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01
SECTION

Introduction to  
Data Engineering on Databricks



Organizations realize the value data plays as a strategic asset for various 
business-related initiatives, such as growing revenues, improving the customer 
experience, operating efficiently or improving a product or service. However, 
accessing and managing data for these initiatives has become increasingly 
complex. Most of the complexity has arisen with the explosion of data volumes 
and data types, with organizations amassing an estimated 80% of data in 
unstructured and semi-structured format. As the collection of data continues 
to increase, 73% of the data goes unused for analytics or decision-making. In 
order to try and decrease this percentage and make more data usable, data 
engineering teams are responsible for building data pipelines to efficiently and 
reliably deliver data. But the process of building these complex data pipelines 
comes with a number of difficulties: 

• In order to get data into a data lake, data engineers are required to  
spend immense time hand-coding repetitive data ingestion tasks 

• Since data platforms continuously change, data engineers  
spend time building and maintaining, and then rebuilding, complex  
scalable infrastructure

• With the increasing importance of real-time data, low latency data  
pipelines are required, which are even more difficult to build and maintain

• Finally, with all pipelines written, data engineers need to constantly  
focus on performance, tuning pipelines and architectures to meet SLAs  

How can Databricks help?

With the Databricks Lakehouse Platform, data engineers have access to an 
end-to-end data engineering solution for ingesting, transforming, processing, 
scheduling and delivering data. The Lakehouse Platform automates the 
complexity of building and maintaining pipelines and running ETL workloads 
directly on a data lake so data engineers can focus on quality and reliability to 
drive valuable insights.

Figure 1 
The Databricks Lakehouse Platform unifies your data, analytics and AI on one common platform for all your data use cases
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for data 
engineering 
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Key differentiators for successful data engineering  
with Databricks 

By simplifying on a lakehouse architecture, data engineers need an  
enterprise-grade and enterprise-ready approach to building data pipelines.  
To be successful, a data engineering solution team must embrace these eight 
key differentiating capabilities: 

Continuous or scheduled data ingestion 
With the ability to ingest petabytes of data with auto-evolving schemas, data 
engineers can deliver fast, reliable, scalable and automatic data for analytics, 
data science or machine learning. This includes:

• Incrementally and efficiently processing data as it arrives from files  
or streaming sources like Kafka, DBMS and NoSQL 

• Automatically inferring schema and detecting column changes  
for structured and unstructured data formats

• Automatically and efficiently tracking data as it arrives with no  
manual intervention 

• Preventing data loss by rescuing data columns

 

Declarative ETL pipelines 
Data engineers can reduce development time and effort and instead focus on 
implementing business logic and data quality checks within the data pipeline 
using SQL or Python. This can be achieved by: 

• Using intent-driven declarative development to simplify “how” and  
define “what” to solve

• Automatically creating high-quality lineage and managing table  
dependencies across the data pipeline

• Automatically checking for missing dependencies or syntax errors,  
and managing data pipeline recovery

 

Data quality validation and monitoring 
Improve data reliability throughout the data lakehouse so data teams can 
confidently trust the information for downstream initiatives by:

• Defining data quality and integrity controls within the pipeline with  
defined data expectations

• Addressing data quality errors with predefined policies (fail, drop,  
alert, quarantine)

• Leveraging the data quality metrics that are captured, tracked and  
reported for the entire data pipeline 
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Fault tolerant and automatic recovery 
Handle transient errors and recover from most common error conditions 
occurring during the operation of a pipeline with fast, scalable automatic 
recovery that includes: 

• Fault tolerant mechanisms to consistently recover the state of data

• The ability to automatically track progress from the source with 
checkpointing

• The ability to automatically recover and restore the data pipeline state

 

Data pipeline observability 
Monitor overall data pipeline status from a dataflow graph dashboard and 
visually track end-to-end pipeline health for performance, quality and latency. 
Data pipeline observability capabilities include: 

• A high-quality, high-fidelity lineage diagram that provides visibility  
into how data flows for impact analysis 

• Granular logging with performance and status of the data pipeline at  
a row level

• Continuous monitoring of data pipeline jobs to ensure continued operation

 

Batch and stream data processing 
Allow data engineers to tune data latency with cost controls without the  
need to know complex stream processing or implement recovery logic.  

• Execute data pipeline workloads on automatically provisioned elastic  
Apache Spark™-based compute clusters for scale and performance  

• Use performance optimization clusters that parallelize jobs and minimize  
data movement

 
Automatic deployments and operations 
Ensure reliable and predictable delivery of data for analytics and machine 
learning use cases by enabling easy and automatic data pipeline deployments 
and rollbacks to minimize downtime. Benefits include: 

• Complete, parameterized and automated deployment for the  
continuous delivery of data

• End-to-end orchestration, testing and monitoring of data pipeline  
deployment across all major cloud providers

 

Scheduled pipelines and workflows 
Simple, clear and reliable orchestration of data processing tasks for data and 
machine learning pipelines with the ability to run multiple non-interactive tasks 
as a directed acyclic graph (DAG) on a Databricks compute cluster.

• Easily orchestrate tasks in a DAG using the Databricks UI and API

• Create and manage multiple tasks in jobs via UI or API and features,  
such as email alerts for monitoring

• Orchestrate any task that has an API outside of Databricks and across  
all clouds 
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Conclusion 

As organizations strive to become data-driven, data engineering is a focal 
point for success. To deliver reliable, trustworthy data, data engineers shouldn’t 
need to spend time manually developing and maintaining an end-to-end ETL 
lifecycle. Data engineering teams need an efficient, scalable way to simplify ETL 
development, improve data reliability and manage operations.

As described, the eight key differentiating capabilities simplify the management 
of the ETL lifecycle by automating and maintaining all data dependencies,  
leveraging built-in quality controls with monitoring and providing deep visibility 
into pipeline operations with automatic recovery. Data engineering teams can 

now focus on easily and rapidly building reliable end-to-end production-ready 
data pipelines using only SQL or Python for batch and streaming that delivers 
high-value data for analytics, data science or machine learning. 

Use cases 

In the next section, we describe best practices for data engineering end-to-
end use cases drawn from real-world examples. From data ingestion and data 
processing to analytics and machine learning, you’ll learn how to translate raw 
data into actionable data. We’ll arm you with the data sets and code samples, so 
you can get your hands dirty as you explore all aspects of the data lifecycle on 
the Databricks Lakehouse Platform.

Figure 2 
Data engineering on Databricks reference architecture
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Real-Life Use Cases on the 
Databricks Lakehouse Platform

Real-Time Point-of-Sale Analytics With the Data Lakehouse

Building a Cybersecurity Lakehouse for CrowdStrike Falcon Events

Unlocking the Power of Health Data With a Modern Data Lakehouse

Timeliness and Reliability in the Transmission of Regulatory Reports

AML Solutions at Scale Using Databricks Lakehouse Platform

Build a Real-Time AI Model to Detect Toxic Behavior in Gaming 

Driving Transformation at Northwestern Mutual (Insights Platform)  
by Moving Toward a Scalable, Open Lakehouse Architecture

How Databricks Data Team Built a Lakehouse Across Three Clouds and 50+ Regions



Disruptions in the supply chain — from reduced product supply and diminished 
warehouse capacity — coupled with rapidly shifting consumer expectations for 
seamless omnichannel experiences are driving retailers to rethink how they use 
data to manage their operations. Prior to the pandemic, 71% of retailers named 
lack of real-time visibility into inventory as a top obstacle to achieving their 
omnichannel goals. The pandemic only increased demand for integrated online 
and in-store experiences, placing even more pressure on retailers to present 
accurate product availability and manage order changes on the fly. Better 
access to real-time information is the key to meeting consumer demands in 
the new normal.

In this blog, we’ll address the need for real-time data in retail, and how to 
overcome the challenges of moving real-time streaming of point-of-sale data  
at scale with a data lakehouse. 

The point-of-sale system

The point-of-sale (POS) system has long been the central piece of in-store 
infrastructure, recording the exchange of goods and services between retailer 
and customer. To sustain this exchange, the POS typically tracks product 

inventories and facilitates replenishment as unit counts dip below critical levels. 
The importance of the POS to in-store operations cannot be overstated, and as 
the system of record for sales and inventory operations, access to its data is of 
key interest to business analysts.

Historically, limited connectivity between individual stores and corporate offices 
meant the POS system (not just its terminal interfaces) physically resided within 
the store. During off-peak hours, these systems might phone home to transmit 
summary data, which when consolidated in a data warehouse, provide a day-old 
view of retail operations performance that grows increasingly stale until the start 
of the next night’s cycle.

SECTION 2 .1   Real-Time Point-of-Sale Analytics  
 With the Data Lakehouse

 by B R Y A N  S M I T H  and R O B  S A K E R

 September 9, 2021
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Figure 1 
Inventory availability with traditional, batch-oriented ETL patterns
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Modern connectivity improvements have enabled more retailers to move to a 
centralized, cloud-based POS system, while many others are developing near 
real-time integrations between in-store systems and the corporate back office. 
Near real-time availability of information means that retailers can continuously 
update their estimates of item availability. No longer is the business managing 
operations against their knowledge of inventory states as they were a day prior 
but instead is taking actions based on their knowledge of inventory states as 
they are now.

 
Near real-time insights

As impactful as near real-time insights into store activity are, the transition 
from nightly processes to continuous streaming of information brings particular 
challenges, not only for the data engineer, who must design a different kind of 
data processing workflow, but also for the information consumer. In this post, we  
 

share some lessons learned from customers who’ve recently embarked on this 
journey and examine how key patterns and capabilities available through the 
lakehouse pattern can enable success. 

L E S S O N  1 

Carefully consider scope

POS systems are often not limited to just sales and inventory management. 
Instead, they can provide a sprawling range of functionality, including payment 
processing, store credit management, billing and order placement, loyalty 
program management, employee scheduling, time-tracking and even payroll, 
making them a veritable Swiss Army knife of in-store functionality.

As a result, the data housed within the POS is typically spread across a large 
and complex database structure. If lucky, the POS solution makes a data access 
layer available, which makes this data accessible through more easily interpreted 
structures. But if not, the data engineer must sort through what can be an 
opaque set of tables to determine what is valuable and what is not.

Regardless of how the data is exposed, the classic guidance holds true: identify 
a compelling business justification for your solution and use that to limit the 
scope of the information assets you initially consume. Such a justification often 
comes from a strong business sponsor, who is tasked with addressing a specific 
business challenge and sees the availability of more timely information as critical 
to their success.

12 AM         2 AM         4 AM         6 AM         8 AM         10 AM         12 PM         2 PM         4 PM         6 PM         8 PM         10 PM         12 AM         2 AM         4 AM
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Figure 2 
Inventory availability with streaming ETL patterns
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To illustrate this, consider a key challenge for many retail organizations today: the 
enablement of omnichannel solutions. Such solutions, which enable buy-online, 
pickup in-store (BOPIS) and cross-store transactions, depend on reasonably 
accurate information about store inventory. If we were to limit our initial scope 
to this one need, the information requirements for our monitoring and analytics 
system become dramatically reduced. Once a real-time inventory solution is 
delivered and value is recognized by the business, we can expand our scope 
to consider other needs, such as promotions monitoring and fraud detection, 
expanding the breadth of information assets leveraged with each iteration.

 
L E S S O N  2 

Align transmission with patterns of data generation and time 
sensitivities

Different processes generate data differently within the POS. Sales transactions 
are likely to leave a trail of new records appended to relevant tables. Returns may 
follow multiple paths, triggering updates to past sales records, the insertion of 
new, reversing sales records and/or the insertion of new information in returns-
specific structures. Vendor documentation, tribal knowledge and even some 
independent investigative work may be required to uncover exactly how and 
where event-specific information lands within the POS.

Understanding these patterns can help build a data transmission strategy for 
specific kinds of information. Higher frequency, finer-grained, insert-oriented 
patterns may be ideally suited for continuous streaming. Less frequent, 
larger-scale events may best align with batch-oriented, bulk data styles of 
transmission. But if these modes of data transmission represent two ends of a 
spectrum, you are likely to find most events captured by the POS fall somewhere 
in between.

The beauty of the data lakehouse approach to data architecture is that multiple 
modes of data transmission can be employed in parallel. For data naturally 
aligned with the continuous transmission, streaming may be employed. For 
data better aligned with bulk transmission, batch processes may be used. And 
for those data falling in the middle, you can focus on the timeliness of the data 
required for decision-making and allow that to dictate the path forward. All of 
these modes can be tackled with a consistent approach to ETL implementation, 
a challenge that thwarted many earlier implementations of what were frequently 
referred to as lambda architectures.
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L E S S O N  3 
Land the data in stages

Data arrives from the in-store POS systems with different frequencies, 
formats and expectations for timely availability. Leveraging the Bronze, Silver 
& Gold design pattern popular within lakehouses, you can separate initial 
cleansing, reformatting and persistence of the data from the more complex 
transformations required for specific business-aligned deliverables.

L E S S O N  4 
Manage expectations

The move to near real-time analytics requires an organizational shift. Gartner 
describes this through their Streaming Analytics Maturity model within which 
analysis of streaming data becomes integrated into the fabric of day-to-day 
operations. This does not happen overnight.

Instead, data engineers need time to recognize the challenges inherent to 
streaming delivery from physical store locations into a centralized, cloud-based 
back office. Improvements in connectivity and system reliability coupled with 
increasingly robust ETL workflows land data with greater timeliness, reliability and 
consistency. This often entails enhancing partnerships with systems engineers and 
application developers to support a level of integration not typically present in the 
days of batch-only ETL workflows.

Business analysts will need to become familiar with the inherent noisiness of data 
being updated continuously. They will need to relearn how to perform diagnostic 
and validation work on a data set, such as when a query that ran seconds prior 
now returns a slightly different result. They must gain a deeper awareness of the 
problems in the data which are often hidden when presented in daily aggregates. 
All of this will require adjustments both to their analysis and their response to 
detected signals in their results.Figure 3 

A data lakehouse architecture for the calculation of current inventory leveraging the Bronze, Silver and Gold pattern 
of data persistence
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All of this takes place in just the first few stages of maturation. In later stages,  
the organization’s ability to detect meaningful signals within the stream may lead 
to more automated sense and response capabilities. Here, the highest levels of 
value in the data streams are unlocked. But monitoring and governance must  
be put into place and proven before the business will entrust its operations to 
these technologies. 

Implementing POS streaming

To illustrate how the lakehouse architecture can be applied to POS data, we’ve 
developed a demonstration workflow within which we calculate a near real-time 
inventory. In it, we envision two separate POS systems transmitting inventory-
relevant information associated with sales, restocks and shrinkage data along 
with buy-online, pickup in-store (BOPIS) transactions (initiated in one system 
and fulfilled in the other) as part of a streaming inventory change feed. Periodic 
(snapshot) counts of product units on-shelf are captured by the POS and 
transmitted in bulk. These data are simulated for a one-month period and played 
back at 10x speed for greater visibility into inventory changes.

The ETL processes (as pictured in Figure 3) represent a mixture of streaming 
and batch techniques. A two-staged approach with minimally transformed 
data captured in Delta tables representing our Silver layer separates our 
initial, more technically aligned ETL approach with the more business-aligned 
approach required for current inventory calculations. The second stage has been 
implemented using traditional structured streaming capabilities, something 
we may revisit with the new Delta Live Tables functionality as it makes its way 
toward general availability.

The demonstration makes use of Azure IOT Hubs and Azure Storage for data 
ingestion but would work similarly on the AWS and GCP clouds with appropriate 
technology substitutions. 

•  POS 01: Environment Setup

•  POS 02: Data Generation

•  POS 03: Ingest ETL

•  POS 04: Current Inventory

Start experimenting with these free Databricks notebooks
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Endpoint data is required by security teams for threat detection, threat hunting, 
incident investigations and to meet compliance requirements. The data volumes 
can be terabytes per day or petabytes per year. Most organizations struggle to 
collect, store and analyze endpoint logs because of the costs and complexities 
associated with such large data volumes. But it doesn’t have to be this way.

In this two-part blog series, we will cover how you can operationalize petabytes 
of endpoint data with Databricks to improve your security posture with 
advanced analytics in a cost-effective way. Part 1 (this blog) will cover the 
architecture of data collection and the integration with a SIEM (Splunk). At the 
end of this blog, with notebooks provided, you will be ready to use the data for 
analysis. Part 2 will discuss specific use cases, how to create ML models and 
automated enrichments and analytics. At the end of part 2, you will be able to 
implement the notebooks to detect and investigate threats using endpoint data.

We will use CrowdStrike’s Falcon logs as our example. To access Falcon logs, 
one can use the Falcon Data Replicator (FDR) to push raw event data from 
CrowdStrike’s platform to cloud storage such as Amazon S3. This data can be 
ingested, transformed, analyzed and stored using the Databricks Lakehouse 
Platform alongside the rest of their security telemetry. Customers can ingest  
 

CrowdStrike Falcon data, apply Python-based real-time detections, search 
through historical data with Databricks SQL, and query from SIEM tools like 
Splunk with Databricks Add-on for Splunk. 

Challenge of operationalizing CrowdStrike data

Although the CrowdStrike Falcon data offers comprehensive event logging 
details, it is a daunting task to ingest, process and operationalize complex and 
large volumes of cybersecurity data on a near real-time basis in a cost-effective 
manner. These are a few of the well-known challenges:

• Real-time data ingestion at scale: It is difficult to keep track of processed  
and unprocessed raw data files, which are written by FDR on cloud storage 
in near real time.

• Complex transformations: The data format is semi-structured. Every line 
of each log file contains hundreds of underministically different types of 
payloads, and the structure of event data can change over time.

• Data governance: This kind of data can be sensitive, and access must be 
gated to only users who need it.

SECTION 2 . 2   Building a Cybersecurity Lakehouse  
 for CrowdStrike Falcon Events

 by A E M R O  A M A R E ,  A R U N  P A M U L A P A T I ,  

 Y O N G  S H E N G  H U A N G  and J A S O N  P O H L

 May 20, 2021
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• Simplified security analytics end-to-end: Scalable tools are needed to 
do the data engineering, ML and analysis on these fast-moving and high-
volume data sets.

• Collaboration: Effective collaboration can leverage domain expertise from 
the data engineers, cybersecurity analysts and ML engineers. Thus, having a 
collaborative platform improves the efficiency of cybersecurity analysis and 
response workloads.

As a result, security engineers across enterprises find themselves in a difficult 
situation, struggling to manage cost and operational efficiency. They either 
have to accept being locked into very expensive proprietary systems or spend 
tremendous effort to build their own endpoint security tools while fighting for 
scalability and performance. 

Databricks cybersecurity lakehouse

Databricks offers security teams and data scientists a new hope to perform their 
jobs efficiently and effectively, as well as a set of tools to combat the growing 
challenges of big data and sophisticated threats.

Lakehouse, an open architecture that combines the best elements of data 
lakes and data warehouses, simplifies building a multi-hop data engineering 

pipeline that progressively adds structure to the data. The benefit of a multi-hop 
architecture is that data engineers can build a pipeline that begins with  
raw data as a “single source of truth” from which everything flows. CrowdStrike’s 
semi-structured raw data can be stored for years, and subsequent 
transformations and aggregations can be done in an end-to-end streaming 
fashion to refine the data and introduce context-specific structure to analyze 
and detect security risks in different scenarios.

• Data ingestion: Auto Loader (AWS | Azure | GCP) helps to immediately  
read data as soon as a new file is written by CrowdStrike FDR into raw data 
storage. It leverages cloud notification services to incrementally process 
new files as they arrive on the cloud. Auto Loader also automatically 
configures and listens to the notification service for new files and can  
scale up to millions of files per second.

• Unified stream and batch processing: Delta Lake is an open approach to  
bringing data management and governance to data lakes that leverages the 
distributed computation power of Apache Spark™ for huge volumes of data  
and metadata. Databricks Delta Engine is a highly optimized engine that can  
process millions of records per second.

• Data governance: With Databricks Table Access Control (AWS | Azure | 
GCP), admins can grant different levels of access to Delta tables based on a 
user’s business function.
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• Security analysis tools: Databricks SQL helps to create an interactive  
dashboard with automatic alerting when unusual patterns are detected.  
Likewise, it can easily integrate with highly adopted BI tools such as Tableau, 
Microsoft Power BI and Looker.

• Collaboration on Databricks notebooks: Databricks collaborative 
notebooks enable security teams to collaborate in real time. Multiple 
users can run queries in multiple languages, share visualizations and make 
comments within the same workspace to keep investigations moving 
forward without interruption. 

Lakehouse architecture for CrowdStrike Falcon data

We recommend the following lakehouse architecture for cybersecurity 
workloads, such as CrowdStrike’s Falcon data. Auto Loader and Delta Lake 
simplify the process of reading raw data from cloud storage and writing to a 
Delta table at low cost and with minimal DevOps work.

In this architecture, semi-structured CrowdStrike data is loaded to the customer’s 
cloud storage in the landing zone. Then Auto Loader uses cloud notification 
services to automatically trigger the processing and ingestion of new files into 
the customer’s Bronze tables, which will act as the single source of truth for all 
downstream jobs. Auto Loader will track processed and unprocessed files using 
checkpoints in order to prevent duplicate data processing.

 
 
 
 
 
 
 

 
 
 

As we move from the Bronze to the Silver stage, schema will be added to provide 
structure to the data. Since we are reading from a single source of truth, we are 
able to process all of the different event types and enforce the correct schema as 
they are written to their respective tables. The ability to enforce schemas at the 
Silver layer provides a solid foundation for building ML and analytical workloads.

The Gold stage, which aggregates data for faster query and performance in 
dashboards and BI tools, is optional, depending on the use case and data 
volumes. Alerts can be set to trigger when unexpected trends are observed.

Figure 1 
Lakehouse architecture for CrowdStrike Falcon data
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Raw Data

Staging Zone:  
Technically Standardized Data

Common Data Model:  
Shareable Assets

Integration:  
Connect With Cloud Technologies
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Will contain prepared tables/views of the 
enterprise data in standard agreed taxonomy.

MLflow: 
Full-cycle machine learning

Manage basic data standardization, formatting to 
have it ready for consumption by other zones.

Designated for accepting source data in  
“Original Fidelity” format.

Auto Loader
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Another optional feature is the Databricks Add-on for Splunk, which allows 
security teams to take advantage of Databricks cost-effective model and the 
power of AI without having to leave the comforts of Splunk. Customers can run 
ad hoc queries against Databricks from within a Splunk dashboard or search bar 
with the add-on. Users can also launch notebooks or jobs in Databricks through 
a Splunk dashboard or in response to a Splunk search. The Databricks integration 
is bidirectional, letting customers summarize noisy data or run detections in 
Databricks that show up in Splunk Enterprise Security. Customers can even 
run Splunk searches from within a Databricks notebook to prevent the need to 
duplicate data.

The Splunk and Databricks integration allows customers to reduce costs, expand 
the data sources they analyze and provide the results of a more robust analytics 
engine, all without changing the tools used by their staff day-to-day. 

Code walkthrough

Since Auto Loader abstracts the most complex part of file-based data ingestion, 
a raw-to-Bronze ingestion pipeline can be created within a few lines of code. 
Below is a Scala code example for a Delta ingestion pipeline. CrowdStrike Falcon 
event records have one common field name: “event_simpleName.”

val crowdstrikeStream = spark.readStream
  .format(“cloudFiles”)
  .option(“cloudFiles.format”, “text”)    // text file doesn’t need schema 
  .option(“cloudFiles.region”, “us-west-2”)
  .option(“cloudFiles.useNotifications”, “true”)  
  .load(rawDataSource)
  .withColumn(“load_timestamp”, current_timestamp())
  .withColumn(“load_date”, to_date($”load_timestamp”))
  .withColumn(“eventType”, from_json($”value”, “struct”, Map.empty[String, String]))     
.selectExpr(“eventType.event_simpleName”,”load_date”,”load_timestamp”, “value” )
  .writeStream
  .format(“delta”)
  .option(“checkpointLocation”, checkPointLocation)
  .table(“demo_bronze.crowdstrike”) 

 
In the raw-to-Bronze layer, only the event name is extracted from the raw data. 
By adding a load timestamp and date columns, users store the raw data into the 
Bronze table. The Bronze table is partitioned by event name and load date, which 
helps to make Bronze-to-Silver jobs more performant, especially when there 
is interest for a limited number of event date ranges. Next, a Bronze-to-Silver 
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streaming job reads events from a Bronze table, enforces a schema and writes 
to hundreds of event tables based on the event name. Below is a Scala code 
example:

spark
  .readStream
  .option(“ignoreChanges”, “true”)
  .option(“maxBytesPerTrigger”, “2g”)
  .option(“maxFilesPerTrigger”, “64”)
  .format(“delta”)
  .load(bronzeTableLocation)
  .filter($”event_simpleName” === “event_name”)
  .withColumn(“event”, from_json($”value”, schema_of_json(sampleJson)) )
  .select($”event.*”, $”load_timestamp”, $”load_date”)
  .withColumn(“silver_timestamp”, current_timestamp())
  .writeStream
  .format(“delta”)
  .outputMode(“append”)
  .option(“mergeSchema”, “true”)    
  .option(“checkpointLocation”, checkPoint)
  .option(“path”, tableLocation)   
  .start()

 
Each event schema can be stored in a schema registry or in a Delta table in 
case a schema needs to be shared across multiple data-driven services. Note 
that the above code uses a sample JSON string read from the Bronze table, 
and the schema is inferred from the JSON using schema_of_json(). Later, 
the JSON string is converted to a struct using from_json(). Then, the struct is 
flattened, prompting the addition of a timestamp column. These steps provide 
a DataFrame with all the required columns to be appended to an event table. 
Finally, we write this structured data to an event table with append mode.

It is also possible to fan out events to multiple tables with one stream with 
foreachBatch by defining a function that will handle microbatches. Using 
foreachBatch(), it is possible to reuse existing batch data sources for filtering 
and writing to multiple tables. However, foreachBatch() provides only at-least-
once write guarantees. So, a manual implementation is needed to enforce 
exactly-once semantics.

At this stage, the structured data can be queried with any of the languages 
supported in Databricks notebooks and jobs: Python, R, Scala and SQL. The Silver 
layer data is convenient to use for ML and cyberattack analysis.

The next streaming pipeline would be Silver-to-Gold. In this stage, it is possible 
to aggregate data for dashboarding and alerting. In the second part of this blog 
series we will provide some more insights into how we build dashboards using 
Databricks SQL. 

What’s next

Stay tuned for more blog posts that build even more value on this use case by 
applying ML and using Databricks SQL.

You can use these notebooks in your own Databricks deployment. Each section 
of the notebooks has comments. We invite you to email us at cybersecurity@
databricks.com. We look forward to your questions and suggestions for making 
this notebook easier to understand and deploy.

Start experimenting with these 
free Databricks notebooks. 
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How to overcome the challenges of data  
warehouses and data lakes in the healthcare and  
life sciences industries 

A single patient produces approximately 80 megabytes of medical data every 
year. Multiply that across thousands of patients over their lifetime, and you’re 
looking at petabytes of patient data that contains valuable insights. Unlocking 
these insights can help streamline clinical operations, accelerate drug R&D and 
improve patient health outcomes. But first, the data needs to be prepared for 
downstream analytics and AI. Unfortunately, most healthcare and life sciences 
organizations spend an inordinate amount of time simply gathering, cleaning and 
structuring their data.

SECTION 2 .3   Unlocking the Power of Health Data  
 With a Modern Data Lakehouse

 by M I C H A E L  O R T E G A ,  M I C H A E L  S A N K Y  and A M I R  K E R M A N Y

 July 19, 2021

Figure 1
Health data is growing exponentially, with a single patient producing over 80 megabytes of data a year

A single patient produces 80+ megabytes of medical data every year
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Challenges with data analytics in healthcare and  
life sciences

There are lots of reasons why data preparation, analytics and AI are challenges 
for organizations in the healthcare industry, but many are related to investments 
in legacy data architectures built on data warehouses. Here are the four most 
common challenges we see in the industry:

C H A L L E N G E  # 1 :  V O L U M E 
Scaling for rapidly growing health data

Genomics is perhaps the single best example of the explosive growth in data 
volume in healthcare. The first genome cost more than $1B to sequence. Given 
the prohibitive costs, early efforts (and many efforts still) focused on genotyping, 
a process to look for specific variants in a very small fraction of a person’s 
genome, typically around 0.1%. That evolved to Whole Exome Sequencing, which 
covers the protein coding portions of the genome, still less than 2% of the entire 
genome. Companies now offer direct-to-consumer tests for Whole Genome 
Sequencing (WGS) that are less than $300 for 30x WGS. On a population level, 
the UK Biobank is releasing more than 200,000 whole genomes for research this 
year.  It’s not just genomics. Imaging, health wearables and electronic medical 
records are growing tremendously as well.

Scale is the name of the game for initiatives like population health analytics and 
drug discovery. Unfortunately, many legacy architectures are built on-premises 
and designed for peak capacity. This approach results in unused compute power 
(and ultimately wasted dollars) during periods of low usage and doesn’t scale 
quickly when upgrades are needed. 

C H A L L E N G E  # 2 :  VA R I E T Y 
Analyzing diverse health data

Healthcare and life sciences organizations deal with a tremendous amount of 
data variety, each with its own nuances. It is widely accepted that over 80% of 
medical data is unstructured, yet most organizations still focus their attention 
on data warehouses designed for structured data and traditional SQL-based 
analytics. Unstructured data includes image data, which is critical to diagnose 
and measure disease progression in areas like oncology, immunology and 
neurology (the fastest growing areas of cost), and narrative text in clinical notes, 
which are critical to understanding the complete patient health and social 
history. Ignoring these data types, or setting them to the side, is not an option.

To further complicate matters, the healthcare ecosystem is becoming more 
interconnected, requiring stakeholders to grapple with new data types. For 
example, providers need claims data to manage and adjudicate risk-sharing 
agreements, and payers need clinical data to support processes like prior 
authorizations and to drive quality measures. These organizations often lack data 
architectures and platforms to support these new data types.

Some organizations have invested in data lakes to support unstructured data 
and advanced analytics, but this creates a new set of issues. In this environment, 
data teams now need to manage two systems — data warehouses and data 
lakes — where data is copied across siloed tools, resulting in data quality and 
management issues. 
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C H A L L E N G E  # 3 :  V E L O C I T Y 
Processing streaming data for real-time patient insights

In many settings, healthcare is a matter of life and death. Conditions can be 
very dynamic, and batch data processing — done even on a daily basis — often 
is not good enough. Access to the latest, up-to-the-second information is 
critical to successful interventional care. To save lives, streaming data is used by 
hospitals and national health systems for everything from predicting sepsis to 
implementing real-time demand forecasting for ICU beds.

Additionally, data velocity is a major component of the healthcare digital 
revolution. Individuals have access to more information than ever before and are 
able to influence their care in real time. For example, wearable devices — like the 
continuous glucose monitors provided by Livongo — stream real-time data into 
mobile apps that provide personalized behavioral recommendations.

Despite some of these early successes, most organizations have not designed 
their data architecture to accommodate streaming data velocity. Reliability issues 
and challenges integrating real-time data with historic data is inhibiting innovation. 

 
 
 

C H A L L E N G E  # : 4  V E R A C I T Y 

Building trust in healthcare data and AI

Last, but not least, clinical and regulatory standards demand the utmost level 
of data accuracy in healthcare. Healthcare organizations have high public 
health compliance requirements that must be met. Data democratization within 
organizations requires governance.

Additionally, organizations need good model governance when bringing artificial 
intelligence (AI) and machine learning (ML) into a clinical setting. Unfortunately, 
most organizations have separate platforms for data science workflows that are 
disconnected from their data warehouse. This creates serious challenges when 
trying to build trust and reproducibility in AI-powered applications. 

Unlocking health data with a lakehouse

The lakehouse architecture helps healthcare and life sciences organizations 
overcome these challenges with a modern data architecture that combines the 
low cost, scalability and flexibility of a cloud data lake with the performance and 
governance of a data warehouse. With a lakehouse, organizations can store all 
types of data and power all types of analytics and ML in an open environment.
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Specifically, the lakehouse provides the following benefits for healthcare and life 
sciences organizations:

• Organize all your health data at scale. At the core of the Databricks 
Lakehouse Platform is Delta Lake, an open-source data management 
layer that provides reliability and performance to your data lake. Unlike a 
traditional data warehouse, Delta Lake supports all types of structured and 
unstructured data, and to make ingesting health data easy, Databricks has 
built connectors for domain-specific data types like electronic medical 
records and genomics. These connectors come packaged with industry-
standard data models in a set of quick-start Solution Accelerators. 
Additionally, Delta Lake provides built-in optimizations for data caching and 

indexing to significantly accelerate data processing speeds. With these 
capabilities, teams can land all their raw data in a single place and then 
curate it to create a holistic view of patient health.

• Power all your patient analytics and AI. With all your data centralized in 
a lakehouse, teams can build powerful patient analytics and predictive 
models directly on the data. To build on these capabilities, Databricks 
provides collaborative workspaces with a full suite of analytics and AI tools 
and support for a broad set of programming languages — such as SQL, 
R, Python and Scala. This empowers a diverse group of users, like data 
scientists, engineers and clinical informaticists, to work together to analyze, 
model and visualize all your health data.

Figure 2 
Deliver on all your healthcare and life sciences data analytics use cases with a modern lakehouse architecture

Building a Lakehouse for Healthcare and Life Sciences

Process, manage and query all of 
your data in real time

Full suite of analytics and ML tools 
with tracking and management

Ad Hoc 
Data Science

Production 
Machine Learning

BI Reporting and 
Dashboards
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• Provide real-time patient insights. The lakehouse provides a unified 
architecture for streaming and batch data. No need to support two different 
architectures nor wrestle with reliability issues. Additionally, by running the 
lakehouse architecture on Databricks, organizations have access to a cloud-
native platform that auto-scales based on workload. This makes it easy to 
ingest streaming data and blend with petabytes of historic data for near 
real-time insights at population scale.

• Deliver data quality and compliance. To address data veracity, the 
lakehouse includes capabilities missing from traditional data lakes like 
schema enforcement, auditing, versioning and fine-grained access controls. 
An important benefit of the lakehouse is the ability to perform both 
analytics and ML on this same, trusted data source. Additionally, Databricks 
provides ML model tracking and management capabilities to make it 
easy for teams to reproduce results across environments and help meet 
compliance standards. All of these capabilities are provided in a HIPAA-
compliant analytics environment.

This lakehouse is the best architecture for managing healthcare and life 
sciences data. By marrying this architecture with the capabilities of Databricks, 
organizations can support a wide range of highly impactful use cases, from drug 
discovery through chronic disease management programs. 

Get started building your lakehouse for healthcare  
and life sciences

As mentioned above, we are pleased to make available a series of Solution 
Accelerators to help healthcare and life sciences organizations get started 
building a lakehouse for their specific needs. Our Solution Accelerators  
include sample data, prebuilt code and step-by-step instructions within a 
Databricks notebook.

New Solution Accelerator: Lakehouse for Real-World Evidence. Real-world 
data provides pharmaceutical companies with new insights into patient health 
and drug efficacy outside of a trial. This accelerator helps you build a Lakehouse 
for Real-World Evidence on Databricks. We’ll show you how to ingest sample 
EHR data for a patient population, structure the data using the OMOP common 
data model and then run analyses at scale for challenges like investigating drug 
prescription patterns.

Learn more about all of our Healthcare and Life Sciences solutions.

Start experimenting with these 
free Databricks notebooks. 
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Managing risk and regulatory compliance is an increasingly complex and costly 
endeavor. Regulatory change has increased 500% since the 2008 global financial 
crisis and boosted the regulatory costs in the process. Given the fines associated 
with non-compliance and SLA breaches (banks hit an all-time high in fines of 
$10 billion in 2019 for AML), processing reports has to proceed even if data is 
incomplete. On the other hand, a track record of poor data quality is also fined 
because of “insufficient controls.” As a consequence, many financial services 
institutions (FSIs) are often left battling between poor data quality and strict SLAs, 
balancing between data reliability and data timeliness.

In this regulatory reporting Solution Accelerator, we demonstrate how Delta 
Live Tables can guarantee the acquisition and processing of regulatory data in 
real time to accommodate regulatory SLAs. With Delta Sharing and Delta Live 
Tables combined, analysts gain real-time confidence in the quality of regulatory 
data being transmitted. In this blog post, we demonstrate the benefits of the 
lakehouse architecture to combine financial services industry data models with 
the flexibility of cloud computing to enable high governance standards with low 
development overhead. We will now explain what a FIRE data model is and how 
Delta Live Tables can be integrated to build robust data pipelines. 

FIRE data model

The Financial Regulatory data standard (FIRE) defines a common specification 
for the transmission of granular data between regulatory systems in finance. 
Regulatory data refers to data that underlies regulatory submissions, 
requirements and calculations and is used for policy, monitoring and supervision 
purposes. The FIRE data standard is supported by the European Commission, 
the Open Data Institute and the Open Data Incubator FIRE data standard for 
Europe via the Horizon 2020 funding program. As part of this solution, we 
contributed a PySpark module that can interpret FIRE data models into Apache 
Spark™ operating pipelines.

SECTION 2 .4   Timeliness and Reliability in the   
 Transmission of Regulatory Reports

 by A N T O I N E  A M E N D  and F A H M I D  K A B I R

 September 17, 2021
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Delta Live Tables

Databricks recently announced a new product for data pipelines orchestration, 
Delta Live Tables, which makes it easy to build and manage reliable data 
pipelines at enterprise scale. With the ability to evaluate multiple expectations, 
discard or monitor invalid records in real time, the benefits of integrating the 
FIRE data model on Delta Live Tables are obvious. As illustrated in the following 
architecture, Delta Live Tables will ingest granular regulatory data landing onto 
cloud storage, schematize content and validate records for consistency in line 
with the FIRE data specification. Keep reading to see us demo the use of Delta 
Sharing to exchange granular information between regulatory systems in a safe, 
scalable and transparent manner. 

Enforcing schema

Even though some data formats may “look” structured (e.g., JSON files), enforcing 
a schema is not just a good engineering practice; in enterprise settings, 
and especially in the space of regulatory compliance, schema enforcement 
guarantees any missing field to be expected, unexpected fields to be discarded 
and data types to be fully evaluated (e.g., a date should be treated as a date 
object and not a string). It also proof-tests your systems for eventual data drift. 
Using the FIRE PySpark module, we programmatically retrieve the Spark schema 
required to process a given FIRE entity (collateral entity in that example) that we 
apply on a stream of raw records.

from fire.spark import FireModel
fire_model = FireModel().load(“collateral”)
fire_schema = fire_model.schema

 
In the example below, we enforce schema to incoming CSV files. By decorating this 
process using @dlt annotation, we define our entry point to our Delta Live Table, 
reading raw CSV files from a mounted directory and writing schematized records 
to a Bronze layer.

@dlt.create_table()
def collateral_bronze():
  return (
    spark
      .readStream
      .option(“maxFilesPerTrigger”, “1”)
      .option(“badRecordsPath”, “/path/to/invalid/collateral”)
      .format(“csv”)
      .schema(fire_schema)
      .load(“/path/to/raw/collateral”)

D E LTA  L I V E  TA B L E SDATA  S O U R C E S I N G E ST S E RV E
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Evaluating expectations

Applying a schema is one thing, enforcing its constraints is another. Given 
the schema definition of a FIRE entity (see example of the collateral schema 
definition), we can detect if a field is required or not. Given an enumeration 
object, we ensure its values are consistent (e.g., currency code). In addition to 
the technical constraints from the schema, the FIRE model also reports business 
expectations, such as minimum, maximum, monetary and maxItems. All these 
technical and business constraints will be programmatically retrieved from the 
FIRE data model and interpreted as a series of Spark SQL expressions.

from fire.spark import FireModel
fire_model = FireModel().load(“collateral”)
fire_constraints = fire_model.constraints

 
With Delta Live Tables, users have the ability to evaluate multiple expectations at 
once, enabling them to drop invalid records, simply monitor data quality or abort 
an entire pipeline. In our specific scenario, we want to drop records failing any of 
our expectations, which we later store to a quarantine table, as reported in the 
notebooks provided in this blog.

@dlt.create_table()
@dlt.expect_all_or_drop(fire_constraints)
def collateral_silver():
  return dlt.read_stream(“collateral_bronze”)

 

 
 
With only a few lines of code, we ensured that our Silver table is both syntactically 
(valid schema) and semantically (valid expectations) correct. As shown below, 
compliance officers have full visibility around the number of records being 
processed in real time. In this specific example, we ensured our collateral entity to 
be exactly 92.2% complete (quarantine handles the remaining 7.8%).

Figure 2
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Operations data store

In addition to the actual data stored as Delta files, Delta Live Tables also stores 
operation metrics as “delta” format under system/events. We follow a standard 
pattern of the lakehouse architecture by “subscribing” to new operational 
metrics using Auto Loader, processing system events as new metrics unfold — in 
batch or in real time. Thanks to the transaction log of Delta Lake that keeps track 
of any data update, organizations can access new metrics without having to 
build and maintain their own checkpointing process.

input_stream = spark \
    .readStream \
    .format(“delta”) \
    .load(“/path/to/pipeline/system/events”)
      
output_stream = extract_metrics(input_stream)
    
output_stream \
    .writeStream \
    .format(“delta”) \
    .option(“checkpointLocation”, “/path/to/checkpoint”) \
    .table(metrics_table)

 
With all metrics available centrally into an operation store, analysts can use 
Databricks SQL to create simple dashboarding capabilities or more complex 
alerting mechanisms to detect data quality issues in real time.

 

 
 
The immutability aspect of the Delta Lake format coupled with the 
transparency in data quality offered by Delta Live Tables allows financial 
institutions to “time travel” to specific versions of their data that matches 
both volume and quality required for regulatory compliance. In our specific 
example, replaying our 7.8% of invalid records stored in quarantine will result 
in a different Delta version attached to our Silver table, a version that can be 
shared amongst regulatory bodies.

DESCRIBE HISTORY fire.collateral_silver

Figure 3
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Transmission of regulatory data

With full confidence in both data quality and volume, financial institutions can 
safely exchange information between regulatory systems using Delta Sharing, an 
open protocol for enterprise data exchange. Not constraining end users to the 
same platform nor relying on complex ETL pipelines to consume data (accessing 
data files through an SFTP server, for instance), the open source nature of Delta 
Lake makes it possible for data consumers to access schematized data natively 
from Python, Spark or directly through MI/BI dashboards (such as Tableau or 
Power BI).

Although we could be sharing our Silver table as is, we may want to use business 
rules that only share regulatory data when a predefined data quality threshold 
is met. In this example, we clone our Silver table at a different version and to a 
specific location segregated from our internal networks and accessible by end 
users (demilitarized zone, or DMZ).

from delta.tables import *

deltaTable = DeltaTable.forName(spark, “fire.collateral_silver”)
deltaTable.cloneAtVersion(
  approved_version, 
  dmz_path, 
  isShallow=False, 
  replace=True
)

spark.sql(
  “CREATE TABLE fire.colleral_gold USING DELTA LOCATION ‘{}’”
    .format(dmz_path)
)

 
 
Although the Delta Sharing open source solution relies on a sharing server  
to manage permission, Databricks leverages Unity Catalog to centralize and 
enforce access control policies, provide users with full audit logs capability and 
simplify access management through its SQL interface. In the example below, we 
create a SHARE that includes our regulatory tables and a RECIPIENT to share our 
data with.

-- DEFINE OUR SHARING STRATEGY
CREATE SHARE regulatory_reports;

ALTER SHARE regulatory_reports ADD TABLE fire.collateral_gold;
ALTER SHARE regulatory_reports ADD TABLE fire.loan_gold;
ALTER SHARE regulatory_reports ADD TABLE fire.security_gold;
ALTER SHARE regulatory_reports ADD TABLE fire.derivative_gold;

-- CREATE RECIPIENTS AND GRANT SELECT ACCESS
CREATE RECIPIENT regulatory_body;

GRANT SELECT ON SHARE regulatory_reports TO RECIPIENT regulatory_body;

 
Any regulator or user with granted permissions can access our underlying 
data using a personal access token exchanged through that process. For more 
information about Delta Sharing, please visit our product page and contact your 
Databricks representative.
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Proof-test your compliance

Through this series of notebooks and Delta Live Tables jobs, we demonstrated 
the benefits of the lakehouse architecture in the ingestion, processing, 
validation and transmission of regulatory data. Specifically, we addressed 
the need for organizations to ensure consistency, integrity and timeliness of 
regulatory pipelines that could be easily achieved using a common data model 
(FIRE) coupled with a flexible orchestration engine (Delta Live Tables). With 
Delta Sharing capabilities, we finally demonstrated how FSIs could bring full 
transparency and confidence to the regulatory data exchanged between various 
regulatory systems while meeting reporting requirements, reducing operation 
costs and adapting to new standards. 
 
Get familiar with the FIRE data pipeline using the attached notebooks and  
visit our Solution Accelerators Hub to get up to date with our latest solutions  
for financial services.

Start experimenting with these 
free Databricks notebooks. 
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Solving the key challenges to building a financial  
crimes solution

Anti-money laundering (AML) compliance has been undoubtedly one of the top 
agenda items for regulators providing oversight of financial institutions across 
the globe. As AML evolved and became more sophisticated over the decades, so 
have the regulatory requirements designed to counter modern money laundering 
and terrorist financing schemes. The Bank Secrecy Act of 1970 provided 
guidance and framework for financial institutions to put in proper controls to 
monitor financial transactions and report suspicious fiscal activity to relevant 
authorities. This law provided the framework for how financial institutes combat 
money laundering and financial terrorism. 

Why anti-money laundering is so complex

Current AML operations bear little resemblance to those of the last decade. 
The shift to digital banking, with financial institutions (FIs) processing billions 
of transactions daily, has resulted in the ever increasing scope of money 
laundering, even with stricter transaction monitoring systems and robust Know 

Your Customer (KYC) solutions. In this blog, we share our experiences working 
with our FI customers to build enterprise-scale AML solutions on the lakehouse 
platform that both provides strong oversight and delivers innovative, scalable 
solutions to adapt to the reality of modern online money laundering threats. 

Building an AML solution with lakehouse

The operational burden of processing billions of transactions a day comes from 
the need to store the data from multiple sources and power intensive, next-gen 
AML solutions. These solutions provide powerful risk analytics and reporting 
while supporting the use of advanced machine learning models to reduce false 
positives and improve downstream investigation efficiency. FIs have already 
taken steps to solve the infrastructure and scaling problems by moving from on-
premises to cloud for better security, agility and the economies of scale required 
to store massive amounts of data.

But then there is the issue of how to make sense of the massive amounts of 
structured and unstructured data collected and stored on cheap object storage. 
While cloud vendors provide an inexpensive way to store the data, making sense 
of the data for downstream AML risk management and compliance activities 

SECTION 2 .5   AML Solutions at Scale Using Databricks    
 Lakehouse Platform

 by S R I  G H A T T A M A N E N I ,  R I C A R D O  P O R T I L L A  and A N I N D I T A  M A H A P A T R A
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starts with storage of the data in high-quality and performant formats for 
downstream consumption. The Databricks Lakehouse Platform does exactly 
this. By combining the low storage cost benefits of data lakes with the robust 
transaction capabilities of data warehouses, FIs can truly build the modern 
AML platform.

On top of the data storage challenges outlined above, AML analysts face some 
key domain-specific challenges:

• Improve time-to-value parsing unstructured data such as images, textual 
data and network links

• Reduce DevOps burden for supporting critical ML capabilities such as entity 
resolution, computer vision and graph analytics on entity metadata

• Break down silos by introducing analytics engineering and a dashboarding 
layer on AML transactions and enriched tables

Luckily, Databricks helps solve these by leveraging Delta Lake to store and 
combine both unstructured and structured data to build entity relationships; 
moreover, Databricks Delta Engine provides efficient access using the new 
Photon compute to speed up BI queries on tables. On top of these capabilities, 
ML is a first-class citizen in lakehouse, which means analysts and data scientists 
do not waste time subsampling or moving data to share dashboards and stay 
one step ahead of bad actors.

Figure 1
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Detecting AML patterns with graph capabilities

One of the main data sources that AML analysts use as part of a case is 
transaction data. Even though this data is tabular and easily accessible with SQL, 
it becomes cumbersome to track chains of transactions that are three or more 
layers deep with SQL queries. For this reason, it is important to have a flexible 
suite of languages and APIs to express simple concepts such as a connected 
network of suspicious individuals transacting illegally together. Luckily, this 
is simple to accomplish using GraphFrames, a graph API pre-installed in the 
Databricks Runtime for Machine Learning. 

In this section, we will show how graph analytics can be used to detect AML 
schemes such as synthetic identity and layering / structuring. We are going 
to utilize a data set consisting of transactions, as well as entities derived from 
transactions, to detect the presence of these patterns with Apache Spark™, 
GraphFrames and Delta Lake. The persisted patterns are saved in Delta Lake so 
that Databricks SQL can be applied on the Gold-level aggregated versions of 
these findings, offering the power of graph analytics to end users. 

Scenario 1 — synthetic identities

As mentioned above, the existence of synthetic identities can be a cause for 
alarm. Using graph analysis, all of the entities from our transactions can be 
analyzed in bulk to detect a risk level. In our analysis, this is done in three phases:

• Based on the transaction data, extract the entities

• Create links between entities based on address, phone number or email

• Use GraphFrames-connected components to determine whether  
multiple entities (identified by an ID and other attributes above) are 
connected via one or more links

Based on how many connections (i.e., common attributes) exist between  
entities, we can assign a lower or higher risk score and create an alert based  
on high-scoring groups. Below is a basic representation of this idea.

Address matching,  
could be colocation (LOW)

Multiple personal details  
match, could hide a syn-
thetic identity (MEDIUM)

SNN or biometrics match is 
more serious (HIGH)

Figure 2
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First, we create an identity graph using an address, email and phone number to 
link individuals if they match any of these attributes.

 
e_identity_sql = ‘’’
select entity_id as src, address as dst from aml.aml_entities_synth  where address is not 
null
UNION
select entity_id as src, email as dst from aml.aml_entities_synth  where email_addr is not 
null
UNION
select entity_id as src, phone as dst from aml.aml_entities_synth  where phone_number is not 
null
‘’’

from graphframes import *
from pyspark.sql.functions import *
aml_identity_g = GraphFrame(identity_vertices, identity_edges)
result = aml_identity_g.connectedComponents()

result \
 .select(“id”, “component”, ‘type’) \
 .createOrReplaceTempView(“components”) 

Next, we’ll run queries to identify when two entities have overlapping personal 
identification and scores. Based on the results of these querying graph 
components, we would expect a cohort consisting of only one matching 
attribute (such as address), which isn’t too much cause for concern. However, 
as more attributes match, we should expect to be alerted. As shown below, we 
can flag cases where all three attributes match, allowing SQL analysts to get daily 
results from graph analytics run across all entities.

Figure 3
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Scenario 2 — structuring

Another common pattern is called structuring, which occurs when multiple 
entities collude and send smaller “under the radar” payments to a set of banks, 
which subsequently route larger aggregate amounts to a final institution (as 
depicted below on the far right). In this scenario, all parties have stayed under 
the $10,000 threshold amount, which would typically alert authorities. Not only 
is this easily accomplished with graph analytics, but the motif finding technique 
can be automated to extend to other permutations of networks and locate other 
suspicious transactions in the same way.

Now we’ll write the basic motif-finding code to detect the scenario above using 
graph capabilities. Note that the output here is semi-structured JSON; all data 
types, including unstructured types,  are easily accessible in the lakehouse — we 
will save these particular results for SQL reporting.

motif = “(a)-[e1]->(b); (b)-[e2]->(c); (c)-[e3]->(d); (e)-[e4]->(f); (f)-[e5]-
>(c); (c)-[e6]->(g)”
struct_scn_1 = aml_entity_g.find(motif)

joined_graphs = struct_scn_1.alias(“a”) \
 .join(struct_scn_1.alias(“b”), col(“a.g.id”) == col(“b.g.id”)) \

 .filter(col(“a.e6.txn_amount”) + col(“b.e6.txn_amount”) > 10000)

Using motif finding, we extracted interesting patterns where money is flowing 
through four different entities and kept under a $10,000 threshold. We join our 
graph metadata back to structured data sets to generate insights for an AML 
analyst to investigate further.

Figure 4

Figure 5
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Scenario 3 — risk score propagation

The identified high-risk entities will have an influence (a network effect) on 
their circle. So, the risk score of all the entities that they interact with must be 
adjusted to reflect the zone of influence. Using an iterative approach, we can 
follow the flow of transactions to any given depth and adjust the risk scores of 
others affected in the network. As mentioned previously, running graph analytics 
avoids multiple repeated SQL joins and complex business logic, which can 
impact performance due to memory constraints. Graph analytics and Pregel 
API was built for that exact purpose. Initially developed by Google, Pregel allows 
users to recursively “propagate” messages from any vertex to its corresponding 
neighbors, updating vertex state (their risk score here) at each step. We can 
represent our dynamic risk approach using Pregel API as follows.

 
 
The diagram below left shows the starting state of the network and two 
subsequent iterations. Say we started with one bad actor (Node 3) with a risk 
score of 10. We want to penalize all the people who transact with that node 
(namely Nodes 4, 5 and 6) and receive funds by passing on, for instance, half 
the risk score of the bad actor, which then is added to their base score. In the 
next iteration, all nodes that are downstream from Nodes 4, 5 and 6 will get their 
scores adjusted.

Node # Iteration #0 Iteration #1 Iteration #2

1 0 0 0

2 0 0 0

3 10 10 10

4 0 5 5

5 0 5 5

6 0 5 5

7 0 0 5

8 0 0 0

9 0 0 2.5

10 0 0 0

Starting state:
Entity 3 is a high-risk factor

After Iteration 1:
Entity 4, 5 and 6 add half of 3’s risk score 
to their base score

After Iteration 3:
Entity 7’s score is 2.5+2.5=5 
Entity 9’s score is 2.5

Figure 6
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Using the Pregel API from GraphFrame, we can do this computation and persist 
the modified scores for other applications downstream to consume.

from graphframes.lib import Pregel

ranks = aml_entity_g.pregel \
    .setMaxIter(3) \
    .withVertexColumn(
       “risk_score”, 
       col(“risk”), 
       coalesce(Pregel.msg()+ col(“risk”),
       col(“risk_score”))
    ) \
    .sendMsgToDst(Pregel.src(“risk_score”)/2 )  \
    .aggMsgs(sum(Pregel.msg())) \
    .run()

 

Address matching

A pattern we want to briefly touch upon is address matching of text to actual 
street view images. Oftentimes, there is a need for an AML analyst to validate 
the legitimacy of addresses that are linked to entities on file. Is this address a 
commercial building, a residential area or a simple postbox? However, analyzing 
pictures is often a tedious, time-consuming and manual process to obtain, clean 
and validate. A lakehouse data architecture allows us to automate most of this 
task using Python and ML runtimes with PyTorch and pretrained open source 
models. Below is an example of a valid address to the human eye. To automate 
validation, we will use a pretrained VGG model for which there are hundreds of 
valid objects we can use to detect a residence.

Using the code below, which can be automated to run daily, we’ll now have a 
label attached to all our images — we’ve loaded all the image references and 
labels up into a SQL table for simpler querying also. Notice in the code below 
how simple it is to query a set of images for the objects inside them — the ability 
to query such unstructured data with Delta Lake is an enormous time-saver for 
analysts, and speeds up the validation process to minutes instead of days or 
weeks.

from PIL import Image
from matplotlib import cm

img = Image.fromarray(img)
...

vgg = models.vgg16(pretrained=True)
prediction = vgg(img)
prediction = prediction.data.numpy().argmax()
img_and_labels[i] = labels[prediction]

Figure 7
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As we start to summarize, we notice some interesting categories appear. As 
seen in the breakdown below, there are a few obvious labels such as patio, 
mobile home and motor scooter we would expect to see as items detected 
in a residential address. On the other hand, the CV model has labeled a solar 
dish from surrounding objects in one image. (Note: since we are restricted 
to an open source model not trained on a custom set of images, the solar 
dish label is not accurate.) Upon further analysis of the image, we drill down 
and immediately see that i) there is not a real solar dish here and more 
importantly ii) this address is not a real residence (pictured in our side-
by-side comparison on Figure 7). The Delta Lake format allows us to store a 
reference to our unstructured data along with a label for simple querying in our 
classification breakdown below.

Figure 9

Figure 8
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Entity resolution

The last category of AML challenges that we’ll focus on is entity resolution. 
Many open source libraries tackle this problem, so for some basic entity fuzzy 
matching, we chose to highlight Splink, which achieves the linkage at scale and 
offers configurations to specify matching columns and blocking rules.

In the context of the entities derived from our transactions, it is a simple 
exercise to insert our Delta Lake transactions into the context of Splink.

settings = {
  “link_type”: “dedupe_only”,
  “blocking_rules”: [
      “l.txn_amount = r.txn_amount”,
  ],
  “comparison_columns”: [  
      {
          “col_name”: “rptd_originator_address”,
      },
      {
          “col_name”: “rptd_originator_name”,
      }
  ]
}

from splink import Splink
linker = Splink(settings, df2, spark)
df2_e = linker.get_scored_comparisons()

 

 
 
Splink works by assigning a match probability that can be used to identify 
transactions in which entity attributes are highly similar, raising a potential 
alert with respect to a reported address, entity name or transaction amount. 
Given the fact that entity resolution can be highly manual for matching account 
information, having open source libraries that automate this task and save the 
information in Delta Lake can make investigators much more productive for 
case resolution. While there are several options available for entity matching, we 
recommend using Locality-Sensitive Hashing (LSH) to identify the right algorithm 
for the job. You can learn more about LSH and its benefits in this blog post.

As reported above, we quickly found some inconsistencies for the NY Mellon 
bank address, with “Canada Square, Canary Wharf, London, United Kingdom” 
similar to “Canada Square, Canary Wharf, London, UK.” We can store our de-
duplicated records back to a Delta table that can be used for AML investigation.

Figure 10
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AML lakehouse dashboard

Databricks SQL on the lakehouse is closing the gap with respect to traditional 
data warehouses in terms of simplified data management, performance with 
new query engine Photon and user concurrency. This is important since many 
organizations do not have the budget for overpriced proprietary AML software 
to support the myriad use cases, such as combatting the financing of terrorism 
(CFT), that help fight financial crime. In the market, there are dedicated solutions 
that can perform the graph analytics above, dedicated solutions to address BI in 
a warehouse and dedicated solutions for ML. The AML lakehouse design unifies 
all three. AML data platform teams can leverage Delta Lake at the lower cost 
of cloud storage while easily integrating open source technologies to produce 
curated reports based on graph technology, computer vision and SQL analytics 
engineering. In figure 11, we will show a materialization of the reporting for AML.

The attached notebooks produced a transactions object, entities object, as well 
as summaries such as structuring prospects, synthetic identity tiers and address 
classifications using pretrained models. In the Databricks SQL visualization 
below, we used our Photon SQL engine to execute summaries on these and 
built-in visualization to produce a reporting dashboard within minutes. There are 
full ACLs on both tables, as well as the dashboard itself, to allow users to share 
with executives and data teams — a scheduler to run this report periodically is 
also built-in. The dashboard is a culmination of AI, BI and analytics engineering 
built into the AML solution.

 

 
The open banking transformation

The rise of open banking enables FIs to provide a better customer experience via 
data sharing between consumers, FIs and third-party service providers through 
APIs. An example of this is Payment Services Directive (PSD2), which transformed 
financial services in the EU region as part of Open Banking Europe regulation. 
As a result, FIs have access to more data from multiple banks and service 
providers, including customer account and transaction data. This trend has 
expanded within the world of fraud and financial crimes with the latest guidance 
from FinCEN under section 314(b) of USA Patriot Act; covered FIs can now share 
information with other FIs and within domestic and foreign branches regarding 
individuals, entities, organizations and so on that are suspected to be involved in 
potential money laundering.

Figure 11
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While information sharing provision helps with transparency and protects 
the United States financial systems against money laundering and terrorism 
financing, the information exchange must be done using protocols with proper 
data and security protections. To solve the problem of securing information 
sharing, Databricks recently announced Delta Sharing, an open and secure 
protocol for data sharing. Using familiar open source APIs, such as pandas and 
Spark, data producers and consumers can now share data using secure and 
open protocols and maintain a full audit of all the data transactions to maintain 
compliance with FinCEN regulations.

Conclusion

The lakehouse architecture is the most scalable and versatile platform to  
enable analysts in their AML analytics. Lakehouse supports use cases ranging 
from fuzzy match to image analytics to BI with built-in dashboards, and all of 
these capabilities will allow organizations to reduce total cost of ownership 
compared to proprietary AML solutions. The financial services team at 
Databricks is working on a variety of business problems in the financial services 
space and enabling data engineering and data science professionals to start  
the Databricks journey through Solution Accelerators like AML.

Figure 12

• Introduction to graph theory for AML

• Introduction to computer vision for AML

• Introduction to entity resolution for AML

Start experimenting with these free Databricks notebooks
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Across massively multiplayer online video games (MMOs), multiplayer online 
battle arena games (MOBAs) and other forms of online gaming, players 
continuously interact in real time to either coordinate or compete as they move 
toward a common goal — winning.  This interactivity is integral to game play 
dynamics, but at the same time, it’s a prime opening for toxic behavior — an 
issue pervasive throughout the online video gaming sphere.

 

Toxic behavior manifests in many forms, such as the varying degrees of griefing, 
cyberbullying and sexual harassment that are illustrated in the matrix above right 
from Behaviour Interactive, which lists the types of interactions seen within the 
multiplayer game ”Dead by Night.” 

 

 
In addition to the personal toll that toxic behavior can have on gamers and the 
community — an issue that cannot be overstated — it is also damaging to the 
bottom line of many game studios. For example, a study from Michigan State 
University revealed that 80% of players recently experienced toxicity, and of 
those, 20% reported leaving the game due to these interactions. Similarly, a study 
from Tilburg University showed that having a disruptive or toxic encounter in the 
first session of the game led to players being over three times more likely to leave 
the game without returning. Given that player retention is a top priority for many 
studios, particularly as game delivery transitions from physical media releases to 
long-lived services, it’s clear that toxicity must be curbed.

SECTION 2 .6   Build a Real-Time AI Model to  
 Detect Toxic Behavior in Gaming

 by D A N  M O R R I S  and D U N C A N  D A V I S

 June 16, 2021

Figure 1 
Matrix of toxic interactions that players experience
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Compounding this issue related to churn, some companies face challenges related 
to toxicity early in development, even before launch. For example, Amazon’s 
Crucible was released into testing without text or voice chat due in part to not 
having a system in place to monitor or manage toxic gamers and interactions. 
This illustrates that the scale of the gaming space has far surpassed most teams’ 
ability to manage such behavior through reports or by intervening in disruptive 
interactions. Given this, it’s essential for studios to integrate analytics into games 
early in the development lifecycle and then design for the ongoing management of 
toxic interactions.

Toxicity in gaming is clearly a multifaceted issue that has become a part of 
video game culture and cannot be addressed universally in a single way. That 
said, addressing toxicity within in-game chat can have a huge impact given the 
frequency of toxic behavior and the ability to automate detection of it using 
natural language processing (NLP). 

Introducing the Toxicity Detection in Gaming Solution 
Accelerator from Databricks

Using toxic comment data from Jigsaw and Dota 2 game match data, this Solution 
Accelerator walks through the steps required to detect toxic comments in real 
time using NLP and your existing lakehouse. For NLP, this Solution Accelerator uses 
Spark NLP from John Snow Labs, an open source, enterprise-grade solution built 
natively on Apache Spark.™

The steps you will take in this Solution Accelerator are:

• Load the Jigsaw and Dota 2 data into tables using Delta Lake
• Classify toxic comments using multi-label classification (Spark NLP)

• Track experiments and register models using MLflow
• Apply inference on batch and streaming data
• Examine the impact of toxicity on game match data

Detecting toxicity within in-game chat in production

With this Solution Accelerator, you can now more easily integrate toxicity 
detection into your own games. For example, the reference architecture below 
shows how to take chat and game data from a variety of sources, such as 
streams, files, voice or operational databases, and leverage Databricks to ingest, 
store and curate data into feature tables for machine learning (ML) pipelines, 
in-game ML, BI tables for analysis and even direct interaction with tools used for 
community moderation.

Figure 2 
Toxicity detection reference architecture
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Having a real-time, scalable architecture to detect toxicity in the community 
allows for the opportunity to simplify workflows for community relationship 
managers and the ability to filter millions of interactions into manageable 
workloads. Similarly, the possibility of alerting on severely toxic events in real 
time, or even automating a response such as muting players or alerting a CRM 
to the incident quickly, can have a direct impact on player retention. Likewise, 
having a platform capable of processing large data sets, from disparate sources, 
can be used to monitor brand perception through reports and dashboards. 

Getting started

The goal of this Solution Accelerator is to help support the ongoing management 
of toxic interactions in online gaming by enabling real-time detection of toxic 
comments within in-game chat. Get started today by importing this Solution 
Accelerator directly into your Databricks workspace.

Once imported you will have notebooks with two pipelines ready to move  
to production.

• ML pipeline using multi-label classification with training on real-world 
English data sets from Google Jigsaw. The model will classify and label  
the forms of toxicity in text.

• Real-time streaming inference pipeline leveraging the toxicity model.  
The pipeline source can be easily modified to ingest chat data from all  
the common data sources.

With both of these pipelines, you can begin understanding and analyzing  
toxicity with minimal effort. This Solution Accelerator also provides a foundation 
to build, customize and improve the model with relevant data to game 
mechanics and communities.

Start experimenting with these 
free Databricks notebooks. 
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Digital transformation has been front and center in most contemporary big data 
corporate initiatives, especially in companies with a heavy legacy footprint. One 
of the underpinning components in digital transformation is data and its related 
data store. For 160+ years, Northwestern Mutual has been helping families and 
businesses achieve financial security. With over $31B in revenue, 4.6M+ clients and 
9,300+ financial professionals, there are not too many companies that have this 
volume of data across a variety of sources.

Data ingestion is a challenge in this day and age, when organizations deal 
with millions of data points coming in different formats, time frames and from 
different directions at an unprecedented volume. We want to make data ready 
for analysis to make sense of it. Today, I am excited to share our novel approach 
to transforming and modernizing our data ingestion process, scheduling process 
and journey with data stores. One thing we learned is that an effective approach 
is multifaceted, which is why in addition to the technical arrangements I’ll walk 
through our plan to onboard our team. 

Challenges faced

Before we embarked on our transformation, we worked with our business 
partners to really understand our technical constraints and help us shape the 
problem statement for our business case.

The business pain point we identified was a lack of integrated data, with 
customer and business data coming from different internal and external teams 
and data sources. We realized the value of real-time data but had limited access 
to production/real-time data that could enable us to make business decisions 
in a timely manner. We also learned that data stores built by the business team 
resulted in data silos, which in turn caused data latency issues, increased cost of 
data management and unwarranted security constraints.

Furthermore, there were technical challenges with respect to our current state.  
With increased demand and additional data needed, we experienced constraints 
with infrastructure scalability, data latency, cost of managing data silos, data 
size and volume limitations, and data security issues. With these challenges 
mounting, we knew we had a lot to take on and needed to find the right 
partners to help us in our transformation journey.

SECTION 2 .7   Driving Transformation at Northwestern Mutual (Insights Platform)  
 by Moving Toward a Scalable, Open Lakehouse Architecture

 by M A D H U  K O T I A N

 July 15, 2021
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Solution analysis

We needed to become data-driven to be competitive and serve our customers 
better and optimize internal processes. We explored various options and 
performed several POCs to select a final recommendation. The following were 
the must-haves for our go-forward strategy:

• An all-inclusive solution for our data ingestion, data management  
and analytical needs

• A modern data platform that can effectively support our developers  
and business analysts to perform their analysis using SQL

• A data engine that can support ACID transactions on top of S3 and  
enable role-based security

• A system that can effectively secure our PII/PHI information

• A platform that can automatically scale based on the data processing  
and analytical demand

Our legacy infrastructure was based on MSBI Stack. We used SSIS for ingestion, 
SQL Server for our data store, Azure Analysis Service for tabular model and Power 
BI for dashboarding and reporting. Although the platform met the needs of the 
business initially, we had challenges around scaling with increased data volume 
and data processing demand, and constrained our data analytical expectations. 
With additional data needs, our data latency issues from load delays and a data 
store for specific business needs caused data silos and data sprawl.

 
 
Security became a challenge due to the spread of data across multiple data 
stores. We had approximately 300 ETL jobs that took more than 7 hours from  
our daily jobs. The time to market for any change or new development was 
roughly 4 to 6 weeks (depending on the complexity).

 
 
 
After evaluating multiple solutions in the marketplace, we decided to move 
forward with Databricks to help us deliver one integrated data management 
solution on an open lakehouse architecture.

Figure 1
Legacy architecture
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Databricks being developed on top of Apache Spark™ enabled us to use Python 
to build our custom framework for data ingestion and metadata management.  
It provided us the flexibility to perform ad hoc analysis and other data 
discoveries using the notebook. Databricks Delta Lake (the storage layer built on 
top of our data lake) provided us the flexibility to implement various database 
management functions (ACID transactions, metadata governance, time travel, 
etc.) including the implementation of required security controls. Databricks took 
the headache out from managing/scaling the cluster and reacted effectively to 
the pent-up demand from our engineers and business users.

Migration approach and onboarding resources 

We started with a small group of engineers and assigned them to a virtual team 
from our existing scrum team. Their goal was to execute different POC, build on 
the recommended solution, develop best practices and transition back to their 
respective team to help with the onboarding. Leveraging existing team members 
favored us better because they had existing legacy system knowledge, understood 
the current ingestion flow/business rules, and were well versed in at least one 
programming knowledge (data engineering + software engineering knowledge). 
This team first trained themselves in Python, understood intricate details of Spark 
and Delta, and closely partnered with the Databricks team to validate the solution/
approach. While the team was working on forming the future state, the rest of our 
developers worked on delivering the business priorities.

Since most of the developers were MSBI Stack engineers, our plan of action was 
to deliver a data platform that would be frictionless for our developers, business 
users and our field advisors.

• We built an ingestion framework that covered all our data load and 
transformation needs. It had in-built security controls, which maintained 
all the metadata and secrets of our source systems. The ingestion process 
accepted a JSON file that included the source, target and required 
transformation. It allowed for both simple and complex transformation.

• For scheduling, we ended up using Airflow, but given the complexity of the 
DAG, we built our own custom framework on top of Airflow, which accepted 
a YAML file that included job information and its related interdependencies.

• For managing schema-level changes using Delta, we built our own custom 
framework which automated different database type operations (DDL) 
without requiring developers to have break-glass access to the data store. 
This also helped us to implement different audit controls on the data store.

Figure 2
Architecture with Databricks
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In parallel, the team also worked with our security team to make sure we 
understood and met all the criteria for data security (encryption in transit, 
encryption at rest and column level encryption to protect PII information).

Once these frameworks were set up, the cohort team deployed an end-to-
end flow (source to target with all transformation) and generated a new set of 
reports/dashboards on Power BI pointing to Delta Lake. The goal was to test 
the performance of our end-to-end process, validate the data and obtain any 
feedback from our field users. We incrementally improved the product based on 
the feedback and outcomes of our performance/validation test.

Simultaneously, we built training guides and how-tos to onboard our developers. 
Soon after, we decided to move the cohort team members to their respective 
teams while retaining a few to continue to support the platform infrastructure 
(DevOps). Each scrum team was responsible for managing and delivering their 
respective set of capabilities/features to the business. Once the team members 
moved back to their respective teams, they embarked on the task to adjust the 
velocity of the team to include the backlog for migration effort. The team leads 
were given specific guidance and appropriate goals to meet the migration goals 
for different Sprint/Program Increments. The team members who were in the 
cohort group were now the resident experts and they helped their team onboard 
to the new platform. They were available for any ad hoc questions or assistance.

As we incrementally built our new platform, we retained the old platform for 
validation and verification. 

The beginning of success 

The overall transformation took us roughly a year and a half, which is quite a feat 
given that we had to build all the frameworks, manage business priorities, manage 
security expectations, retool our team and migrate the platform. Overall load time 
came down remarkably from 7 hours to just 2 hours. Our time to market was about 
1 to 2 weeks, down significantly from 4 to 6 weeks. This was a major improvement 
in which I know will extend itself to our business in several ways.

Our journey is not over. As we continue to enhance our platform, our next 
mission will be to expand on the lakehouse pattern. We are working on 
migrating our platform to E2 and deploying Databricks SQL. We are working 
on our strategy to provide a self-service platform to our business users to 
perform their ad hoc analysis and also enable them to bring their own data 
with an ability to perform analysis with our integrated data. What we learned 
is that we benefited greatly by using a platform that was open, unified and 
scalable. As our needs and capabilities grow, we know we have a robust partner 
in Databricks.

Hear more about Northwestern Mutual’s journey to the Lakehouse

A B O U T  M A D H U  K O T I A N

Madhu Kotian is the Vice President of Engineering (Investment Products Data, CRM, Apps and Reporting) 

at Northwestern Mutual. He has over 25+ years of experience in the field of Information Technology  

with experience and expertise in data engineering, people management, program management, 

architecture, design, development and maintenance using Agile practices. He is also an expert in data 

warehouse methodologies and implementation of data integration and analytics.
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The internal logging infrastructure at Databricks has evolved over the years and 
we have learned a few lessons along the way about how to maintain a highly 
available log pipeline across multiple clouds and geographies. This blog will give 
you some insight as to how we collect and administer real-time metrics using 
our lakehouse platform, and how we leverage multiple clouds to help recover 
from public cloud outages.

When Databricks was founded, it only supported a single public cloud. Now, 
the service has grown to support the three major public clouds (AWS, Azure, 
GCP) in over 50 regions around the world. Each day, Databricks spins up 
millions of virtual machines on behalf of our customers. Our data platform 
team of less than 10 engineers is responsible for building and maintaining the 
logging telemetry infrastructure, which processes half a petabyte of data each 
day. The orchestration, monitoring and usage is captured via service logs that 
are processed by our infrastructure to provide timely and accurate metrics. 
Ultimately, this data is stored in our own petabyte-sized Delta Lake. Our Data 
Platform team uses Databricks to perform inter-cloud processing so that we  
can federate data where appropriate, mitigate recovery from a regional cloud 
outage and minimize disruption to our live infrastructure. 

 
Pipeline architecture

Each cloud region contains its own infrastructure and data pipelines to capture, 
collect and persist log data into a regional Delta Lake. Product telemetry data 
is captured across the product and within our pipelines by the same process 
replicated across every cloud region. A log daemon captures the telemetry data 
and it then writes these logs onto a regional cloud storage bucket (S3, WASBS, 
GCS). From there, a scheduled pipeline will ingest the log files using Auto Loader 
(AWS | Azure | GCP), and write the data into a regional Delta table. A different 
pipeline will read data from the regional Delta table, filter it and write it to a 
centralized Delta table in a single cloud region. 

SECTION 2 .8   How Databricks Data Team Built a Lakehouse  
 Across Three Clouds and 50+ Regions

 by J A S O N  P O H L  and S U R A J  A C H A R Y A

 July 14, 2021

Figure 1
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Before Delta Lake

Prior to Delta Lake, we would write the source data to its own table in the 
centralized lake, and then create a view which was a union across all of those 
tables. This view needed to be calculated at runtime and became more 
inefficient as we added more regions:

CREATE OR REPLACE VIEW all_logs AS
SELECT * FROM (
  SELECT * FROM region_1.log_table
  UNION ALL
  SELECT * FROM region_2.log_table
  UNION ALL
  SELECT * FROM region_3.log_table
  ...
);

 
 
After Delta Lake

Today, we just have a single Delta Table that accepts concurrent write 
statements from over 50 different regions. While simultaneously handling 
queries against the data. It makes querying the central table as easy as:

SELECT * FROM central.all_logs;

 

The transactionality is handled by Delta Lake. We have deprecated the 
individual regional tables in our central Delta Lake and retired the UNION ALL 
view. The following code is a simplified representation of the syntax that is 
executed to load the data approved for egress from the regional Delta Lakes to 
the central Delta Lake:

spark.readStream.format(“delta”)
  .load(regional_source_path)
  .where(“egress_approved = true”)
  .writeStream
  .format(“delta”)
  .outputMode(“append”)
  .option(“checkpointLocation”, checkpoint_path)
  .start(central_target_path)

Disaster recovery

One of the benefits of operating an inter-cloud service is that we are well 
positioned for certain disaster recovery scenarios. Although rare, it is not 
unheard of for the compute service of a particular cloud region to experience 
an outage. When that happens, the cloud storage is accessible, but the ability 
to spin up new VMs is hindered. Because we have engineered our data pipeline 
code to accept configuration for the source and destination paths, this allows us 
to quickly deploy and run data pipelines in a different region to where the data 
is being stored. The cloud for which cloud the cluster is created in is irrelevant to 
which cloud the data is read or written to.

There are a few data sets which we safeguard against failure of the storage 
service by continuously replicating the data across cloud providers. This can 
easily be done by leveraging Delta deep clone functionality as described in this 
blog. Each time the clone command is run on a table, it updates the clone with 
only the incremental changes since the last time it was run. This is an efficient 
way to replicate data across regions and even clouds. 
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Minimizing disruption to live data pipelines

Our data pipelines are the lifeblood of our managed service and part of a 
global business that doesn’t sleep. We can’t afford to pause the pipelines for 
an extended period of time for maintenance, upgrades or backfilling of data. 
Recently, we needed to fork our pipelines to filter a subset of the data normally 
written to our main table to be written to a different public cloud. We were able 
to do this without disrupting business as usual.

By following these steps we were able to deploy changes to our architecture into 
our live system without causing disruption.

First, we performed a deep clone of the main table to a new location on the  
other cloud. This copies both the data and the transaction log in a way to  
ensure consistency.

Second, we released the new config to our pipelines so that the majority of 
data continues to be written to the central main table, and the subset of data 
writes to the new cloned table in the different cloud. This change can be made 
easily by just deploying a new config, and the tables receive updates for just 
the new changes they should receive.

 
Next, we ran the same deep clone command again. Delta Lake will only capture 
and copy the incremental changes from the original main table to the new 
cloned table. This essentially backfills the new table with all the changes to the 
data between steps 1 and 2.

Finally, the subset of data can be deleted from the main table and the majority 
of data can be deleted from the cloned table.

Now both tables represent the data they are meant to contain, with full 
transactional history, and it was done live without disrupting the freshness of 
the pipelines. 

Summary

Databricks abstracts away the details of individual cloud services whether that 
be for spinning up infrastructure with our cluster manager, ingesting data with 
Auto Loader, or performing transactional writes on cloud storage with Delta Lake. 
This provides us with an advantage in that we can use a single code-base to 
bridge the compute and storage across public clouds for both data federation 
and disaster recovery. This inter-cloud functionality gives us the flexibility to 
move the compute and storage wherever it serves us and our customers best.
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SECTION

Atlassian

ABN AMRO

J.B. Hunt

Customer Stories



Atlassian is a leading provider of collaboration, development and issue-tracking software 

for teams. With over 150,000 global customers (including 85 of the Fortune 100), 

Atlassian is advancing the power of collaboration with products including Jira, Confluence, 

Bitbucket, Trello and more.  

USE CASE

Atlassian uses the Databricks Lakehouse Platform to democratize data across the enterprise and drive  
down operational costs. Atlassian currently has a number of use cases focused on putting the customer 
experience at the forefront.

Customer support and service experience 
With the majority of their customers being server-based (using products like Jira and Confluence), 
Atlassian set out to move those customers into the cloud to leverage deeper insights that enrich the 
customer support experience.

Marketing personalization 
The same insights could also be used to deliver personalized marketing emails to drive  
engagement with new features and products.

Anti-abuse and fraud detection 
They can predict license abuse and fraudulent behavior through anomaly detection and  
predictive analytics. 

SECTION 3 .1      Atlassian
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SOLUTION AND BENEF ITS 

Atlassian is using the Databricks Lakehouse Platform to enable data democratization at scale, both internally 
and externally. They have moved from a data warehousing paradigm to standardization on Databricks, 
enabling the company to become more data driven across the organization. Over 3,000 internal users in 
areas ranging from HR and marketing to finance and R&D — more than half the organization — are accessing 
insights from the platform on a monthly basis via open technologies like Databricks SQL. Atlassian is also 
using the platform to drive more personalized support and service experiences to their customers.

• Delta Lake underpins a single lakehouse for PBs of data accessed by 3,000+ users across HR, marketing, 
finance, sales, support and R&D

• BI workloads powered by Databricks SQL enable dashboard reporting for more users 

• MLflow streamlines MLOps for faster delivery

• Data platform unification eases governance, and self-managed clusters enable autonomy 

With cloud-scale architecture, improved productivity through cross-team collaboration, and the ability to 
access all of their customer data for analytics and ML, the impact on Atlassian is projected to be immense. 
Already the company has:

• Reduced the cost of IT operations (specifically compute costs) by 60% through moving 50,000+ Spark 
jobs from EMR to Databricks with minimal effort and low-code change

• Decreased delivery time by 30% with shorter dev cycles

• Reduced data team dependencies by 70% with more self-service enabled throughout the organization

At Atlassian, we need to ensure 
teams can collaborate well 
across functions to achieve 
constantly evolving goals. A 
simplified lakehouse architecture 
would empower us to ingest high 
volumes of user data and run the 
analytics necessary to better 
predict customer needs and 
improve the experience of our 
customers. A single, easy-to-use 
cloud analytics platform allows 
us to rapidly improve and build 
new collaboration tools based on 
actionable insights.

Rohan Dhupelia 
Data Platform Senior Manager, Atlassian

“

Learn More
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As an established bank, ABN AMRO wanted to modernize their business but were hamstrung 

by legacy infrastructure and data warehouses that complicated access to data across various 

sources and created inefficient data processes and workflows. Today, Azure Databricks 

empowers ABN AMRO to democratize data and AI for a team of 500+ empowered engineers, 

scientists and analysts who work collaboratively on improving business operations and 

introducing new go-to-market capabilities across the company.  

USE CASE

ABN AMRO uses the Databricks Lakehouse Platform to deliver financial services transformation on a global scale, 
providing automation and insight across operations.

Personalized finance 
ABN AMRO leverages real-time data and customer insights to provide products and services tailored to 
customers’ needs. For example, they use machine learning to power targeted messaging within their automated 
marketing campaigns to help drive engagement and conversion. 

Risk management 
Using data-driven decision-making, they are focused on mitigating risk for both the company and their 
customers. For example, they generate reports and dashboards that internal decision makers and leaders use to 
better understand risk and keep it from impacting ABN AMRO’s business. 

Fraud detection 
With the goal of preventing malicious activity, they’re using predictive analytics to identify fraud before it 
impacts their customers. Among the activities they’re trying to address are money laundering and fake credit 
card applications. 
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SOLUTION AND BENEF ITS 

Today, Azure Databricks empowers ABN AMRO to democratize data and AI for a team of 500+ engineers, 
scientists and analysts who work collaboratively on improving business operations and introducing new  
go-to-market capabilities across the company. 

• Delta Lake enables fast and reliable data pipelines to feed accurate and complete data for  
downstream analytics 

• Integration with Power BI enables easy SQL analytics and feeds insights to 500+ business users  
through reports and dashboards

• MLflow speeds deployment of new models that improve the customer experience — with new use  
cases delivered in under two months

Databricks has changed the way 
we do business. It has put us in 
a better position to succeed in 
our data and AI transformation 
as a company by enabling data 
professionals with advanced data 
capabilities in a controlled and 
scalable way.

Stefan Groot 
Head of Analytics Engineering,  
ABN AMRO

10x faster 
time to market — use cases  
deployed in two months

100+  
use cases to be delivered  
over the coming year

500+  
empowered business  
and IT users

“

Learn More
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What Databricks has really 
given us is a foundation for the 
most innovative digital freight 
marketplace by enabling us to 
leverage AI to deliver the best 
carrier experience possible.

Joe Spinelle 
Director, Engineering and Technology,  
J.B. Hunt

“

In their mission to build North America’s most efficient digital transportation network, J.B. Hunt 

wanted to streamline freight logistics and provide the best carrier experience — but legacy 

architecture, their lack of AI capabilities and the inability to securely handle big data caused 

significant roadblocks. However, after implementing the Databricks Lakehouse Platform and 

Immuta, J.B. Hunt is now able to deliver operational solutions that range from improving supply 

chain efficiencies to boosting driver productivity — resulting in significant IT infrastructure 

savings and revenue gains.  

USE CASE

J.B. Hunt uses Databricks to deliver industry-leading freight carrier analytics via their Carrier 360 platform, 
driving down costs while increasing driver productivity and safety. Use cases include freight logistics, customer 
360, personalization and many more.

SOLUTION AND BENEF ITS 

J.B. Hunt uses the Databricks Lakehouse Platform to build North America’s most secure and efficient freight 
marketplace — streamlining logistics, optimizing carrier experiences and cutting costs. 

• Delta Lake federates and democratizes data for real-time route optimizations  
and driver recommendations via the Carrier 360 platform

• Notebooks boost data team productivity to deliver more use cases faster

• MLflow speeds deployment of new models that improve driver experience

SECTION 3 . 2     J.B. HUNT 

$2.7M 
in IT infrastructure savings, 
increasing profitability

5%  
increase in revenue driven by 
improved logistics

99.8% faster  
recommendations for a  
better carrier experience

Learn More
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Databricks is the data and AI company. More than 5,000 

organizations worldwide — including Comcast, Condé Nast, 

H&M and over 40% of the Fortune 500 — rely on the Databricks 

Lakehouse Platform to unify their data, analytics and AI. Databricks 

is headquartered in San Francisco, with offices around the globe. 

Founded by the original creators of Apache Spark,™ Delta Lake 

and MLflow, Databricks is on a mission to help data teams solve 

the world’s toughest problems. To learn more, follow Databricks on 

Twitter, LinkedIn and Facebook.

About Databricks

Contact us for a personalized demo  
databricks.com/contact
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