site and other information, such as zoom level. 
To train a model that uses the annotations on a set of ground truth slides, we need to load 
the list of annotated regions per image, join these regions with our images, and excise 
the annotated region. Once we have completed this process, we can use our image 
patches for machine learning.

 
Although this workflow commonly uses annotations stored in an XML file, for simplicity, 
we are using the preprocessed annotations made by the Baidu Research team that 
built the NCRF classifier on the Camelyon16 data set. These annotations are stored as 
CSV encoded text files, which Apache Spark will load into a DataFrame. In the following 
notebook cell, we load the annotations for both tumor and normal patches, and assign 
the label 0 to normal slices and 1 to tumor slices. We then union the coordinates and 
labels into a single DataFrame.

While many SQL-based systems restrict you to built-in operations, Apache Spark has 
rich support for user-defined functions (UDFs). UDFs allow you to call a custom Scala, 
Java, Python or R function on data in any Apache Spark DataFrame. In our workflow, we 
will define a Python UDF that uses the OpenSlide library to excise a given patch from an 
image. We define a python function that takes the name of the WSI to be processed, the 
X and Y coordinates of the patch center, and the label for the patch and creates tile that 
later will be used for training.

 
We then use the OpenSlide library to load the images from cloud storage, and to slice out 
the given coordinate range. While OpenSlide doesn’t natively understand how to read 
data from Amazon S3 or Azure Data Lake Storage, the Databricks File System (DBFS) 
FUSE layer allows OpenSlide to directly access data stored in these blob stores without 
any complex code changes. Finally, our function writes the patch back using the DBFS 
FUSE layer.

It takes approximately 10 minutes for this command to generate ~174,000 patches from 
the Camelyon16 data set on databricks data sets. Once our command has completed, we 
can load our patches back up and display them directly in-line in our notebook.

Figure 2: Visualizing WSI images  
in Databricks notebooks

Figure 3: Visualizing patches at 
different zoom levels

normal_034 normal_036 tumor_044 tumor_045
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Training a tumor/normal pathology classifier using  
transfer learning and MLflow
In the previous step, we generated patches and associated metadata, and stored 
generated image tiles using cloud storage. Now, we are ready to train a binary classifier 
to predict whether a segment of a slide contains a tumor metastasis. To do this, we will 
use transfer learning to extract features from each patch using a pretrained deep neural 
network and then use sparkml for the classification task. This technique frequently 
outperforms training from scratch for many image processing applications. We will start 
with the InceptionV3 architecture, using pretrained weights from Keras.

Apache Spark’s DataFrames provide a built-in Image schema, and we can directly load 
all patches into a DataFrame. We then use Pandas UDFs to transform the images into 
features based on InceptionV3 using Keras. Once we have featurized each image, we use 
spark.ml to fit a logistic regression between the features and the label for each patch. 
We log the logistic regression model with MLflow so that we can access the model later 
for serving.

When running ML workflows on Databricks, users can take advantage of managed 
MLflow. With every run of the notebook and every training round, MLflow automatically 
logs parameters, metrics and any specified artifact. In addition, it stores the trained 
model that can later be used for predicting labels on data. We refer interested readers to 
these docs for more information on how MLflow can be leveraged to manage a full-cycle 
of ML workflow on Databricks.

Table 1 shows the time spent on different parts of the workflow. We notice that the model 
training on ~170K samples takes less than 25 minutes with an accuracy of 87%.

Since there can be many more patches in practice, using deep neural networks for 
classification can significantly improve accuracy. In such cases, we can use distributed 
training techniques to scale the training process. On the Databricks platform, we have 
packaged up the HorovodRunner toolkit, which distributes the training task across a 
large cluster with very minor modifications to your ML code. This blog post provides a 
great background on how to scale ML workflows on Databricks.

W O R K F L O W T I M E

Patch Generation 10 min

Feature Engineering and Training 25 min

Scoring (per single slide) 15 sec

Table 1: Runtime for different steps of the workflow using 2-10 r4.4xlarge workers using Databricks ML Runtime 6.2, 
on 170,000 patches extracted from slides included in databricks-datasets

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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Inference
Now that we have trained the classifier, we will use the classifier to project a heat map 
of probability of metastasis on a slide. To do so, first we apply a grid over the segment of 
interest on the slide and then we generate patches — similar to the training process —  
to get the data into a Spark DataFrame that can be used for prediction. We then use 
MLflow to load the trained model, which can then be applied as a transformation to the 
DataFrame, which computes predictions.

To reconstruct the image, we use python’s PIL library to modify each tile color according 
to the probability of containing metastatic sites and patch all tiles together. Figure 4 
below shows the result of projecting probabilities on one of the tumor segments. Note 
that the density of red indicates high probability of metastasis on the slide.

Get started with machine learning on pathology images
In this blog, we showed how Databricks along with Spark SQL, SparkML and MLflow 
can be used to build a scalable and reproducible framework for machine learning 
on pathology images. More specifically, we used transfer learning at scale to train a 
classifier to predict probability that a segment of a slide contains cancer cells, and then 
used the trained model to detect and map cancerous growths on a given slide.

To get started, sign up for a free Databricks trial and experiment with the WSI Image 
Segmentation notebook. Visit our healthcare and life sciences pages to learn about our 
other solutions.

Figure 4: Mapping predictions to a given segment of a WSI
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C H A P T E R  7:   A Convolutional Neural 
Network Implementation  
for Car Classification 
 
by D R .  E V A N  E A M E S  
and H E N N I N G  K R O P P 
 
May 14, 2020 
 

Convolutional Neural Networks (CNN) are state-of-the-art neural network architectures that are primarily used for 
computer vision tasks. CNN can be applied to a number of different tasks, such as image recognition, object localization, 
and change detection. Recently, our partner Data Insights received a challenging request from a major car company: 
Develop a Computer Vision application that could identify the car model in a given image. Considering that different car 
models can appear quite similar and any car can look very different depending on its surroundings and the angle at which 
it is photographed, such a task was, until quite recently, simply impossible.

However, starting around 2012, the Deep Learning Revolution made it possible to handle such a problem. Instead of 
being explained the concept of a car, computers could instead repeatedly study pictures and learn such concepts 
themselves. In the past few years, additional artificial neural network innovations have resulted in AI that can perform 
image classification tasks with human-level accuracy. Building on such developments, we were able to train a Deep CNN 
to classify cars by their model. The neural network was trained on the Stanford Cars Data Set, which contains over 16,000 
pictures of cars, comprising 196 different models. Over time, we could see the accuracy of predictions begin to improve, as 
the neural network learned the concept of a car and how to distinguish among different models.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://datainsights.de/
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Together with our partner, we built an end-to-end machine learning pipeline using  
Apache Spark™ and Koalas for the data preprocessing, Keras with Tensorflow for the 
model training, MLflow for the tracking of models and results, and Azure ML for the 
deployment of a REST service. This setup within Azure Databricks is optimized to train 
networks fast and efficiently, and also helps to try many different CNN configurations 
much more quickly. Even after only a few practice attempts, the CNN’s accuracy reached 
around 85%.

Setting up  an artificial neural network to classify images
In this article, we are outlining some of the main techniques used in getting a neural 
network up into production. If you’d like to attempt to get the neural network running 
yourself, the full notebooks with a meticulous step-by-step guide included, can be  
found below.

This demo uses the publicly available Stanford Cars Data Set which is one of the more 
comprehensive public data sets, although a little outdated, so you won’t find car models 
post 2012 (although, once trained, transfer learning could easily allow a new data set to 
be substituted). The data is provided through an ADLS Gen2 storage account that you can 
mount to your workspace.

For the first step of data preprocessing, the images are compressed into hdf5 files (one 
for training and one for testing). This can then be read in by the neural network. This step 
can be omitted completely, if you like, as the hdf5 files are part of the ADLS Gen2 storage 
provided as part of these provided notebooks:

•  Load Stanford Cars data set into HDF5 files

•  Use Koalas for image augmentation

•  Train the CNN with Keras

•  Deploy model as REST service to Azure ML

Example artificial neural network, 
with multiple layers between the 
input and output layers, where the 
input is an image and the output is 
a car model classification.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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Image augmentation with Koalas
The quantity and diversity of data gathered has a large impact on the results one can 
achieve with deep learning models. Data augmentation is a strategy that can significantly 
improve learning results without the need to actually collect new data. With different 
techniques like cropping, padding and horizontal flipping, which are commonly used to 
train large neural networks, the data sets can be artificially inflated by increasing the 
number of images for training and testing.

Applying augmentation to a large corpus of training data can be very expensive, especially  
when comparing the results of different approaches. With Koalas, it becomes easy to try 
existing frameworks for image augmentation in Python, and scaling the process out on a 
cluster with multiple nodes using the data science familiar to pandas API.

Coding a ResNet in Keras
When you break apart a CNN, it comprises different “blocks,” with each block simply 
representing a group of operations to be applied to some input data. These blocks can be 
broadly categorized into:

•  I D E N T I T Y  B L O C K :  A series of operations that keep the shape of the data the same

•  C O N V O L U T I O N  B L O C K :  A series of operations that reduce the shape of the input 
data to a smaller shape

A CNN is a series of both Identity Blocks and Convolution Blocks (or ConvBlocks) that 
reduce an input image to a compact group of numbers. Each of these resulting numbers 
(if trained correctly) should eventually tell you something useful toward classifying the 
image. A Residual CNN adds an additional step for each block. The data is saved as 
a temporary variable before the operations that constitute the block are applied, and 
then this temporary data is added to the output data. Generally, this additional step is 
applied to each block. As an example, the below figure demonstrates a simplified CNN for 
detecting handwritten numbers:

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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There are many different methods of implementing a Neural Network. One of the more 
intuitive ways is via Keras. Keras provides a simple front-end library for executing the 
individual steps that comprise a neural network. Keras can be configured to work with 
a Tensorflow back-end or a Theano back-end. Here, we will be using a Tensorflow back-
end. A Keras network is broken up into multiple layers as seen below. For our network we 
are also defining our customer implementation of a layer.

The Scale layer
For any custom operation that has trainable weights, Keras allows you to implement your 
own layer. When dealing with huge amounts of image data, one can run into memory 
issues. Initially, RGB images contain integer data (0-255). When running gradient descent 
as part of the optimization during backpropagation, one will find that integer gradients 
do not allow for sufficient accuracy to properly adjust network weights. Therefore, it is 
necessary to change to float precision. This is where issues can arise. Even when images 
are scaled down to 224 x 224 x 3, when we use 10,000 training images, we are looking 
at over 1 billion floating point entries. As opposed to turning an entire data set to float 
precision, better practice is to use a “Scale layer,” which scales the input data one image 
at a time and only when it is needed. This should be applied after Batch Normalization in 
the model. The parameters of this Scale layer are also parameters that can be learned 
through training.

To use this custom layer also during scoring, we have to package the class together with 
our model. With MLflow we can achieve this with a Keras custom_objects dictionary 
mapping names (strings) to custom classes or functions associated with the Keras model. 
MLflow saves these custom layers using CloudPickle and restores them automatically 
when the model is loaded with  mlflow.keras.load_model()  and  mlflow.pyfunc.
load_model() .

mlflow.keras.log_model(model, “model”, custom_objects={“Scale”: 
Scale})

The network starts with an input image 
of size 224 x 224 x 4. Four dimensions 
represent RGB-D images channels.

The input layer is followed by a convolution 
layer with 64 kernels with image size of  
7 x 7. This layer also uses strides to halve  
the images size (/2).

The network continues with a max pooling 
layer which again halves the resolution.

Then, the network contains 48 convolutional 
layers organized into 16 residual blocks. 
These residual blocks have an increasing 
number of kernels.

The convolutional layers are followed  
by an average pooling and by four fully 
connected layers with a decreasing  
number of neurons.

The last layer regresses.

1 of 16 residual blocks, each with  
3 convolutional layers.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://keras.io/
https://www.tensorflow.org/
https://keras.io/layers/writing-your-own-keras-layers/
https://keras.io/layers/writing-your-own-keras-layers/
https://www.mlflow.org/docs/latest/python_api/mlflow.keras.html#mlflow.keras.load_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.load_model
https://www.mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.load_model
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Tracking results with MLflow and Azure Machine Learning
Machine learning development involves additional complexities beyond software 
development. That there are a myriad of tools and frameworks makes it hard to track 
experiments, reproduce results and deploy machine learning models. Together with 
Azure Machine Learning, one can accelerate and manage the end-to-end machine 
learning lifecycle using MLflow to reliably build, share and deploy machine learning 
applications using Azure Databricks.

In order to automatically track results, an existing or new Azure ML workspace can be 
linked to your Azure Databricks workspace. Additionally, MLflow supports auto-logging 
for Keras models (mlflow.keras.autolog()), making the experience almost effortless.

While MLflow’s built-in model persistence utilities are convenient for packaging models 
from various popular ML libraries such as Keras, they do not cover every use case. For 
example, you may want to use a model from an ML library that is not explicitly supported 
by MLflow’s built-in flavors. Alternatively, you may want to package custom inference 
code and data to create an MLflow Model. Fortunately, MLflow provides two solutions that 
can be used to accomplish these tasks: Custom Python Models and Custom Flavors.

In this scenario we want to make sure we can use a model inference engine that supports 
serving requests from a REST API client. For this we are using a custom model based on 
the previously built Keras model to accept a JSON DataFrame object that has a Base64-
encoded image inside.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://www.mlflow.org/docs/latest/models.html#custom-python-models
https://www.mlflow.org/docs/latest/models.html#custom-flavors
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import mlflow.pyfunc

class AutoResNet150(mlflow.pyfunc.PythonModel):
    
    def predict_from_picture(self, img_df):
    import cv2 as cv
    import numpy as np
    import base64
    
    # decoding of base64 encoded image used for transport over http
    img = np.frombuffer(base64.b64decode(img_df[0][0]), dtype=np.
uint8)
    img_res = cv.resize(cv.imdecode(img, flags=1), (224, 224), 
cv.IMREAD_UNCHANGED)
    rgb_img = np.expand_dims(img_res, 0)
    
    preds = self.keras_model.predict(rgb_img)
    prob = np.max(preds)
    
    class_id = np.argmax(preds)
    return {“label”: self.class_names[class_id][0][0], “prob”: 
“{:.4}”.format(prob)}
    
    def load_context(self, context):
    import scipy.io
    import numpy as np
    import h5py
    import keras
    import cloudpickle
    from keras.models import load_model
    
    self.results = []
    with open(context.artifacts[“cars_meta”], “rb”) as file:
        # load the car classes file
        cars_meta = scipy.io.loadmat(file)
        self.class_names = cars_meta[‘class_names’]
        self.class_names = np.transpose(self.class_names)
    

    with open(context.artifacts[“scale_layer”], “rb”) as file:
        self.scale_layer = cloudpickle.load(file)
    
    with open(context.artifacts[“keras_model”], “rb”) as file:
        f = h5py.File(file.name,’r’)
        self.keras_model = load_model(f, custom_objects={“Scale”: 
self.scale_layer})
    
    def predict(self, context, model_input):
    return self.predict_from_picture(model_input)

In the next step, we can use this py_model and deploy it to an Azure Container Instances 
server, which can be achieved through MLflow’s Azure ML integration.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://azure.microsoft.com/en-us/services/container-instances/
https://www.mlflow.org/docs/latest/python_api/mlflow.azureml.html
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Deploy an image classification model in  
Azure Container Instances
By now we have a trained machine learning model and have registered a model in our 
workspace with MLflow in the cloud. As a final step, we would like to deploy the model as 
a web service on Azure Container Instances.

A web service is an image, in this case a Docker image. It encapsulates the scoring logic 
and the model itself. In this case, we are using our custom MLflow model representation, 
which gives us control over how the scoring logic takes in care images from a REST client 
and how the response is shaped.

# Build an Azure ML Container Image for an MLflow model
azure_image, azure_model = mlflow.azureml.build_image(
                    model_uri=”{}/py_model”
                            .format(resnet150_latest_run.info.
artifact_uri),
                    image_name=”car-resnet150”,
                    model_name=”car-resnet150”,
                    workspace=ws,
                    synchronous=True)

webservice_deployment_config = AciWebservice.deploy_configuration()

# defining the container specs 
aci_config = AciWebservice.deploy_configuration(cpu_cores=3.0, 
memory_gb=12.0)

webservice = Webservice.deploy_from_image(
    image=azure_image, 
    workspace=ws, 
    name=”car-resnet150”, 
    deployment_config=aci_config, 
    overwrite=True)

webservice.wait_for_deployment()

Container Instances is a great solution for testing and understanding the workflow. For 
scalable production deployments, consider using Azure Kubernetes Service. For more 
information, see how to deploy and where.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-and-where
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Getting started with CNN image classification
This article and the notebooks demonstrate the main techniques used in setting up an 
end-to-end workflow training and deploying a neural network in production on Azure. 
The exercises in the linked notebooks will walk you through the required steps of creating 
this inside your own Azure Databricks environment using tools like Keras, Databricks 
Koalas MLflow, and Azure ML.

Developer Resources

•  N O T E B O O K S :

—  Load Stanford Cars data set into HDF5 files

—  Use Koalas for image augmentation

—  Train the CNN with Keras

—  Deploy model as REST service to Azure ML

•  V I D E O:  AI Car Classification With Deep Convolutional Neural Networks on Databricks

•  G I T H U B:  EvanEames | Cars

•  S L I D E S :  A Convolutional Neural Network Implementation for Car Classification

•  P D F:  Convolutional Neural Network Implementation on Databricks

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://azure.microsoft.com/en-us/services/databricks/
https://github.com/databricks/koalas
https://github.com/databricks/koalas
https://mlflow.org/
https://azure.microsoft.com/en-us/services/machine-learning/
https://databricks.com/notebooks/cnn-car-class/load-images-in-hdf5.html
https://databricks.com/notebooks/cnn-car-class/koalas-augmentation.html
https://databricks.com/notebooks/cnn-car-class/keras-resnet150-for-image-classification.html
https://databricks.com/notebooks/cnn-car-class/azure-ml-deployment.html
https://www.youtube.com/watch?v=mxEqcIbPqPs
https://github.com/EvanEames/Cars
https://www.slideshare.net/jonbros/deep-learning-with-databricks
https://github.com/EvanEames/Cars/blob/master/CNN_howto.pdf
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C H A P T E R  8:   Processing Geospatial Data  
at Scale With Databricks 
 
by N I M A  R A Z A V I  
and M I C H A E L  J O H N S 
 
December 5, 2019 
 

The evolution and convergence of technology has fueled a vibrant marketplace for timely and accurate geospatial data. 
Every day, billions of handheld and IoT devices along with thousands of airborne and satellite remote sensing platforms 
generate hundreds of exabytes of location-aware data. This boom of geospatial big data combined with advancements in 
machine learning is enabling organizations across industries to build new products and capabilities.

For example, numerous companies provide localized drone-based services such as mapping and site inspection 
(reference Developing for the Intelligent Cloud and Intelligent Edge). Another rapidly growing industry for geospatial data 
is autonomous vehicles. Startups and established companies alike are amassing large corpuses of highly contextualized 
geodata from vehicle sensors to deliver the next innovation in self-driving cars (reference Databricks fuels wejo’s ambition 
to create a mobility data ecosystem). Retailers and government agencies are also looking to make use of their geospatial 
data. For example, foot-traffic analysis (reference Building Foot-Traffic Insights Data Set) can help determine the best 
location to open a new store or, in the public sector, improve urban planning. Despite all these investments in geospatial 
data, a number of challenges exist.

F R A U D  A N D  A B U S E

Detect patterns of fraud and 
collusion (e.g., claims fraud,  

credit card fraud)

D I S A S T E R  R E C O V E R Y

Flood surveys, earthquake  
mapping, response planning

R E TA I L

Site selection, urban planning,  
foot traffic analysis 

D E F E N S E  A N D  I N T E L

Reconnaissance, threat detection, 
damage assessment

F I N A N C I A L  S E R V I C E S

Economic distribution, loan risk 
analysis, predicting sales at retail, 

investments

I N F R A S T R U C T U R E

Transportation planning, agriculture 
management, housing development

H E A LT H C A R E

Identifying disease epicenters, 
environmental impact on health, 

planning care

E N E R G Y

Climate change analysis, energy 
asset inspection, oil discovery

Maps leveraging geospatial data  
are used widely across industries,  

spanning multiple use cases, 
including disaster recovery, 

defense and intel, infrastructure 
and health services.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://databricks.com/session/azure-databricks
https://databricks.com/company/newsroom/press-releases/databricks-fuels-wejos-ambition-to-create-a-mobility-data-ecosystem
https://databricks.com/company/newsroom/press-releases/databricks-fuels-wejos-ambition-to-create-a-mobility-data-ecosystem
https://databricks.com/blog/2019/08/25/building-foot-traffic-insights-dataset.html
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Challenges analyzing geospatial at scale
The first challenge involves dealing with scale in streaming and batch applications. The 
sheer proliferation of geospatial data and the SLAs required by applications overwhelm 
traditional storage and processing systems. Customer data has been spilling out of 
existing vertically scaled geo databases into data lakes for many years now due to 
pressures, such as data volume, velocity, storage cost, and strict schema-on-write 
enforcement. While enterprises have invested in geospatial data, few have the proper 
technology architecture to prepare these large, complex data sets for downstream 
analytics. Further, given that scaled data is often required for advanced use cases, the 
majority of AI-driven initiatives are failing to make it from pilot to production.

Compatibility with various spatial formats poses the second challenge. There are many 
different specialized geospatial formats established over many decades as well as 
incidental data sources in which location information may be harvested:

•  Vector formats such as GeoJSON, KML, Shapefile and WKT

•  Raster formats such as ESRI Grid, GeoTIFF, JPEG 2000 and NITF

•  Navigational standards such as used by AIS and GPS devices

•  Geodatabases accessible via JDBC / ODBC connections such as PostgreSQL / PostGIS

•  Remote sensor formats from Hyperspectral, Multispectral, Lidar and Radar platforms

•  OGC web standards such as WCS, WFS, WMS and WMTS

•  Geotagged logs, pictures, videos and social media

•  Unstructured data with location references

In this blog post, we give an overview of general approaches to deal with the two main 
challenges listed above using the Databricks Unified Data Analytics Platform. This is the 
first part of a series of blog posts on working with large volumes of geospatial data.

Scaling geospatial workloads with Databricks
Databricks offers a unified data analytics platform for big data analytics and machine 
learning used by thousands of customers worldwide. It is powered by Apache Spark™, Delta  
Lake and MLflow with a wide ecosystem of third-party and available library integrations.  
Databricks UDAP delivers enterprise-grade security, support, reliability and performance  
at scale for production workloads. Geospatial workloads are typically complex, and there 
is no one library fitting all use cases. While Apache Spark does not offer geospatial Data 
Types natively, the open-source community as well as enterprises have directed much 
effort to develop spatial libraries, resulting in a sea of options from which to choose.

There are generally three patterns for scaling geospatial operations such as spatial joins 
or nearest neighbors:

 1.  Using purpose-built libraries that extend Apache Spark for geospatial analytics. 
GeoSpark, GeoMesa, GeoTrellis and Rasterframes are a few of such libraries used 
by our customers. These frameworks often offer multiple language bindings, have 
much better scaling and performance than non-formalized approaches, but can 
also come with a learning curve.

2.  Wrapping single-node libraries such as GeoPandas, Geospatial Data Abstraction 
Library (GDAL) or Java Topology Service (JTS) in ad hoc user-defined functions 
(UDFs) for processing in a distributed fashion with Spark DataFrames. This is the 
simplest approach for scaling existing workloads without much code rewrite; however,  
it can introduce performance drawbacks as it is more lift-and-shift in nature.

3.  Indexing the data with grid systems and leveraging the generated index to perform 
spatial operations is a common approach for dealing with very large scale or 
computationally restricted workloads. S2, GeoHex and Uber’s H3 are examples 
of such grid systems. Grids approximate geo features such as polygons or points 
with a fixed set of identifiable cells thus avoiding expensive geospatial operations 
altogether and thus offer much better scaling behavior. Implementers can decide 
between grids fixed to a single accuracy that can be somewhat lossy yet more 
performant or grids with multiple accuracies that can be less performant but 
mitigate against lossines.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://en.wikipedia.org/wiki/GIS_file_formats
https://databricks.com/glossary/big-data-analytics
https://databricks.com/product/unified-analytics-platform
https://github.com/locationtech/geomesa
https://geotrellis.io/
https://rasterframes.io/
http://geopandas.org/
https://gdal.org/
https://gdal.org/
https://github.com/locationtech/jts
https://s2geometry.io/
http://www.geohex.org/
https://eng.uber.com/h3/
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The following examples are generally oriented around a NYC taxi pickup / drop-off data  
set found here. NYC Taxi Zone data with geometries will also be used as the set of polygons.  
This data contains polygons for the five boroughs of NYC as well the neighborhoods. This 
notebook will walk you through preparations and cleanings done to convert the initial 
CSV files into Delta Lake tables as a reliable and performant data source.

Our base DataFrame is the taxi pickup / drop-off data read from a Delta Lake Table  
using Databricks.

%scala
val dfRaw = spark.read.format(“delta”).load(“/ml/blogs/geospatial/
delta/nyc-green”) 
display(dfRaw) // showing first 10 columns

Geospatial operations using geospatial libraries  
for Apache Spark
Over the last few years, several libraries have been developed to extend the capabilities 
of Apache Spark for geospatial analysis. These frameworks bear the brunt of registering 
commonly applied user-defined types (UDT) and functions (UDF) in a consistent manner, 
lifting the burden otherwise placed on users and teams to write ad hoc spatial logic. Please  
note that in this blog post we use several different spatial frameworks chosen to highlight  
various capabilities. We understand that other frameworks exist beyond those highlighted,  
which you might also want to use with Databricks to process your spatial workloads.

Earlier, we loaded our base data into a DataFrame. Now we need to turn the latitude/
longitude attributes into point geometries. To accomplish this, we will use UDFs to 
perform operations on DataFrames in a distributed fashion. Please refer to the provided 
notebooks at the end of the blog for details on adding these frameworks to a cluster and 
the initialization calls to register UDFs and UDTs. For starters, we have added GeoMesa to 
our cluster, a framework especially adept at handling vector data. For ingestion, we are 
mainly leveraging its integration of JTS with Spark SQL, which allows us to easily convert 
to and use registered JTS geometry classes. We will be using the function st_makePoint 
that given a latitude and longitude create a Point geometry object. Since the function is a 
UDF, we can apply it to columns directly.

%scala
val df = dfRaw
 .withColumn(“pickup_point”, st_makePoint(col(“pickup_longitude”), 
col(“pickup_latitude”)))
 .withColumn(“dropoff_point”, st_makePoint(col(“dropoff_
longitude”),col(“dropoff_latitude”)))
display(df.select(“dropoff_point”,”dropoff_datetime”))

Example: Geospatial data read from a Delta Lake table using Databricks

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
https://databricks.com/notebooks/prep-nyc-taxi-geospatial-data.html
https://docs.databricks.com/delta/index.html?_ga=2.265829580.2112692442.1591844546-225663068.1585060489#delta-guide
https://docs.databricks.com/delta/index.html?_ga=2.265829580.2112692442.1591844546-225663068.1585060489#delta-guide
https://docs.databricks.com/user-guide/libraries.html?_ga=2.232627548.2112692442.1591844546-225663068.1585060489
https://spark.apache.org/docs/latest/sql-programming-guide.html
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We can also perform distributed spatial joins, in this case using GeoMesa’s provided 
st_contains UDF to produce the resulting join of all polygons against pickup points.

%scala
val joinedDF = wktDF.join(df, st_contains($”the_geom”, $”pickup_
point”)
display(joinedDF.select(“zone”,”borough”,”pickup_point”,”pickup_
datetime”))

Wrapping single-node libraries in UDFs
In addition to using purpose-built distributed spatial frameworks, existing single-node 
libraries can also be wrapped in ad hoc UDFs for performing geospatial operations 
on DataFrames in a distributed fashion. This pattern is available to all Spark language 
bindings — Scala, Java, Python, R and SQL — and is a simple approach for leveraging 
existing workloads with minimal code changes. To demonstrate a single-node example, 
let ’s load NYC borough data and define UDF find_borough(…) for point-in-polygon 
operation to assign each GPS location to a borough using geopandas. This could also 
have been accomplished with a vectorized UDF for even better performance.

%python 
# read the boroughs polygons with geopandas
gdf = gdp.read_file(“/dbfs/ml/blogs/geospatial/nyc_boroughs.
geojson”)

b_gdf = sc.broadcast(gdf) # broadcast the geopandas dataframe to 
all nodes of the cluster 
def find_borough(latitude,longitude):
  mgdf = b_gdf.value.apply(lambda x: x[“boro_name”] if 
x[“geometry”].intersects(Point(longitude, latitude))
  idx = mgdf.first_valid_index()
  return mgdf.loc[idx] if idx is not None else None

find_borough_udf = udf(find_borough, StringType())

Example: Using UDFs to perform operations on DataFrames in a distributed fashion to turn  
geospatial data latitude/longitude attributes into point geometries

Example: Using GeoMesa’s provided st_contains UDF, for example, to produce the resulting join  
of all polygons against pickup points

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://en.wikipedia.org/wiki/Point_in_polygon
https://docs.databricks.com/spark/latest/spark-sql/udf-python-pandas.html?_ga=2.232789213.2112692442.1591844546-225663068.1585060489#pandas-user-defined-functions
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Now we can apply the UDF to add a column to our Spark DataFrame, which assigns a 
borough name to each pickup point.

%python 
# read the coordinates from delta 
df = spark.read.format(“delta”).load(“/ml/blogs/geospatial/delta/
nyc-green”)
df_with_boroughs = df.withColumn(“pickup_borough”, find_borough_
udf(col(“pickup_latitude”),col(pickup_longitude)))
display(df_with_boroughs.select(
  “pickup_datetime”,”pickup_latitude”,”pickup_longitude”,”pickup_
borough”))

Grid systems for spatial indexing
Geospatial operations are inherently computationally expensive. Point-in-polygon, 
spatial joins, nearest neighbor or snapping to routes all involve complex operations. By 
indexing with grid systems, the aim is to avoid geospatial operations altogether. This 
approach leads to the most scalable implementations with the caveat of approximate 
operations. Here is a brief example with H3.

Scaling spatial operations with H3 is essentially a two-step process. The first step is to 
compute an H3 index for each feature (points, polygons, …) defined as UDF geoToH3(…). 
The second step is to use these indices for spatial operations such as spatial join (point in 
polygon, k-nearest neighbors, etc.), in this case defined as UDF multiPolygonToH3(…).

Example: The result of a single-node example, where Geopandas is used  
to assign each GPS location to NYC borough

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://en.wikipedia.org/wiki/Grid_(spatial_index)
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%scala 
import com.uber.h3core.H3Core
import com.uber.h3core.util.GeoCoord
import scala.collection.JavaConversions._
import scala.collection.JavaConverters._

object H3 extends Serializable {
  val instance = H3Core.newInstance()
}

val geoToH3 = udf{ (latitude: Double, longitude: Double, 
resolution: Int) => 
  H3.instance.geoToH3(latitude, longitude, resolution) 
}
                  
val polygonToH3 = udf{ (geometry: Geometry, resolution: Int) => 
  var points: List[GeoCoord] = List()
  var holes: List[java.util.List[GeoCoord]] = List()
  if (geometry.getGeometryType == “Polygon”) {
    points = List(
      geometry
        .getCoordinates()
        .toList
        .map(coord => new GeoCoord(coord.y, coord.x)): _*)
  }
  H3.instance.polyfill(points, holes.asJava, resolution).toList 
}

val multiPolygonToH3 = udf{ (geometry: Geometry, resolution: Int) 
=> 
  var points: List[GeoCoord] = List()
  var holes: List[java.util.List[GeoCoord]] = List()
  if (geometry.getGeometryType == “MultiPolygon”) {
    val numGeometries = geometry.getNumGeometries()
    if (numGeometries > 0) {
      points = List(
        geometry
          .getGeometryN(0)
          .getCoordinates()
          .toList
          .map(coord => new GeoCoord(coord.y, coord.x)): _*)
    }
    if (numGeometries > 1) {
      holes = (1 to (numGeometries - 1)).toList.map(n => {
        List(
          geometry
            .getGeometryN(n)
            .getCoordinates()
            .toList
            .map(coord => new GeoCoord(coord.y, coord.x)): _*).
asJava
      })
    }
  }
  H3.instance.polyfill(points, holes.asJava, resolution).toList 

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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We can now apply these two UDFs to the NYC taxi data as well as the set of borough 
polygons to generate the H3 index.

%scala
val res = 7 //the resolution of the H3 index, 1.2km
val dfH3 = df.withColumn(
  “h3index”,
  geoToH3(col(“pickup_latitude”), col(“pickup_longitude”), 
lit(res))
)
val wktDFH3 = wktDF
  .withColumn(“h3index”, multiPolygonToH3(col(“the_geom”), 
lit(res)))
  .withColumn(“h3index”, explode($”h3index”))

Given a set of a lat/lon points and a set of polygon geometries, it is now possible to 
perform the spatial join using h3index field as the join condition. These assignments can 
be used to aggregate the number of points that fall within each polygon for instance. 
There are usually millions or billions of points that have to be matched to thousands or 
millions of polygons, which necessitates a scalable approach. There are other techniques 
not covered in this blog that can be used for indexing in support of spatial operations 
when an approximation is insufficient.

%scala
val dfWithBoroughH3 = dfH3.join(wktDFH3,”h3index”) 
    
display(df_with_borough_h3.select(“zone”,”borough”,”pickup_
point”,”pickup_datetime”,”h3index”))

Example: DataFrame table representing the spatial join of a set of lat/lon points and  
polygon geometries, using a specific field as the join condition

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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Here is a visualization of taxi drop-off locations, with latitude and longitude binned at a 
resolution of 7 (1.22km edge length) and colored by aggregated counts within each bin.

Handling spatial formats with Databricks
Geospatial data involves reference points, such as latitude and longitude, to physical 
locations or extents on the Earth along with features described by attributes. While there 
are many file formats to choose from, we have picked out a handful of representative 
vector and raster formats to demonstrate reading with Databricks.

Vector data
Vector data is a representation of the world stored in x (longitude), y (latitude) coordinates 
in degrees, also z (altitude in meters) if elevation is considered. The three basic symbol 
types for vector data are points, lines and polygons. Well-known-text (WKT), GeoJSON 
and Shapefile are some popular formats for storing vector data we highlight below.

Let ’s read NYC Taxi Zone data with geometries stored as WKT. The data structure we 
want to get back is a DataFrame that will allow us to standardize with other APIs and 
available data sources, such as those used elsewhere in the blog. We are able to easily 
convert the WKT text content found in field the_geom into its corresponding JTS 
Geometry class through the st_geomFromWKT(…) UDF call.

%scala
val wktDFText = sqlContext.read.format(“csv”)
 .option(“header”, “true”)
 .option(“inferSchema”, “true”)
 .load(“/ml/blogs/geospatial/nyc_taxi_zones.wkt.csv”)

val wktDF = wktDFText.withColumn(“the_geom”, st_
geomFromWKT(col(“the_geom”))).cache

Example: Geospatial visualization of taxi dropoff locations, with latitude and longitude binned  
at a resolution of 7 (1.22km edge length) and colored by aggregated counts within each bin

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
https://en.wikipedia.org/wiki/GeoJSON
https://en.wikipedia.org/wiki/Shapefile
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GeoJSON is used by many open-source GIS packages for encoding a variety of geographic  
data structures, including their features, properties and spatial extents. For this example, 
we will read NYC Borough Boundaries with the approach taken depending on the workflow.  
Since the data is conforming to JSON, we could use the Databricks built-in JSON reader 
with .option(“multiline”,”true”) to load the data with the nested schema.

%python
json_df = spark.read.option(“multiline”,”true”).json(“nyc_boroughs.
geojson”)

From there, we could choose to hoist any of the fields up to top level columns using 
Spark’s built-in explode function. For example, we might want to bring up geometry, 
properties and type and then convert geometry to its corresponding JTS class, as was 
shown with the WKT example.

%python
from pyspark.sql import functions as F
json_explode_df = ( json_df.select(
 “features”,
 “type”,
 F.explode(F.col(“features.properties”)).alias(“properties”)
).select(“*”,F.explode(F.col(“features.geometry”)).
alias(“geometry”)).drop(“features”))

display(json_explode_df)

Example: Using the Databricks built-in JSON reader .option(“multiline”,”true”)  
to load the data with the nested schema

Example: Using the Spark’s built-in explode function to raise a field to the top level,  
displayed within a DataFrame table

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
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We can also visualize the NYC Taxi Zone data within a notebook using an existing 
DataFrame or directly rendering the data with a library such as Folium, a Python library 
for rendering spatial data. Databricks File System (DBFS) runs over a distributed 
storage layer, which allows code to work with data formats using familiar file system 
standards. DBFS has a FUSE Mount to allow local API calls that perform file read and 
write operations, which makes it very easy to load data with non-distributed APIs for 
interactive rendering. In the Python open(…) command below, the “/dbfs/…” prefix 
enables the use of FUSE Mount.

%python 
import folium
import json

with open (“/dbfs/ml/blogs/geospatial/nyc_boroughs.geojson”, “r”) 
as myfile:
 boro_data=myfile.read() # read GeoJSON from DBFS using FuseMount

m = folium.Map(
 location=[40.7128, -74.0060],
 tiles=’Stamen Terrain’,
 zoom_start=12 
)
folium.GeoJson(json.loads(boro_data)).add_to(m)
m # to display, also could use displayHTML(...) variants

 
Shapefile is a popular vector format developed by ESRI that stores the geometric location 
and attribute information of geographic features. The format consists of a collection 
of files with a common filename prefix (*.shp, *.shx and *.dbf are mandatory) stored in 
the same directory. An alternative to shapefile is KML, also used by our customers but not 
shown for brevity. For this example, let ’s use NYC Building shapefiles. While there are many 
ways to demonstrate reading shapefiles, we will give an example using GeoSpark. The 
built-in ShapefileReader is used to generate the rawSpatialDf DataFrame.

%scala
var spatialRDD = new SpatialRDD[Geometry]
spatialRDD = ShapefileReader.readToGeometryRDD(sc, “/ml/blogs/
geospatial/shapefiles/nyc”)

var rawSpatialDf = Adapter.toDf(spatialRDD,spark)
rawSpatialDf.createOrReplaceTempView(“rawSpatialDf”) //DataFrame 
now available to SQL, Python, and R 

display(json_explode_df)

Example: We can also visualize the NYC Taxi Zone data, for example, within a notebook using an existing DataFrame 
or directly rendering the data with a library such as Folium, a Python library for rendering geospatial data

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://pypi.org/project/folium/
https://docs.databricks.com/user-guide/databricks-file-system.html?_ga=2.257963337.2112692442.1591844546-225663068.1585060489#databricks-file-system
https://docs.databricks.com/user-guide/databricks-file-system.html?_ga=2.257963337.2112692442.1591844546-225663068.1585060489#local-file-apis
https://en.wikipedia.org/wiki/Keyhole_Markup_Language
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By registering rawSpatialDf as a temp view, we can easily drop into pure Spark SQL 
syntax to work with the DataFrame, to include applying a UDF to convert the shapefile 
WKT into Geometry.

%sql 
SELECT *,
 ST_GeomFromWKT(geometry) AS geometry -- GeoSpark UDF to convert 
WKT to Geometry 
FROM rawspatialdf 

Additionally, we can use Databricks’ built-in visualization for in-line analytics, such as 
charting the tallest buildings in NYC.

%sql 
SELECT name, 
 round(Cast(num_floors AS DOUBLE), 0) AS num_floors --String to Number
FROM rawspatialdf 
WHERE name <> ‘’
ORDER BY num_floors DESC LIMIT 5

Raster data
Raster data stores information of features in a matrix of cells (or pixels) organized into 
rows and columns (either discrete or continuous). Satellite images, photogrammetry and 
scanned maps are all types of raster-based Earth Observation (EO) data.

The following Python example uses RasterFrames, a DataFrame-centric spatial analytics 
framework, to read two bands of GeoTIFF Landsat-8 imagery (red and near-infrared) 
and combine them into Normalized Difference Vegetation Index. We can use this 
data to assess plant health around NYC. The rf_ipython module is used to manipulate 
RasterFrame contents into a variety of visually useful forms, such as below where the red, 
NIR and NDVI tile columns are rendered with color ramps, using the Databricks built-in 
displayHTML(…) command to show the results within the notebook.

%python
# construct a CSV “catalog” for RasterFrames `raster` reader 
# catalogs can also be Spark or Pandas DataFrames
bands = [f’B{b}’ for b in [4, 5]]
uris = [f’https://landsat-pds.s3.us-west-2.amazonaws.com/c1/
L8/014/032/LC08_L1TP_014032_20190720_20190731_01_T1/LC08_L1TP_014
032_20190720_20190731_01_T1_{b}.TIF’ for b in bands]
catalog = ‘,’.join(bands) + ‘\n’ + ‘,’.join(uris)

# read red and NIR bands from Landsat 8 dataset over NYC
rf = spark.read.raster(catalog, bands) \
 .withColumnRenamed(‘B4’, ‘red’).withColumnRenamed(‘B5’, ‘NIR’) \
 .withColumn(‘longitude_latitude’, st_reproject(st_centroid(rf_
geometry(‘red’)), rf_crs(‘red’), lit(‘EPSG:4326’))) \
 .withColumn(‘NDVI’, rf_normalized_difference(‘NIR’, ‘red’)) \
 .where(rf_tile_sum(‘NDVI’) > 10000)

results = rf.select(‘longitude_latitude’, rf_tile(‘red’), rf_
tile(‘NIR’), rf_tile(‘NDVI’))
displayHTML(rf_ipython.spark_df_to_html(results))

Example: A Databricks built-in visualization for in-line analytics charting, for example, the tallest buildings in NYC

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://en.wikipedia.org/wiki/Multispectral_image
https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index
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Through its custom Spark DataSource, RasterFrames can read various raster formats, 
including GeoTIFF, JP2000, MRF and HDF, from an array of services. It also supports 
reading the vector formats GeoJSON and WKT/WKB. RasterFrame contents can be 
filtered, transformed, summarized, resampled and rasterized through over 200 raster and  
vector functions, such as st_reproject(…) and st_centroid(…) used in the example above. 
It provides APIs for Python, SQL and Scala as well as interoperability with Spark ML.

Geo databases
Geo databases can be filebased for smaller-scale data or accessible via JDBC / ODBC 
connections for medium-scale data. You can use Databricks to query many SQL 
databases with the built-in JDBC / ODBC Data Source. Connecting to PostgreSQL is 
shown below, which is commonly used for smaller-scale workloads by applying PostGIS 
extensions. This pattern of connectivity allows customers to maintain as-is access to 
existing databases.

%scala
display(
  sqlContext.read.format(“jdbc”)
    .option(“url”, jdbcUrl)
    .option(“driver”, “org.postgresql.Driver”)
    .option(“dbtable”, 
      “””(SELECT * FROM yellow_tripdata_staging 
      OFFSET 5 LIMIT 10) AS t”””) //predicate pushdown
    .option(“user”, jdbcUsername)
    .option(“jdbcPassword”, jdbcPassword)
  .load)

Example: RasterFrame contents can be filtered, transformed, summarized, resampled  
and rasterized through over 200 raster and vector functions

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://rasterframes.io/raster-read.html
https://rasterframes.io/raster-read.html#uri-formats
https://rasterframes.io/reference.html
https://rasterframes.io/reference.html
https://docs.databricks.com/spark/latest/data-sources/sql-databases.html?_ga=2.190665064.2112692442.1591844546-225663068.1585060489
https://postgresql.org/
https://postgis.net/
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Getting started with geospatial analysis on Databricks
Businesses and government agencies seek to use spatially referenced data in conjunction 
with enterprise data sources to draw actionable insights and deliver on a broad range 
of innovative use cases. In this blog, we demonstrated how the Databricks Unified Data 
Analytics Platform can easily scale geospatial workloads, enabling our customers to 
harness the power of the cloud to capture, store and analyze data of massive size.

In an upcoming blog, we will take a deep dive into more advanced topics for geospatial 
processing at scale with Databricks. You will find additional details about the spatial 
formats and highlighted frameworks by reviewing Data Prep Notebook, GeoMesa + H3 
Notebook, GeoSpark Notebook, GeoPandas Notebook and Rasterframes Notebook.  
Also, stay tuned for a new section in our documentation specifically for geospatial  
topics of interest.

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://databricks.com/product/unified-analytics-platform
https://databricks.com/product/unified-analytics-platform
https://databricks.com/notebooks/prep-nyc-taxi-geospatial-data.html
https://databricks.com/notebooks/geomesa-h3-notebook.html
https://databricks.com/notebooks/geomesa-h3-notebook.html
https://databricks.com/notebooks/geospark-notebook.html
https://databricks.com/notebooks/geopandas-notebook.html
https://databricks.com/notebooks/rasterframes-notebook.html
https://docs.databricks.com/?_ga=2.229145951.2112692442.1591844546-225663068.1585060489
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With Databricks, we can now be more 
informed about the decisions we make, 
and we can make them faster.

—   J I M  F O R S Y T H E  Senior Director,  
Product Analytics and Behavioral Sciences at Comcast

C H A P T E R  9: 
C U S T O M E R  
C A S E  S T U D Y

As a global technology and media company that connects millions of customers to personalized experiences, Comcast 
struggled with massive data, fragile data pipelines and poor data science collaboration. By using Databricks — including 
Delta Lake and MLflow — they were able to build performant data pipelines for petabytes of data and easily manage the 
lifecycle of hundreds of models, creating a highly innovative, unique and award-winning viewer experience that leverages 
voice recognition and machine learning.

U S E  C A S E :  In the intensely competitive entertainment industry, there’s no time to press the Pause button. Comcast 
realized they needed to modernize their entire approach to analytics from data ingest to the deployment of machine 
learning models that deliver new features to delight their customers.

S O L U T I O N  A N D  B E N E F I T S :   Armed with a unified approach to analytics, Comcast can now fast-forward into the future 
of AI-powered entertainment — keeping viewers engaged and delighted with competition-beating customer experiences.

•   E M M Y-W I N N I N G  V I E W E R  E X P E R I E N C E :  Databricks helps enable Comcast to create a highly innovative and 
award-winning viewer experience with intelligent voice commands that boost engagement.

•   R E D U C E D  C O M P U T E  C O S T S  B Y  1 0 X :  Delta Lake has enabled Comcast to optimize data ingestion, replacing 
640 machines with 64 — while improving performance. Teams can spend more time on analytics and less time on 
infrastructure management.

•   H I G H E R  D ATA  S C I E N C E  P R O D U C T I V I T Y:  The upgrades and use of Delta Lake fostered global collaboration among 
data scientists by enabling different programming languages through a single interactive workspace. Delta Lake also 
enabled the data team to use data at any point within the data pipeline, allowing them to act much quicker in building 
and training new models.

•   FA S T E R  M O D E L  D E P L O Y M E N T:  By modernizing, Comcast reduced deployment times from weeks to minutes as 
operations teams deployed models on disparate platforms.

L E A R N  M O R E

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://databricks.com/customers/comcast
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The Databricks Unified Data Analytics 
Platform is enabling everyone in 
our integrated drug development 
process — from physician-scientists 
to computational biologists — to easily 
access, analyze and extract insights 
from all of our data.

—   J E F F R E Y  R E I D ,  PHD 
Head of Genome Informatics at Regeneron

Regeneron’s mission is to tap into the power of genomic data to bring new medicines to patients in need. Yet, transforming 
this data into life-changing discovery and targeted treatments has never been more challenging. With poor processing 
performance and scalability limitations, their data teams lacked what they needed to analyze petabytes of genomic 
and clinical data. Databricks now empowers them to quickly analyze entire genomic data sets quickly to accelerate the 
discovery of new therapeutics.

U S E  C A S E :  More than 95% of all experimental medicines that are currently in the drug development pipeline are expected 
to fail. To improve these efforts, the Regeneron Genetics Center built one of the most comprehensive genetics databases 
by pairing the sequenced exomes and electronic health records of more than 400,000 people. However, they faced 
numerous challenges analyzing this massive set of data:

•  Genomic and clinical data is highly decentralized, making it very difficult to analyze and train models against their 
entire 10TB data set.

•  Difficult and costly to scale their legacy architecture to support analytics on over 80 billion data points.

•  Data teams were spending days just trying to ETL the data so that it can be used for analytics.

S O L U T I O N  A N D  B E N E F I T S :   Databricks provides Regeneron with a Unified Data Analytics Platform running on Amazon 
Web Services that simplifies operations and accelerates drug discovery through improved data science productivity. This 
is empowering them to analyze the data in new ways that were previously impossible.

•  A C C E L E R AT E D  D R U G  TA R G E T  I D E N T I F I C AT I O N:  Reduced the time it takes data scientists and computational 
biologists to run queries on their entire data set from 30 minutes down to 3 seconds — a 600x improvement!

•  I N C R E A S E D  P R O D U C T I V I T Y:  Improved collaboration, automated DevOps and accelerated pipelines (ETL in 2 days 
vs. 3 weeks) have enabled their teams to support a broader range of studies.

L E A R N  M O R E

C H A P T E R  9: 
C U S T O M E R  
C A S E  S T U D Y

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://databricks.com/customers/regeneron
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With Databricks, we are able to train 
models against all our data more quickly, 
resulting in more accurate pricing 
predictions that have had a material 
impact on revenue.

—   B R Y N  C L A R K 
Data Scientist at Nationwide

The explosive growth in data availability and increasing market competition are challenging insurance providers to 
provide better pricing to their customers. With hundreds of millions of insurance records to analyze for downstream ML, 
Nationwide realized their legacy batch analysis process was slow and inaccurate, providing limited insight to predict the 
frequency and severity of claims. With Databricks, they have been able to employ deep learning models at scale to provide 
more accurate pricing predictions, resulting in more revenue from claims.

U S E  C A S E :  The key to providing accurate insurance pricing lies in leveraging information from insurance claims. 
However, data challenges were difficult as they had to analyze insurance records that were volatile as claims were 
infrequent and unpredictable — resulting in inaccurate pricing.

S O L U T I O N  A N D  B E N E F I T S :  Nationwide leverages the Databricks Unified Data Analytics Platform to manage the 
entire analytics process from data ingestion to the deployment of deep learning models. The fully managed platform has 
simplified IT operations and unlocked new data-driven opportunities for their data science teams. 

•  D ATA  P R O C E S S I N G  AT  S C A L E :  Improved runtime of their entire data pipeline from 34 hours to less than 4 hours,  
a 9x performance gain.

•  FA S T E R  F E AT U R I Z AT I O N:  Data engineering is able to identify features 15x faster — from 5 hours to around  
20 minutes.

•  FA S T E R  M O D E L  T R A I N I N G:  Reduced training times by 50%, enabling faster time-to-market of new models.

•  I M P R O V E D  M O D E L  S C O R I N G:  Accelerated model scoring from 3 hours to less than 5 minutes, a 60x improvement.

L E A R N  M O R E

C H A P T E R  9: 
C U S T O M E R  
C A S E  S T U D Y

https://databricks.com/try-databricks?utm_source=big%20book%20of%20machine%20learning%20use%20case%20&utm_medium=website&utm_campaign=202007-AMER-EB-Big-Book-Of-Machine-Learning-Use-Cases
https://databricks.com/customers/nationwide
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Databricks has been an incredibly 
powerful end-to-end solution for us. 
It’s allowed a variety of different team 
members from different backgrounds to 
quickly get in and utilize large volumes 
of data to make actionable business 
decisions.

—   PA U L  F R Y Z E L 
Principal Engineer of AI Infrastructure at Condé Nast

Condé Nast is one of the world’s leading media companies, counting some of the most iconic magazine titles in its 
portfolio, including The New Yorker, Wired and Vogue. The company uses data to reach over 1 billion people in print, online, 
video and social media.

U S E  C A S E :  As a leading media publisher, Condé Nast manages over 20 brands in their portfolio. On a monthly basis, 
their web properties garner 100 million-plus visits and 800 million-plus page views, producing a tremendous amount of 
data. The data team is focused on improving user engagement by using machine learning to provide personalized content 
recommendations and targeted ads.

S O L U T I O N  A N D  B E N E F I T S :  Databricks provides Condé Nast with a fully managed cloud platform that simplifies 
operations, delivers superior performance and enables data science innovation.

•  I M P R O V E D  C U S T O M E R  E N G A G E M E N T:  With an improved data pipeline, Condé Nast can make better, faster and 
more accurate content recommendations, improving the user experience.

•  B U I LT  F O R  S C A L E :  Data sets can no longer outgrow Condé Nast ’s capacity to process and glean insights.

•  M O R E  M O D E L S  I N  P R O D U C T I O N:  With MLflow, Condé Nast ’s data science teams can innovate their products faster. 
They have deployed over 1,200 models in production.

L E A R N  M O R E

C H A P T E R  9: 
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Being on the Databricks platform has 
allowed a team of exclusively data 
scientists to make huge strides in 
setting aside all those configuration 
headaches that we were faced with. It’s 
dramatically improved our productivity.

—   J O S H  M c N U T T  Senior Vice President  
of Data Strategy and Consumer Analytics at SHOWTIME

SHOWTIME® is a premium television network and streaming service, featuring award-winning original series and original 
limited series like “Shameless,” “Homeland,” “Billions,” “The Chi,” “Ray Donovan,” “SMILF,” “The Affair,” “Patrick Melrose,”  
“Our Cartoon President,” “Twin Peaks” and more.

U S E  C A S E :  The Data Strategy team at SHOWTIME is focused on democratizing data and analytics across the 
organization. They collect huge volumes of subscriber data (e.g., shows watched, time of day, devices used, subscription 
history, etc.) and use machine learning to predict subscriber behavior and improve scheduling and programming.

S O L U T I O N  A N D  B E N E F I T S :  Databricks has helped SHOWTIME democratize data and machine learning across the 
organization, creating a more data-driven culture.

•  6 X  FA S T E R  P I P E L I N E S :  Data pipelines that took over 24 hours are now run in less than 4 hours, enabling teams  
to make decisions faster.

•  R E M O V I N G  I N F R A S T R U C T U R E  C O M P L E X I T Y:  Fully managed platform in the cloud with automated cluster 
management allows the data science team to focus on machine learning rather than hardware configurations, 
provisioning clusters, debugging, etc.

•  I N N O VAT I N G  T H E  S U B S C R I B E R  E X P E R I E N C E :  Improved data science collaboration and productivity has  
reduced time-to-market for new models and features. Teams can experiment faster, leading to a better, more 
personalized experience for subscribers.
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Databricks has produced an enormous 
amount of value for Shell. The inventory 
optimization tool [built on Databricks] 
was the first scaled up digital product 
that came out of my organization and 
the fact that it’s deployed globally means 
we’re now delivering millions of dollars 
of savings every year.

—   D A N I E L  J E AV O N S  
General Manager Advanced Analytics CoE at Shell

Shell is a recognized pioneer in oil and gas exploration and production technology and is one of the world’s leading oil  
and natural gas producers, gasoline and natural gas marketers and petrochemical manufacturers.

U S E  C A S E :  To maintain production, Shell stocks over 3,000 different spare parts across their global facilities. It ’s crucial 
the right parts are available at the right time to avoid outages, but equally important is not overstocking, which can be  
cost-prohibitive.

S O L U T I O N  A N D  B E N E F I T S :  Databricks provides Shell with a cloud-native unified analytics platform that helps with 
improved inventory and supply chain management.

•  P R E D I C T I V E  M O D E L I N G:  Scalable predictive model is developed and deployed across more than 3,000 types  
of materials at 50-plus locations.

•  H I S T O R I C A L  A N A LY S E S :  Each material model involves simulating 10,000 Markov Chain Monte Carlo iterations  
to capture historical distribution of issues.

•  M A S S I V E  P E R F O R M A N C E  G A I N S :  With a focus on improving performance, the data science team reduced  
the inventory analysis and prediction time to 45 minutes from 48 hours on a 50 node Apache Spark™ cluster on  
Databricks — a 32x performance gain.

•  R E D U C E D  E X P E N D I T U R E S :  Cost savings equivalent to millions of dollars per year.
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We wanted to free data scientists from 
managing clusters. Having an easy-
to-use, managed Spark solution in 
Databricks allows us to do this. Now 
our teams can focus on improving the 
gaming experience.

—   C O L I N  B O R Y S  
Data Scientist at Riot Games

Riot Games’ goal is to be the world’s most player-focused gaming company. Founded in 2006 and based in LA,  
Riot Games is best known for the League of Legends game. Over 100 million gamers play every month.

U S E  C A S E :  Improving gaming experience through network performance monitoring and combating in-game  
abusive language.

S O L U T I O N  A N D  B E N E F I T S :  Databricks allows Riot Games to improve the gaming experience of their players by 
providing scalable, fast analytics.

•  I M P R O V E D  I N - G A M E  P U R C H A S E  E X P E R I E N C E :  Able to rapidly build and productionize a recommendation  
engine that provides unique offers based on over 500B data points. Gamers can now more easily find the content  
they want.

•  R E D U C E D  G A M E  L A G:  Built ML model that detects network issues in real time, enabling Riot Games to avoid  
outages before they adversely impact players.

•  FA S T E R  A N A LY T I C S :  Increased processing performance of data preparation and exploration by 50% compared  
to EMR, significantly speeding up analyses.
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Databricks, through the power of 
Delta Lake and Structured Streaming, 
allows us to deliver alerts and 
recommendations to our customers with 
a very limited latency, so they’re able to 
react to problems or make adjustments 
within their home before it affects their 
comfort levels.

—   S T E P H E N  G A L S W O R T H Y  
Head of Data Science at Quby

Quby is the technology company behind Toon, the smart energy management device that gives people control over  
their energy usage, their comfort, the security of their homes and much more. Quby’s smart devices are in hundreds  
of thousands of homes across Europe. As such, they maintain Europe’s largest energy data set, consisting of petabytes 
of IoT data, collected from sensors on appliances throughout the home. With this data, they are on a mission to help 
their customers live more comfortable lives while reducing energy consumption through personalized energy usage 
recommendations.

U S E  C A S E :  Personalized energy use recommendations: Leverage machine learning and IoT data to power their Waste 
Checker app, which provides personalized recommendations to reduce in-home energy consumption.

S O L U T I O N  A N D  B E N E F I T S :  Databricks provides Quby with a Unified Data Analytics Platform that has fostered a 
scalable and collaborative environment across data science and engineering, allowing data teams to more quickly  
innovate and deliver ML-powered services to Quby’s customers.

•  L O W E R E D  C O S T S :  Cost-saving features provided by Databricks (such as auto-scaling clusters and Spot instances) 
have helped Quby significantly reduce the operational costs of managing infrastructure, while still being able to 
process large amounts of data.

•  FA S T E R  I N N O VAT I O N:  With their legacy architecture, moving from proof of concept to production took over 12 
months. Now with Databricks, the same process takes less than eight weeks. This enables Quby’s data teams to 
develop new ML-powered features for their customers much faster.

•  R E D U C E D  E N E R G Y  C O N S U M P T I O N:  Through their Waste Checker app, Quby has identified over 67 million kilowatt 
hours of energy that can be saved by leveraging their personalized recommendations.
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on a mission to help data teams solve the world’s toughest problems. 
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