
EBOOK

The Big Book of
Data Engineering

A collection of technical blogs, including
code samples and notebooks

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Contents

2 . 1 Real-Time Point-of-Sale Analytics With the Data Lakehouse . 9

2 . 2 Building a Cybersecurity Lakehouse for CrowdStrike Falcon Events . 14

2 . 3 Unlocking the Power of Health Data With a Modern Data Lakehouse . 19

2 . 4 Timeliness and Reliability in the Transmission of Regulatory Reports. 24

2 . 5 AML Solutions at Scale Using Databricks Lakehouse Platform . 30

2 . 6 Build a Real-Time AI Model to Detect Toxic Behavior in Gaming . 41

2 . 7 Driving Transformation at Northwestern Mutual (Insights Platform)
 by Moving Toward a Scalable, Open Lakehouse Architecture . 44

2 . 8 How Databricks Data Team Built a Lakehouse Across Three Clouds and 50+ Regions . 48

3 . 1 Atlassian . 52

3 . 2 ABN AMRO . 54

3 . 3 J.B. Hunt . 56

Introduction to Data Engineering on Databricks . 3

Real-Life Use Cases on the Databricks Lakehouse Platform . 8

Customer Stories . 51

S E C T I O N 1

S E C T I O N 2

S E C T I O N 3

2The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

01
SECTION

Introduction to
Data Engineering on Databricks

Organizations realize the value data plays as a strategic asset for various
business-related initiatives, such as growing revenues, improving the customer
experience, operating efficiently or improving a product or service. However,
accessing and managing data for these initiatives has become increasingly
complex. Most of the complexity has arisen with the explosion of data volumes
and data types, with organizations amassing an estimated 80% of data in
unstructured and semi-structured format. As the collection of data continues
to increase, 73% of the data goes unused for analytics or decision-making. In
order to try and decrease this percentage and make more data usable, data
engineering teams are responsible for building data pipelines to efficiently and
reliably deliver data. But the process of building these complex data pipelines
comes with a number of difficulties:

• In order to get data into a data lake, data engineers are required to
spend immense time hand-coding repetitive data ingestion tasks

• Since data platforms continuously change, data engineers
spend time building and maintaining, and then rebuilding, complex
scalable infrastructure

• With the increasing importance of real-time data, low latency data
pipelines are required, which are even more difficult to build and maintain

• Finally, with all pipelines written, data engineers need to constantly
focus on performance, tuning pipelines and architectures to meet SLAs

How can Databricks help?

With the Databricks Lakehouse Platform, data engineers have access to an
end-to-end data engineering solution for ingesting, transforming, processing,
scheduling and delivering data. The Lakehouse Platform automates the
complexity of building and maintaining pipelines and running ETL workloads
directly on a data lake so data engineers can focus on quality and reliability to
drive valuable insights.

Figure 1
The Databricks Lakehouse Platform unifies your data, analytics and AI on one common platform for all your data use cases

The data
lakehouse
is the
foundation
for data
engineering

SIMPLE • OPEN • COLLABORATIVE

Lakehouse Platform

Data
Engineering

Data Management and Government

Open Data Lake

BI and
SQL Analytics

Real-Time
Data Applications

Data Science
and ML

4The Big Book of Data Engineering

https://www.forbes.com/sites/forbestechcouncil/2019/01/29/the-80-blind-spot-are-you-ignoring-unstructured-organizational-data/?sh=681651dc211c
https://www.forbes.com/sites/forbestechcouncil/2019/01/29/the-80-blind-spot-are-you-ignoring-unstructured-organizational-data/?sh=681651dc211c
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Key differentiators for successful data engineering
with Databricks

By simplifying on a lakehouse architecture, data engineers need an
enterprise-grade and enterprise-ready approach to building data pipelines.
To be successful, a data engineering solution team must embrace these eight
key differentiating capabilities:

Continuous or scheduled data ingestion
With the ability to ingest petabytes of data with auto-evolving schemas, data
engineers can deliver fast, reliable, scalable and automatic data for analytics,
data science or machine learning. This includes:

• Incrementally and efficiently processing data as it arrives from files
or streaming sources like Kafka, DBMS and NoSQL

• Automatically inferring schema and detecting column changes
for structured and unstructured data formats

• Automatically and efficiently tracking data as it arrives with no
manual intervention

• Preventing data loss by rescuing data columns

Declarative ETL pipelines
Data engineers can reduce development time and effort and instead focus on
implementing business logic and data quality checks within the data pipeline
using SQL or Python. This can be achieved by:

• Using intent-driven declarative development to simplify “how” and
define “what” to solve

• Automatically creating high-quality lineage and managing table
dependencies across the data pipeline

• Automatically checking for missing dependencies or syntax errors,
and managing data pipeline recovery

Data quality validation and monitoring
Improve data reliability throughout the data lakehouse so data teams can
confidently trust the information for downstream initiatives by:

• Defining data quality and integrity controls within the pipeline with
defined data expectations

• Addressing data quality errors with predefined policies (fail, drop,
alert, quarantine)

• Leveraging the data quality metrics that are captured, tracked and
reported for the entire data pipeline

5The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Fault tolerant and automatic recovery
Handle transient errors and recover from most common error conditions
occurring during the operation of a pipeline with fast, scalable automatic
recovery that includes:

• Fault tolerant mechanisms to consistently recover the state of data

• The ability to automatically track progress from the source with
checkpointing

• The ability to automatically recover and restore the data pipeline state

Data pipeline observability
Monitor overall data pipeline status from a dataflow graph dashboard and
visually track end-to-end pipeline health for performance, quality and latency.
Data pipeline observability capabilities include:

• A high-quality, high-fidelity lineage diagram that provides visibility
into how data flows for impact analysis

• Granular logging with performance and status of the data pipeline at
a row level

• Continuous monitoring of data pipeline jobs to ensure continued operation

Batch and stream data processing
Allow data engineers to tune data latency with cost controls without the
need to know complex stream processing or implement recovery logic.

• Execute data pipeline workloads on automatically provisioned elastic
Apache Spark™-based compute clusters for scale and performance

• Use performance optimization clusters that parallelize jobs and minimize
data movement

Automatic deployments and operations
Ensure reliable and predictable delivery of data for analytics and machine
learning use cases by enabling easy and automatic data pipeline deployments
and rollbacks to minimize downtime. Benefits include:

• Complete, parameterized and automated deployment for the
continuous delivery of data

• End-to-end orchestration, testing and monitoring of data pipeline
deployment across all major cloud providers

Scheduled pipelines and workflows
Simple, clear and reliable orchestration of data processing tasks for data and
machine learning pipelines with the ability to run multiple non-interactive tasks
as a directed acyclic graph (DAG) on a Databricks compute cluster.

• Easily orchestrate tasks in a DAG using the Databricks UI and API

• Create and manage multiple tasks in jobs via UI or API and features,
such as email alerts for monitoring

• Orchestrate any task that has an API outside of Databricks and across
all clouds

6The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Data Sources

Databases

Streaming
Sources

Cloud Object
Stores

SaaS
Applications

NoSQL

On-Premises
Systerms

Data Consumers

BI/Reporting

Dashboarding

Machine Learning/
Data Science

Observability, lineage and end-to-end data pipeline visibility

Open format storage

Automated data pipeline deployment
and operationalization

Data transformation and quality
Scheduling

and
orchestration

Continuous or batch data processing

Data engineering on the Databricks Lakehouse Platform

Data
ingestion

Conclusion

As organizations strive to become data-driven, data engineering is a focal
point for success. To deliver reliable, trustworthy data, data engineers shouldn’t
need to spend time manually developing and maintaining an end-to-end ETL
lifecycle. Data engineering teams need an efficient, scalable way to simplify ETL
development, improve data reliability and manage operations.

As described, the eight key differentiating capabilities simplify the management
of the ETL lifecycle by automating and maintaining all data dependencies,
leveraging built-in quality controls with monitoring and providing deep visibility
into pipeline operations with automatic recovery. Data engineering teams can

now focus on easily and rapidly building reliable end-to-end production-ready
data pipelines using only SQL or Python for batch and streaming that delivers
high-value data for analytics, data science or machine learning.

Use cases

In the next section, we describe best practices for data engineering end-to-
end use cases drawn from real-world examples. From data ingestion and data
processing to analytics and machine learning, you’ll learn how to translate raw
data into actionable data. We’ll arm you with the data sets and code samples, so
you can get your hands dirty as you explore all aspects of the data lifecycle on
the Databricks Lakehouse Platform.

Figure 2
Data engineering on Databricks reference architecture

7The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

02
SECTION

Real-Life Use Cases on the
Databricks Lakehouse Platform

Real-Time Point-of-Sale Analytics With the Data Lakehouse

Building a Cybersecurity Lakehouse for CrowdStrike Falcon Events

Unlocking the Power of Health Data With a Modern Data Lakehouse

Timeliness and Reliability in the Transmission of Regulatory Reports

AML Solutions at Scale Using Databricks Lakehouse Platform

Build a Real-Time AI Model to Detect Toxic Behavior in Gaming

Driving Transformation at Northwestern Mutual (Insights Platform)
by Moving Toward a Scalable, Open Lakehouse Architecture

How Databricks Data Team Built a Lakehouse Across Three Clouds and 50+ Regions

Disruptions in the supply chain — from reduced product supply and diminished
warehouse capacity — coupled with rapidly shifting consumer expectations for
seamless omnichannel experiences are driving retailers to rethink how they use
data to manage their operations. Prior to the pandemic, 71% of retailers named
lack of real-time visibility into inventory as a top obstacle to achieving their
omnichannel goals. The pandemic only increased demand for integrated online
and in-store experiences, placing even more pressure on retailers to present
accurate product availability and manage order changes on the fly. Better
access to real-time information is the key to meeting consumer demands in
the new normal.

In this blog, we’ll address the need for real-time data in retail, and how to
overcome the challenges of moving real-time streaming of point-of-sale data
at scale with a data lakehouse.

The point-of-sale system

The point-of-sale (POS) system has long been the central piece of in-store
infrastructure, recording the exchange of goods and services between retailer
and customer. To sustain this exchange, the POS typically tracks product

inventories and facilitates replenishment as unit counts dip below critical levels.
The importance of the POS to in-store operations cannot be overstated, and as
the system of record for sales and inventory operations, access to its data is of
key interest to business analysts.

Historically, limited connectivity between individual stores and corporate offices
meant the POS system (not just its terminal interfaces) physically resided within
the store. During off-peak hours, these systems might phone home to transmit
summary data, which when consolidated in a data warehouse, provide a day-old
view of retail operations performance that grows increasingly stale until the start
of the next night’s cycle.

SECTION 2 .1 Real-Time Point-of-Sale Analytics
 With the Data Lakehouse

 by B R Y A N S M I T H and R O B S A K E R

 September 9, 2021

POS
Data
Ingest

ETL
for
EDW

Business
Reports &
Analytics POS

Data
Ingest

ETL
for
EDW

Business
Reports &
Analytics

12 AM 2 AM 4 AM 6 AM 8 AM 10 AM 12 PM 2 PM 4 PM 6 PM 8 PM 10 PM 12 PM 2 PM 4 PM

Figure 1
Inventory availability with traditional, batch-oriented ETL patterns

9The Big Book of Data Engineering

https://www.mckinsey.com/industries/retail/our-insights/into-the-fast-lane-how-to-master-the-omnichannel-supply-chain
https://risnews.com/1-trillion-problem-managing-out-stocks-and-omnichannel-fulfillment-during-covid-19
https://nielseniq.com/global/en/insights/analysis/2020/covid-19-has-flipped-the-value-proposition-of-omnichannel-shopping-for-constrained-consumers/
https://nielseniq.com/global/en/insights/analysis/2020/covid-19-has-flipped-the-value-proposition-of-omnichannel-shopping-for-constrained-consumers/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Modern connectivity improvements have enabled more retailers to move to a
centralized, cloud-based POS system, while many others are developing near
real-time integrations between in-store systems and the corporate back office.
Near real-time availability of information means that retailers can continuously
update their estimates of item availability. No longer is the business managing
operations against their knowledge of inventory states as they were a day prior
but instead is taking actions based on their knowledge of inventory states as
they are now.

Near real-time insights

As impactful as near real-time insights into store activity are, the transition
from nightly processes to continuous streaming of information brings particular
challenges, not only for the data engineer, who must design a different kind of
data processing workflow, but also for the information consumer. In this post, we

share some lessons learned from customers who’ve recently embarked on this
journey and examine how key patterns and capabilities available through the
lakehouse pattern can enable success.

L E S S O N 1

Carefully consider scope

POS systems are often not limited to just sales and inventory management.
Instead, they can provide a sprawling range of functionality, including payment
processing, store credit management, billing and order placement, loyalty
program management, employee scheduling, time-tracking and even payroll,
making them a veritable Swiss Army knife of in-store functionality.

As a result, the data housed within the POS is typically spread across a large
and complex database structure. If lucky, the POS solution makes a data access
layer available, which makes this data accessible through more easily interpreted
structures. But if not, the data engineer must sort through what can be an
opaque set of tables to determine what is valuable and what is not.

Regardless of how the data is exposed, the classic guidance holds true: identify
a compelling business justification for your solution and use that to limit the
scope of the information assets you initially consume. Such a justification often
comes from a strong business sponsor, who is tasked with addressing a specific
business challenge and sees the availability of more timely information as critical
to their success.

12 AM 2 AM 4 AM 6 AM 8 AM 10 AM 12 PM 2 PM 4 PM 6 PM 8 PM 10 PM 12 AM 2 AM 4 AM

POS
Data
Ingest

ETL
for
EDW

Business
Reports &
Analytics

Figure 2
Inventory availability with streaming ETL patterns

1 0The Big Book of Data Engineering

https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

To illustrate this, consider a key challenge for many retail organizations today: the
enablement of omnichannel solutions. Such solutions, which enable buy-online,
pickup in-store (BOPIS) and cross-store transactions, depend on reasonably
accurate information about store inventory. If we were to limit our initial scope
to this one need, the information requirements for our monitoring and analytics
system become dramatically reduced. Once a real-time inventory solution is
delivered and value is recognized by the business, we can expand our scope
to consider other needs, such as promotions monitoring and fraud detection,
expanding the breadth of information assets leveraged with each iteration.

L E S S O N 2

Align transmission with patterns of data generation and time
sensitivities

Different processes generate data differently within the POS. Sales transactions
are likely to leave a trail of new records appended to relevant tables. Returns may
follow multiple paths, triggering updates to past sales records, the insertion of
new, reversing sales records and/or the insertion of new information in returns-
specific structures. Vendor documentation, tribal knowledge and even some
independent investigative work may be required to uncover exactly how and
where event-specific information lands within the POS.

Understanding these patterns can help build a data transmission strategy for
specific kinds of information. Higher frequency, finer-grained, insert-oriented
patterns may be ideally suited for continuous streaming. Less frequent,
larger-scale events may best align with batch-oriented, bulk data styles of
transmission. But if these modes of data transmission represent two ends of a
spectrum, you are likely to find most events captured by the POS fall somewhere
in between.

The beauty of the data lakehouse approach to data architecture is that multiple
modes of data transmission can be employed in parallel. For data naturally
aligned with the continuous transmission, streaming may be employed. For
data better aligned with bulk transmission, batch processes may be used. And
for those data falling in the middle, you can focus on the timeliness of the data
required for decision-making and allow that to dictate the path forward. All of
these modes can be tackled with a consistent approach to ETL implementation,
a challenge that thwarted many earlier implementations of what were frequently
referred to as lambda architectures.

1 1The Big Book of Data Engineering

https://databricks.com/p/ebook/the-delta-lake-series-streaming
https://databricks.com/p/ebook/the-delta-lake-series-streaming
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

L E S S O N 3
Land the data in stages

Data arrives from the in-store POS systems with different frequencies,
formats and expectations for timely availability. Leveraging the Bronze, Silver
& Gold design pattern popular within lakehouses, you can separate initial
cleansing, reformatting and persistence of the data from the more complex
transformations required for specific business-aligned deliverables.

L E S S O N 4
Manage expectations

The move to near real-time analytics requires an organizational shift. Gartner
describes this through their Streaming Analytics Maturity model within which
analysis of streaming data becomes integrated into the fabric of day-to-day
operations. This does not happen overnight.

Instead, data engineers need time to recognize the challenges inherent to
streaming delivery from physical store locations into a centralized, cloud-based
back office. Improvements in connectivity and system reliability coupled with
increasingly robust ETL workflows land data with greater timeliness, reliability and
consistency. This often entails enhancing partnerships with systems engineers and
application developers to support a level of integration not typically present in the
days of batch-only ETL workflows.

Business analysts will need to become familiar with the inherent noisiness of data
being updated continuously. They will need to relearn how to perform diagnostic
and validation work on a data set, such as when a query that ran seconds prior
now returns a slightly different result. They must gain a deeper awareness of the
problems in the data which are often hidden when presented in daily aggregates.
All of this will require adjustments both to their analysis and their response to
detected signals in their results.Figure 3

A data lakehouse architecture for the calculation of current inventory leveraging the Bronze, Silver and Gold pattern
of data persistence

inventory change events
(streaming events){JSON}

pos.inventory_change

flatten dedup append

(streaming ETL)

inventory snapshots
(batch files)

pos.inventory_snapshot

(streaming ETL)

pos.latest_inventory_snapshot

merge

append

Bronze-to-Silver ETL

pos.inventory_current

(streaming ETL)

(batch ETL)

Silver-to-Gold ETLIngest

1 2The Big Book of Data Engineering

https://databricks.com/blog/2019/08/14/productionizing-machine-learning-with-delta-lake.html
https://databricks.com/blog/2019/08/14/productionizing-machine-learning-with-delta-lake.html
https://blogs.gartner.com/nick-heudecker/five-levels-of-streaming-analytics-maturity/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

All of this takes place in just the first few stages of maturation. In later stages,
the organization’s ability to detect meaningful signals within the stream may lead
to more automated sense and response capabilities. Here, the highest levels of
value in the data streams are unlocked. But monitoring and governance must
be put into place and proven before the business will entrust its operations to
these technologies.

Implementing POS streaming

To illustrate how the lakehouse architecture can be applied to POS data, we’ve
developed a demonstration workflow within which we calculate a near real-time
inventory. In it, we envision two separate POS systems transmitting inventory-
relevant information associated with sales, restocks and shrinkage data along
with buy-online, pickup in-store (BOPIS) transactions (initiated in one system
and fulfilled in the other) as part of a streaming inventory change feed. Periodic
(snapshot) counts of product units on-shelf are captured by the POS and
transmitted in bulk. These data are simulated for a one-month period and played
back at 10x speed for greater visibility into inventory changes.

The ETL processes (as pictured in Figure 3) represent a mixture of streaming
and batch techniques. A two-staged approach with minimally transformed
data captured in Delta tables representing our Silver layer separates our
initial, more technically aligned ETL approach with the more business-aligned
approach required for current inventory calculations. The second stage has been
implemented using traditional structured streaming capabilities, something
we may revisit with the new Delta Live Tables functionality as it makes its way
toward general availability.

The demonstration makes use of Azure IOT Hubs and Azure Storage for data
ingestion but would work similarly on the AWS and GCP clouds with appropriate
technology substitutions.

• POS 01: Environment Setup

• POS 02: Data Generation

• POS 03: Ingest ETL

• POS 04: Current Inventory

Start experimenting with these free Databricks notebooks

1 3The Big Book of Data Engineering

https://docs.databricks.com/data-engineering/delta-live-tables/index.html?_gl=1*18vb6lc*_gcl_aw*R0NMLjE2MzA2OTc4NTguQ2p3S0NBandqOGVKQmhBNUVpd0FnM3owbTloT2FXdkFLSWRVNHFhSlVMekJmQ0RVSzNReVk4RHhjMUt6UmZMWXppSlVwNG92OEdBa1FSb0NMek1RQXZEX0J3RQ..&_ga=2.79555668.1380743252.1632157914-566957636.1584739382&_gac=1.49556052.1630697859.CjwKCAjwj8eJBhA5EiwAg3z0m9hOaWvAKIdU4qaJULzBfCDUK3QyY8Dxc1KzRfLYziJUp4ov8GAkQRoCLzMQAvD_BwE
https://databricks.com/notebooks/pos-streaming/01_environment_setup.html
https://databricks.com/notebooks/pos-streaming/02_data_generation.html
https://databricks.com/notebooks/pos-streaming/03_%20data_ingest.html
https://databricks.com/notebooks/pos-streaming/04_current_inventory.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Endpoint data is required by security teams for threat detection, threat hunting,
incident investigations and to meet compliance requirements. The data volumes
can be terabytes per day or petabytes per year. Most organizations struggle to
collect, store and analyze endpoint logs because of the costs and complexities
associated with such large data volumes. But it doesn’t have to be this way.

In this two-part blog series, we will cover how you can operationalize petabytes
of endpoint data with Databricks to improve your security posture with
advanced analytics in a cost-effective way. Part 1 (this blog) will cover the
architecture of data collection and the integration with a SIEM (Splunk). At the
end of this blog, with notebooks provided, you will be ready to use the data for
analysis. Part 2 will discuss specific use cases, how to create ML models and
automated enrichments and analytics. At the end of part 2, you will be able to
implement the notebooks to detect and investigate threats using endpoint data.

We will use CrowdStrike’s Falcon logs as our example. To access Falcon logs,
one can use the Falcon Data Replicator (FDR) to push raw event data from
CrowdStrike’s platform to cloud storage such as Amazon S3. This data can be
ingested, transformed, analyzed and stored using the Databricks Lakehouse
Platform alongside the rest of their security telemetry. Customers can ingest

CrowdStrike Falcon data, apply Python-based real-time detections, search
through historical data with Databricks SQL, and query from SIEM tools like
Splunk with Databricks Add-on for Splunk.

Challenge of operationalizing CrowdStrike data

Although the CrowdStrike Falcon data offers comprehensive event logging
details, it is a daunting task to ingest, process and operationalize complex and
large volumes of cybersecurity data on a near real-time basis in a cost-effective
manner. These are a few of the well-known challenges:

• Real-time data ingestion at scale: It is difficult to keep track of processed
and unprocessed raw data files, which are written by FDR on cloud storage
in near real time.

• Complex transformations: The data format is semi-structured. Every line
of each log file contains hundreds of underministically different types of
payloads, and the structure of event data can change over time.

• Data governance: This kind of data can be sensitive, and access must be
gated to only users who need it.

SECTION 2 . 2 Building a Cybersecurity Lakehouse
 for CrowdStrike Falcon Events

 by A E M R O A M A R E , A R U N P A M U L A P A T I ,

 Y O N G S H E N G H U A N G and J A S O N P O H L

 May 20, 2021

1 4The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

• Simplified security analytics end-to-end: Scalable tools are needed to
do the data engineering, ML and analysis on these fast-moving and high-
volume data sets.

• Collaboration: Effective collaboration can leverage domain expertise from
the data engineers, cybersecurity analysts and ML engineers. Thus, having a
collaborative platform improves the efficiency of cybersecurity analysis and
response workloads.

As a result, security engineers across enterprises find themselves in a difficult
situation, struggling to manage cost and operational efficiency. They either
have to accept being locked into very expensive proprietary systems or spend
tremendous effort to build their own endpoint security tools while fighting for
scalability and performance.

Databricks cybersecurity lakehouse

Databricks offers security teams and data scientists a new hope to perform their
jobs efficiently and effectively, as well as a set of tools to combat the growing
challenges of big data and sophisticated threats.

Lakehouse, an open architecture that combines the best elements of data
lakes and data warehouses, simplifies building a multi-hop data engineering

pipeline that progressively adds structure to the data. The benefit of a multi-hop
architecture is that data engineers can build a pipeline that begins with
raw data as a “single source of truth” from which everything flows. CrowdStrike’s
semi-structured raw data can be stored for years, and subsequent
transformations and aggregations can be done in an end-to-end streaming
fashion to refine the data and introduce context-specific structure to analyze
and detect security risks in different scenarios.

• Data ingestion: Auto Loader (AWS | Azure | GCP) helps to immediately
read data as soon as a new file is written by CrowdStrike FDR into raw data
storage. It leverages cloud notification services to incrementally process
new files as they arrive on the cloud. Auto Loader also automatically
configures and listens to the notification service for new files and can
scale up to millions of files per second.

• Unified stream and batch processing: Delta Lake is an open approach to
bringing data management and governance to data lakes that leverages the
distributed computation power of Apache Spark™ for huge volumes of data
and metadata. Databricks Delta Engine is a highly optimized engine that can
process millions of records per second.

• Data governance: With Databricks Table Access Control (AWS | Azure |
GCP), admins can grant different levels of access to Delta tables based on a
user’s business function.

1 5The Big Book of Data Engineering

http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://docs.databricks.com/spark/latest/structured-streaming/auto-loader.html?_gl=1*eiqfgs*_gcl_aw*R0NMLjE2MzA2OTc4NTguQ2p3S0NBandqOGVKQmhBNUVpd0FnM3owbTloT2FXdkFLSWRVNHFhSlVMekJmQ0RVSzNReVk4RHhjMUt6UmZMWXppSlVwNG92OEdBa1FSb0NMek1RQXZEX0J3RQ..&_ga=2.50119142.1380743252.1632157914-566957636.1584739382&_gac=1.190448473.1630697859.CjwKCAjwj8eJBhA5EiwAg3z0m9hOaWvAKIdU4qaJULzBfCDUK3QyY8Dxc1KzRfLYziJUp4ov8GAkQRoCLzMQAvD_BwE
https://docs.databricks.com/spark/latest/structured-streaming/auto-loader.html?_gl=1*hj8xmw*_gcl_aw*R0NMLjE2MzA2OTc4NTguQ2p3S0NBandqOGVKQmhBNUVpd0FnM3owbTloT2FXdkFLSWRVNHFhSlVMekJmQ0RVSzNReVk4RHhjMUt6UmZMWXppSlVwNG92OEdBa1FSb0NMek1RQXZEX0J3RQ..&_ga=2.108456898.1380743252.1632157914-566957636.1584739382&_gac=1.16984395.1630697859.CjwKCAjwj8eJBhA5EiwAg3z0m9hOaWvAKIdU4qaJULzBfCDUK3QyY8Dxc1KzRfLYziJUp4ov8GAkQRoCLzMQAvD_BwE
https://docs.microsoft.com/en-us/azure/databricks/spark/latest/structured-streaming/auto-loader
https://docs.gcp.databricks.com/spark/latest/structured-streaming/auto-loader.html?_gl=1*hj8xmw*_gcl_aw*R0NMLjE2MzA2OTc4NTguQ2p3S0NBandqOGVKQmhBNUVpd0FnM3owbTloT2FXdkFLSWRVNHFhSlVMekJmQ0RVSzNReVk4RHhjMUt6UmZMWXppSlVwNG92OEdBa1FSb0NMek1RQXZEX0J3RQ..
https://databricks.com/product/delta-lake-on-databricks
https://docs.databricks.com/security/access-control/table-acls/index.html?_gl=1*9loblw*_gcl_aw*R0NMLjE2MzA2OTc4NTguQ2p3S0NBandqOGVKQmhBNUVpd0FnM3owbTloT2FXdkFLSWRVNHFhSlVMekJmQ0RVSzNReVk4RHhjMUt6UmZMWXppSlVwNG92OEdBa1FSb0NMek1RQXZEX0J3RQ..&_ga=2.143131509.1380743252.1632157914-566957636.1584739382&_gac=1.213583462.1630697859.CjwKCAjwj8eJBhA5EiwAg3z0m9hOaWvAKIdU4qaJULzBfCDUK3QyY8Dxc1KzRfLYziJUp4ov8GAkQRoCLzMQAvD_BwE
https://docs.microsoft.com/en-us/azure/databricks/security/access-control/table-acls/
https://docs.gcp.databricks.com/security/access-control/table-acls/index.html?_gl=1*9loblw*_gcl_aw*R0NMLjE2MzA2OTc4NTguQ2p3S0NBandqOGVKQmhBNUVpd0FnM3owbTloT2FXdkFLSWRVNHFhSlVMekJmQ0RVSzNReVk4RHhjMUt6UmZMWXppSlVwNG92OEdBa1FSb0NMek1RQXZEX0J3RQ..
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

• Security analysis tools: Databricks SQL helps to create an interactive
dashboard with automatic alerting when unusual patterns are detected.
Likewise, it can easily integrate with highly adopted BI tools such as Tableau,
Microsoft Power BI and Looker.

• Collaboration on Databricks notebooks: Databricks collaborative
notebooks enable security teams to collaborate in real time. Multiple
users can run queries in multiple languages, share visualizations and make
comments within the same workspace to keep investigations moving
forward without interruption.

Lakehouse architecture for CrowdStrike Falcon data

We recommend the following lakehouse architecture for cybersecurity
workloads, such as CrowdStrike’s Falcon data. Auto Loader and Delta Lake
simplify the process of reading raw data from cloud storage and writing to a
Delta table at low cost and with minimal DevOps work.

In this architecture, semi-structured CrowdStrike data is loaded to the customer’s
cloud storage in the landing zone. Then Auto Loader uses cloud notification
services to automatically trigger the processing and ingestion of new files into
the customer’s Bronze tables, which will act as the single source of truth for all
downstream jobs. Auto Loader will track processed and unprocessed files using
checkpoints in order to prevent duplicate data processing.

As we move from the Bronze to the Silver stage, schema will be added to provide
structure to the data. Since we are reading from a single source of truth, we are
able to process all of the different event types and enforce the correct schema as
they are written to their respective tables. The ability to enforce schemas at the
Silver layer provides a solid foundation for building ML and analytical workloads.

The Gold stage, which aggregates data for faster query and performance in
dashboards and BI tools, is optional, depending on the use case and data
volumes. Alerts can be set to trigger when unexpected trends are observed.

Figure 1
Lakehouse architecture for CrowdStrike Falcon data

Landing Zone:
Raw Data

Staging Zone:
Technically Standardized Data

Common Data Model:
Shareable Assets

Integration:
Connect With Cloud Technologies
MLflow and SQL analytics can connect to other
BI and ML cloud technologies

Will contain prepared tables/views of the
enterprise data in standard agreed taxonomy.

MLflow:
Full-cycle machine learning

Manage basic data standardization, formatting to
have it ready for consumption by other zones.

Designated for accepting source data in
“Original Fidelity” format.

Auto Loader

1 6The Big Book of Data Engineering

https://databricks.com/product/databricks-sql
https://databricks.com/product/collaborative-notebooks
https://databricks.com/product/collaborative-notebooks
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Another optional feature is the Databricks Add-on for Splunk, which allows
security teams to take advantage of Databricks cost-effective model and the
power of AI without having to leave the comforts of Splunk. Customers can run
ad hoc queries against Databricks from within a Splunk dashboard or search bar
with the add-on. Users can also launch notebooks or jobs in Databricks through
a Splunk dashboard or in response to a Splunk search. The Databricks integration
is bidirectional, letting customers summarize noisy data or run detections in
Databricks that show up in Splunk Enterprise Security. Customers can even
run Splunk searches from within a Databricks notebook to prevent the need to
duplicate data.

The Splunk and Databricks integration allows customers to reduce costs, expand
the data sources they analyze and provide the results of a more robust analytics
engine, all without changing the tools used by their staff day-to-day.

Code walkthrough

Since Auto Loader abstracts the most complex part of file-based data ingestion,
a raw-to-Bronze ingestion pipeline can be created within a few lines of code.
Below is a Scala code example for a Delta ingestion pipeline. CrowdStrike Falcon
event records have one common field name: “event_simpleName.”

val crowdstrikeStream = spark.readStream
 .format(“cloudFiles”)
 .option(“cloudFiles.format”, “text”) // text file doesn’t need schema
 .option(“cloudFiles.region”, “us-west-2”)
 .option(“cloudFiles.useNotifications”, “true”)
 .load(rawDataSource)
 .withColumn(“load_timestamp”, current_timestamp())
 .withColumn(“load_date”, to_date($”load_timestamp”))
 .withColumn(“eventType”, from_json($”value”, “struct”, Map.empty[String, String]))
.selectExpr(“eventType.event_simpleName”,”load_date”,”load_timestamp”, “value”)
 .writeStream
 .format(“delta”)
 .option(“checkpointLocation”, checkPointLocation)
 .table(“demo_bronze.crowdstrike”)

In the raw-to-Bronze layer, only the event name is extracted from the raw data.
By adding a load timestamp and date columns, users store the raw data into the
Bronze table. The Bronze table is partitioned by event name and load date, which
helps to make Bronze-to-Silver jobs more performant, especially when there
is interest for a limited number of event date ranges. Next, a Bronze-to-Silver

1 7The Big Book of Data Engineering

https://github.com/databrickslabs/splunk-integration
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

streaming job reads events from a Bronze table, enforces a schema and writes
to hundreds of event tables based on the event name. Below is a Scala code
example:

spark
 .readStream
 .option(“ignoreChanges”, “true”)
 .option(“maxBytesPerTrigger”, “2g”)
 .option(“maxFilesPerTrigger”, “64”)
 .format(“delta”)
 .load(bronzeTableLocation)
 .filter($”event_simpleName” === “event_name”)
 .withColumn(“event”, from_json($”value”, schema_of_json(sampleJson)))
 .select($”event.*”, $”load_timestamp”, $”load_date”)
 .withColumn(“silver_timestamp”, current_timestamp())
 .writeStream
 .format(“delta”)
 .outputMode(“append”)
 .option(“mergeSchema”, “true”)
 .option(“checkpointLocation”, checkPoint)
 .option(“path”, tableLocation)
 .start()

Each event schema can be stored in a schema registry or in a Delta table in
case a schema needs to be shared across multiple data-driven services. Note
that the above code uses a sample JSON string read from the Bronze table,
and the schema is inferred from the JSON using schema_of_json(). Later,
the JSON string is converted to a struct using from_json(). Then, the struct is
flattened, prompting the addition of a timestamp column. These steps provide
a DataFrame with all the required columns to be appended to an event table.
Finally, we write this structured data to an event table with append mode.

It is also possible to fan out events to multiple tables with one stream with
foreachBatch by defining a function that will handle microbatches. Using
foreachBatch(), it is possible to reuse existing batch data sources for filtering
and writing to multiple tables. However, foreachBatch() provides only at-least-
once write guarantees. So, a manual implementation is needed to enforce
exactly-once semantics.

At this stage, the structured data can be queried with any of the languages
supported in Databricks notebooks and jobs: Python, R, Scala and SQL. The Silver
layer data is convenient to use for ML and cyberattack analysis.

The next streaming pipeline would be Silver-to-Gold. In this stage, it is possible
to aggregate data for dashboarding and alerting. In the second part of this blog
series we will provide some more insights into how we build dashboards using
Databricks SQL.

What’s next

Stay tuned for more blog posts that build even more value on this use case by
applying ML and using Databricks SQL.

You can use these notebooks in your own Databricks deployment. Each section
of the notebooks has comments. We invite you to email us at cybersecurity@
databricks.com. We look forward to your questions and suggestions for making
this notebook easier to understand and deploy.

Start experimenting with these
free Databricks notebooks.

1 8The Big Book of Data Engineering

https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#schema_of_json-org.apache.spark.sql.Column-
https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#foreachbatch
https://databricks.com/notebooks/lakehouse-pipeline-demo/index.html
mailto:cybersecurity%40databricks.com?subject=
mailto:cybersecurity%40databricks.com?subject=
https://databricks.com/notebooks/lakehouse-pipeline-demo/index.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

How to overcome the challenges of data
warehouses and data lakes in the healthcare and
life sciences industries

A single patient produces approximately 80 megabytes of medical data every
year. Multiply that across thousands of patients over their lifetime, and you’re
looking at petabytes of patient data that contains valuable insights. Unlocking
these insights can help streamline clinical operations, accelerate drug R&D and
improve patient health outcomes. But first, the data needs to be prepared for
downstream analytics and AI. Unfortunately, most healthcare and life sciences
organizations spend an inordinate amount of time simply gathering, cleaning and
structuring their data.

SECTION 2 .3 Unlocking the Power of Health Data
 With a Modern Data Lakehouse

 by M I C H A E L O R T E G A , M I C H A E L S A N K Y and A M I R K E R M A N Y

 July 19, 2021

Figure 1
Health data is growing exponentially, with a single patient producing over 80 megabytes of data a year

A single patient produces 80+ megabytes of medical data every year

1 9The Big Book of Data Engineering

https://www.frontiersin.org/articles/10.3389/fict.2018.00030/full#B37
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Challenges with data analytics in healthcare and
life sciences

There are lots of reasons why data preparation, analytics and AI are challenges
for organizations in the healthcare industry, but many are related to investments
in legacy data architectures built on data warehouses. Here are the four most
common challenges we see in the industry:

C H A L L E N G E # 1 : V O L U M E
Scaling for rapidly growing health data

Genomics is perhaps the single best example of the explosive growth in data
volume in healthcare. The first genome cost more than $1B to sequence. Given
the prohibitive costs, early efforts (and many efforts still) focused on genotyping,
a process to look for specific variants in a very small fraction of a person’s
genome, typically around 0.1%. That evolved to Whole Exome Sequencing, which
covers the protein coding portions of the genome, still less than 2% of the entire
genome. Companies now offer direct-to-consumer tests for Whole Genome
Sequencing (WGS) that are less than $300 for 30x WGS. On a population level,
the UK Biobank is releasing more than 200,000 whole genomes for research this
year. It’s not just genomics. Imaging, health wearables and electronic medical
records are growing tremendously as well.

Scale is the name of the game for initiatives like population health analytics and
drug discovery. Unfortunately, many legacy architectures are built on-premises
and designed for peak capacity. This approach results in unused compute power
(and ultimately wasted dollars) during periods of low usage and doesn’t scale
quickly when upgrades are needed.

C H A L L E N G E # 2 : VA R I E T Y
Analyzing diverse health data

Healthcare and life sciences organizations deal with a tremendous amount of
data variety, each with its own nuances. It is widely accepted that over 80% of
medical data is unstructured, yet most organizations still focus their attention
on data warehouses designed for structured data and traditional SQL-based
analytics. Unstructured data includes image data, which is critical to diagnose
and measure disease progression in areas like oncology, immunology and
neurology (the fastest growing areas of cost), and narrative text in clinical notes,
which are critical to understanding the complete patient health and social
history. Ignoring these data types, or setting them to the side, is not an option.

To further complicate matters, the healthcare ecosystem is becoming more
interconnected, requiring stakeholders to grapple with new data types. For
example, providers need claims data to manage and adjudicate risk-sharing
agreements, and payers need clinical data to support processes like prior
authorizations and to drive quality measures. These organizations often lack data
architectures and platforms to support these new data types.

Some organizations have invested in data lakes to support unstructured data
and advanced analytics, but this creates a new set of issues. In this environment,
data teams now need to manage two systems — data warehouses and data
lakes — where data is copied across siloed tools, resulting in data quality and
management issues.

2 0The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

C H A L L E N G E # 3 : V E L O C I T Y
Processing streaming data for real-time patient insights

In many settings, healthcare is a matter of life and death. Conditions can be
very dynamic, and batch data processing — done even on a daily basis — often
is not good enough. Access to the latest, up-to-the-second information is
critical to successful interventional care. To save lives, streaming data is used by
hospitals and national health systems for everything from predicting sepsis to
implementing real-time demand forecasting for ICU beds.

Additionally, data velocity is a major component of the healthcare digital
revolution. Individuals have access to more information than ever before and are
able to influence their care in real time. For example, wearable devices — like the
continuous glucose monitors provided by Livongo — stream real-time data into
mobile apps that provide personalized behavioral recommendations.

Despite some of these early successes, most organizations have not designed
their data architecture to accommodate streaming data velocity. Reliability issues
and challenges integrating real-time data with historic data is inhibiting innovation.

C H A L L E N G E # : 4 V E R A C I T Y

Building trust in healthcare data and AI

Last, but not least, clinical and regulatory standards demand the utmost level
of data accuracy in healthcare. Healthcare organizations have high public
health compliance requirements that must be met. Data democratization within
organizations requires governance.

Additionally, organizations need good model governance when bringing artificial
intelligence (AI) and machine learning (ML) into a clinical setting. Unfortunately,
most organizations have separate platforms for data science workflows that are
disconnected from their data warehouse. This creates serious challenges when
trying to build trust and reproducibility in AI-powered applications.

Unlocking health data with a lakehouse

The lakehouse architecture helps healthcare and life sciences organizations
overcome these challenges with a modern data architecture that combines the
low cost, scalability and flexibility of a cloud data lake with the performance and
governance of a data warehouse. With a lakehouse, organizations can store all
types of data and power all types of analytics and ML in an open environment.

2 1The Big Book of Data Engineering

http://youtube.com/watch?v=B9kQp2i-fso
https://databricks.com/blog/2021/08/30/frequently-asked-questions-about-the-data-lakehouse.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Specifically, the lakehouse provides the following benefits for healthcare and life
sciences organizations:

• Organize all your health data at scale. At the core of the Databricks
Lakehouse Platform is Delta Lake, an open-source data management
layer that provides reliability and performance to your data lake. Unlike a
traditional data warehouse, Delta Lake supports all types of structured and
unstructured data, and to make ingesting health data easy, Databricks has
built connectors for domain-specific data types like electronic medical
records and genomics. These connectors come packaged with industry-
standard data models in a set of quick-start Solution Accelerators.
Additionally, Delta Lake provides built-in optimizations for data caching and

indexing to significantly accelerate data processing speeds. With these
capabilities, teams can land all their raw data in a single place and then
curate it to create a holistic view of patient health.

• Power all your patient analytics and AI. With all your data centralized in
a lakehouse, teams can build powerful patient analytics and predictive
models directly on the data. To build on these capabilities, Databricks
provides collaborative workspaces with a full suite of analytics and AI tools
and support for a broad set of programming languages — such as SQL,
R, Python and Scala. This empowers a diverse group of users, like data
scientists, engineers and clinical informaticists, to work together to analyze,
model and visualize all your health data.

Figure 2
Deliver on all your healthcare and life sciences data analytics use cases with a modern lakehouse architecture

Building a Lakehouse for Healthcare and Life Sciences

Process, manage and query all of
your data in real time

Full suite of analytics and ML tools
with tracking and management

Ad Hoc
Data Science

Production
Machine Learning

BI Reporting and
Dashboards

2 2The Big Book of Data Engineering

https://delta.io/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

• Provide real-time patient insights. The lakehouse provides a unified
architecture for streaming and batch data. No need to support two different
architectures nor wrestle with reliability issues. Additionally, by running the
lakehouse architecture on Databricks, organizations have access to a cloud-
native platform that auto-scales based on workload. This makes it easy to
ingest streaming data and blend with petabytes of historic data for near
real-time insights at population scale.

• Deliver data quality and compliance. To address data veracity, the
lakehouse includes capabilities missing from traditional data lakes like
schema enforcement, auditing, versioning and fine-grained access controls.
An important benefit of the lakehouse is the ability to perform both
analytics and ML on this same, trusted data source. Additionally, Databricks
provides ML model tracking and management capabilities to make it
easy for teams to reproduce results across environments and help meet
compliance standards. All of these capabilities are provided in a HIPAA-
compliant analytics environment.

This lakehouse is the best architecture for managing healthcare and life
sciences data. By marrying this architecture with the capabilities of Databricks,
organizations can support a wide range of highly impactful use cases, from drug
discovery through chronic disease management programs.

Get started building your lakehouse for healthcare
and life sciences

As mentioned above, we are pleased to make available a series of Solution
Accelerators to help healthcare and life sciences organizations get started
building a lakehouse for their specific needs. Our Solution Accelerators
include sample data, prebuilt code and step-by-step instructions within a
Databricks notebook.

New Solution Accelerator: Lakehouse for Real-World Evidence. Real-world
data provides pharmaceutical companies with new insights into patient health
and drug efficacy outside of a trial. This accelerator helps you build a Lakehouse
for Real-World Evidence on Databricks. We’ll show you how to ingest sample
EHR data for a patient population, structure the data using the OMOP common
data model and then run analyses at scale for challenges like investigating drug
prescription patterns.

Learn more about all of our Healthcare and Life Sciences solutions.

Start experimenting with these
free Databricks notebooks.

2 3The Big Book of Data Engineering

https://databricks.com/solutions/industries/healthcare-industry-solutions
https://databricks.com/solutions/industries/life-sciences-industry-solutions
https://databricks.com/notebooks/rwe-lakehouse/index.html#0-README.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Managing risk and regulatory compliance is an increasingly complex and costly
endeavor. Regulatory change has increased 500% since the 2008 global financial
crisis and boosted the regulatory costs in the process. Given the fines associated
with non-compliance and SLA breaches (banks hit an all-time high in fines of
$10 billion in 2019 for AML), processing reports has to proceed even if data is
incomplete. On the other hand, a track record of poor data quality is also fined
because of “insufficient controls.” As a consequence, many financial services
institutions (FSIs) are often left battling between poor data quality and strict SLAs,
balancing between data reliability and data timeliness.

In this regulatory reporting Solution Accelerator, we demonstrate how Delta
Live Tables can guarantee the acquisition and processing of regulatory data in
real time to accommodate regulatory SLAs. With Delta Sharing and Delta Live
Tables combined, analysts gain real-time confidence in the quality of regulatory
data being transmitted. In this blog post, we demonstrate the benefits of the
lakehouse architecture to combine financial services industry data models with
the flexibility of cloud computing to enable high governance standards with low
development overhead. We will now explain what a FIRE data model is and how
Delta Live Tables can be integrated to build robust data pipelines.

FIRE data model

The Financial Regulatory data standard (FIRE) defines a common specification
for the transmission of granular data between regulatory systems in finance.
Regulatory data refers to data that underlies regulatory submissions,
requirements and calculations and is used for policy, monitoring and supervision
purposes. The FIRE data standard is supported by the European Commission,
the Open Data Institute and the Open Data Incubator FIRE data standard for
Europe via the Horizon 2020 funding program. As part of this solution, we
contributed a PySpark module that can interpret FIRE data models into Apache
Spark™ operating pipelines.

SECTION 2 .4 Timeliness and Reliability in the
 Transmission of Regulatory Reports

 by A N T O I N E A M E N D and F A H M I D K A B I R

 September 17, 2021

2 4The Big Book of Data Engineering

https://databricks.com/product/delta-live-tables
https://databricks.com/product/delta-live-tables
https://databricks.com/product/delta-sharing
https://suade.org/fire/
https://ec.europa.eu/info/index_en
https://theodi.org/
https://opendataincubator.eu/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Delta Live Tables

Databricks recently announced a new product for data pipelines orchestration,
Delta Live Tables, which makes it easy to build and manage reliable data
pipelines at enterprise scale. With the ability to evaluate multiple expectations,
discard or monitor invalid records in real time, the benefits of integrating the
FIRE data model on Delta Live Tables are obvious. As illustrated in the following
architecture, Delta Live Tables will ingest granular regulatory data landing onto
cloud storage, schematize content and validate records for consistency in line
with the FIRE data specification. Keep reading to see us demo the use of Delta
Sharing to exchange granular information between regulatory systems in a safe,
scalable and transparent manner.

Enforcing schema

Even though some data formats may “look” structured (e.g., JSON files), enforcing
a schema is not just a good engineering practice; in enterprise settings,
and especially in the space of regulatory compliance, schema enforcement
guarantees any missing field to be expected, unexpected fields to be discarded
and data types to be fully evaluated (e.g., a date should be treated as a date
object and not a string). It also proof-tests your systems for eventual data drift.
Using the FIRE PySpark module, we programmatically retrieve the Spark schema
required to process a given FIRE entity (collateral entity in that example) that we
apply on a stream of raw records.

from fire.spark import FireModel
fire_model = FireModel().load(“collateral”)
fire_schema = fire_model.schema

In the example below, we enforce schema to incoming CSV files. By decorating this
process using @dlt annotation, we define our entry point to our Delta Live Table,
reading raw CSV files from a mounted directory and writing schematized records
to a Bronze layer.

@dlt.create_table()
def collateral_bronze():
 return (
 spark
 .readStream
 .option(“maxFilesPerTrigger”, “1”)
 .option(“badRecordsPath”, “/path/to/invalid/collateral”)
 .format(“csv”)
 .schema(fire_schema)
 .load(“/path/to/raw/collateral”)

D E LTA L I V E TA B L E SDATA S O U R C E S I N G E ST S E RV E

Auto Loader Applying FIRE
schema

Running
expectations

Operation
dashboard

Delta Sharing
Cloud Storage

agreements

loans

securities

etc.

Regulators

Figure 1

2 5The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Evaluating expectations

Applying a schema is one thing, enforcing its constraints is another. Given
the schema definition of a FIRE entity (see example of the collateral schema
definition), we can detect if a field is required or not. Given an enumeration
object, we ensure its values are consistent (e.g., currency code). In addition to
the technical constraints from the schema, the FIRE model also reports business
expectations, such as minimum, maximum, monetary and maxItems. All these
technical and business constraints will be programmatically retrieved from the
FIRE data model and interpreted as a series of Spark SQL expressions.

from fire.spark import FireModel
fire_model = FireModel().load(“collateral”)
fire_constraints = fire_model.constraints

With Delta Live Tables, users have the ability to evaluate multiple expectations at
once, enabling them to drop invalid records, simply monitor data quality or abort
an entire pipeline. In our specific scenario, we want to drop records failing any of
our expectations, which we later store to a quarantine table, as reported in the
notebooks provided in this blog.

@dlt.create_table()
@dlt.expect_all_or_drop(fire_constraints)
def collateral_silver():
 return dlt.read_stream(“collateral_bronze”)

With only a few lines of code, we ensured that our Silver table is both syntactically
(valid schema) and semantically (valid expectations) correct. As shown below,
compliance officers have full visibility around the number of records being
processed in real time. In this specific example, we ensured our collateral entity to
be exactly 92.2% complete (quarantine handles the remaining 7.8%).

Figure 2

2 6The Big Book of Data Engineering

https://github.com/SuadeLabs/fire/blob/master/v1-dev/collateral.json
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Operations data store

In addition to the actual data stored as Delta files, Delta Live Tables also stores
operation metrics as “delta” format under system/events. We follow a standard
pattern of the lakehouse architecture by “subscribing” to new operational
metrics using Auto Loader, processing system events as new metrics unfold — in
batch or in real time. Thanks to the transaction log of Delta Lake that keeps track
of any data update, organizations can access new metrics without having to
build and maintain their own checkpointing process.

input_stream = spark \
 .readStream \
 .format(“delta”) \
 .load(“/path/to/pipeline/system/events”)

output_stream = extract_metrics(input_stream)

output_stream \
 .writeStream \
 .format(“delta”) \
 .option(“checkpointLocation”, “/path/to/checkpoint”) \
 .table(metrics_table)

With all metrics available centrally into an operation store, analysts can use
Databricks SQL to create simple dashboarding capabilities or more complex
alerting mechanisms to detect data quality issues in real time.

The immutability aspect of the Delta Lake format coupled with the
transparency in data quality offered by Delta Live Tables allows financial
institutions to “time travel” to specific versions of their data that matches
both volume and quality required for regulatory compliance. In our specific
example, replaying our 7.8% of invalid records stored in quarantine will result
in a different Delta version attached to our Silver table, a version that can be
shared amongst regulatory bodies.

DESCRIBE HISTORY fire.collateral_silver

Figure 3

2 7The Big Book of Data Engineering

https://databricks.com/product/databricks-sql
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Transmission of regulatory data

With full confidence in both data quality and volume, financial institutions can
safely exchange information between regulatory systems using Delta Sharing, an
open protocol for enterprise data exchange. Not constraining end users to the
same platform nor relying on complex ETL pipelines to consume data (accessing
data files through an SFTP server, for instance), the open source nature of Delta
Lake makes it possible for data consumers to access schematized data natively
from Python, Spark or directly through MI/BI dashboards (such as Tableau or
Power BI).

Although we could be sharing our Silver table as is, we may want to use business
rules that only share regulatory data when a predefined data quality threshold
is met. In this example, we clone our Silver table at a different version and to a
specific location segregated from our internal networks and accessible by end
users (demilitarized zone, or DMZ).

from delta.tables import *

deltaTable = DeltaTable.forName(spark, “fire.collateral_silver”)
deltaTable.cloneAtVersion(
 approved_version,
 dmz_path,
 isShallow=False,
 replace=True
)

spark.sql(
 “CREATE TABLE fire.colleral_gold USING DELTA LOCATION ‘{}’”
 .format(dmz_path)
)

Although the Delta Sharing open source solution relies on a sharing server
to manage permission, Databricks leverages Unity Catalog to centralize and
enforce access control policies, provide users with full audit logs capability and
simplify access management through its SQL interface. In the example below, we
create a SHARE that includes our regulatory tables and a RECIPIENT to share our
data with.

-- DEFINE OUR SHARING STRATEGY
CREATE SHARE regulatory_reports;

ALTER SHARE regulatory_reports ADD TABLE fire.collateral_gold;
ALTER SHARE regulatory_reports ADD TABLE fire.loan_gold;
ALTER SHARE regulatory_reports ADD TABLE fire.security_gold;
ALTER SHARE regulatory_reports ADD TABLE fire.derivative_gold;

-- CREATE RECIPIENTS AND GRANT SELECT ACCESS
CREATE RECIPIENT regulatory_body;

GRANT SELECT ON SHARE regulatory_reports TO RECIPIENT regulatory_body;

Any regulator or user with granted permissions can access our underlying
data using a personal access token exchanged through that process. For more
information about Delta Sharing, please visit our product page and contact your
Databricks representative.

2 8The Big Book of Data Engineering

https://databricks.com/blog/2021/05/26/introducing-delta-sharing-an-open-protocol-for-secure-data-sharing.html
https://databricks.com/product/unity-catalog
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Proof-test your compliance

Through this series of notebooks and Delta Live Tables jobs, we demonstrated
the benefits of the lakehouse architecture in the ingestion, processing,
validation and transmission of regulatory data. Specifically, we addressed
the need for organizations to ensure consistency, integrity and timeliness of
regulatory pipelines that could be easily achieved using a common data model
(FIRE) coupled with a flexible orchestration engine (Delta Live Tables). With
Delta Sharing capabilities, we finally demonstrated how FSIs could bring full
transparency and confidence to the regulatory data exchanged between various
regulatory systems while meeting reporting requirements, reducing operation
costs and adapting to new standards.

Get familiar with the FIRE data pipeline using the attached notebooks and
visit our Solution Accelerators Hub to get up to date with our latest solutions
for financial services.

Start experimenting with these
free Databricks notebooks.

2 9The Big Book of Data Engineering

https://databricks.com/notebooks/reg_reporting/index.html#01_fire_dlt_orchestration.html
https://databricks.com/solutions/accelerators
https://databricks.com/notebooks/reg_reporting/index.html#02_fire_dlt_metrics.html
https://databricks.com/notebooks/reg_reporting/index.html#01_fire_dlt_orchestration.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Solving the key challenges to building a financial
crimes solution

Anti-money laundering (AML) compliance has been undoubtedly one of the top
agenda items for regulators providing oversight of financial institutions across
the globe. As AML evolved and became more sophisticated over the decades, so
have the regulatory requirements designed to counter modern money laundering
and terrorist financing schemes. The Bank Secrecy Act of 1970 provided
guidance and framework for financial institutions to put in proper controls to
monitor financial transactions and report suspicious fiscal activity to relevant
authorities. This law provided the framework for how financial institutes combat
money laundering and financial terrorism.

Why anti-money laundering is so complex

Current AML operations bear little resemblance to those of the last decade.
The shift to digital banking, with financial institutions (FIs) processing billions
of transactions daily, has resulted in the ever increasing scope of money
laundering, even with stricter transaction monitoring systems and robust Know

Your Customer (KYC) solutions. In this blog, we share our experiences working
with our FI customers to build enterprise-scale AML solutions on the lakehouse
platform that both provides strong oversight and delivers innovative, scalable
solutions to adapt to the reality of modern online money laundering threats.

Building an AML solution with lakehouse

The operational burden of processing billions of transactions a day comes from
the need to store the data from multiple sources and power intensive, next-gen
AML solutions. These solutions provide powerful risk analytics and reporting
while supporting the use of advanced machine learning models to reduce false
positives and improve downstream investigation efficiency. FIs have already
taken steps to solve the infrastructure and scaling problems by moving from on-
premises to cloud for better security, agility and the economies of scale required
to store massive amounts of data.

But then there is the issue of how to make sense of the massive amounts of
structured and unstructured data collected and stored on cheap object storage.
While cloud vendors provide an inexpensive way to store the data, making sense
of the data for downstream AML risk management and compliance activities

SECTION 2 .5 AML Solutions at Scale Using Databricks
 Lakehouse Platform

 by S R I G H A T T A M A N E N I , R I C A R D O P O R T I L L A and A N I N D I T A M A H A P A T R A

 July 16, 2021

3 0The Big Book of Data Engineering

https://en.wikipedia.org/wiki/Bank_Secrecy_Act
https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

starts with storage of the data in high-quality and performant formats for
downstream consumption. The Databricks Lakehouse Platform does exactly
this. By combining the low storage cost benefits of data lakes with the robust
transaction capabilities of data warehouses, FIs can truly build the modern
AML platform.

On top of the data storage challenges outlined above, AML analysts face some
key domain-specific challenges:

• Improve time-to-value parsing unstructured data such as images, textual
data and network links

• Reduce DevOps burden for supporting critical ML capabilities such as entity
resolution, computer vision and graph analytics on entity metadata

• Break down silos by introducing analytics engineering and a dashboarding
layer on AML transactions and enriched tables

Luckily, Databricks helps solve these by leveraging Delta Lake to store and
combine both unstructured and structured data to build entity relationships;
moreover, Databricks Delta Engine provides efficient access using the new
Photon compute to speed up BI queries on tables. On top of these capabilities,
ML is a first-class citizen in lakehouse, which means analysts and data scientists
do not waste time subsampling or moving data to share dashboards and stay
one step ahead of bad actors.

Figure 1

Data analysis and
visualization tools

Case management

Suspicious activity
reports

3 1The Big Book of Data Engineering

https://databricks.com/product/data-lakehouse
https://delta.io/
https://databricks.com/blog/2021/06/17/announcing-photon-public-preview-the-next-generation-query-engine-on-the-databricks-lakehouse-platform.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Detecting AML patterns with graph capabilities

One of the main data sources that AML analysts use as part of a case is
transaction data. Even though this data is tabular and easily accessible with SQL,
it becomes cumbersome to track chains of transactions that are three or more
layers deep with SQL queries. For this reason, it is important to have a flexible
suite of languages and APIs to express simple concepts such as a connected
network of suspicious individuals transacting illegally together. Luckily, this
is simple to accomplish using GraphFrames, a graph API pre-installed in the
Databricks Runtime for Machine Learning.

In this section, we will show how graph analytics can be used to detect AML
schemes such as synthetic identity and layering / structuring. We are going
to utilize a data set consisting of transactions, as well as entities derived from
transactions, to detect the presence of these patterns with Apache Spark™,
GraphFrames and Delta Lake. The persisted patterns are saved in Delta Lake so
that Databricks SQL can be applied on the Gold-level aggregated versions of
these findings, offering the power of graph analytics to end users.

Scenario 1 — synthetic identities

As mentioned above, the existence of synthetic identities can be a cause for
alarm. Using graph analysis, all of the entities from our transactions can be
analyzed in bulk to detect a risk level. In our analysis, this is done in three phases:

• Based on the transaction data, extract the entities

• Create links between entities based on address, phone number or email

• Use GraphFrames-connected components to determine whether
multiple entities (identified by an ID and other attributes above) are
connected via one or more links

Based on how many connections (i.e., common attributes) exist between
entities, we can assign a lower or higher risk score and create an alert based
on high-scoring groups. Below is a basic representation of this idea.

Address matching,
could be colocation (LOW)

Multiple personal details
match, could hide a syn-
thetic identity (MEDIUM)

SNN or biometrics match is
more serious (HIGH)

Figure 2

3 2The Big Book of Data Engineering

https://docs.databricks.com/runtime/mlruntime.html?_gl=1*119wtef*_gcl_aw*R0NMLjE2MzA2OTc4NTguQ2p3S0NBandqOGVKQmhBNUVpd0FnM3owbTloT2FXdkFLSWRVNHFhSlVMekJmQ0RVSzNReVk4RHhjMUt6UmZMWXppSlVwNG92OEdBa1FSb0NMek1RQXZEX0J3RQ..&_ga=2.169405417.99660306.1632439883-566957636.1584739382&_gac=1.49410004.1630697859.CjwKCAjwj8eJBhA5EiwAg3z0m9hOaWvAKIdU4qaJULzBfCDUK3QyY8Dxc1KzRfLYziJUp4ov8GAkQRoCLzMQAvD_BwE
https://databricks.com/product/databricks-sql
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

First, we create an identity graph using an address, email and phone number to
link individuals if they match any of these attributes.

e_identity_sql = ‘’’
select entity_id as src, address as dst from aml.aml_entities_synth where address is not
null
UNION
select entity_id as src, email as dst from aml.aml_entities_synth where email_addr is not
null
UNION
select entity_id as src, phone as dst from aml.aml_entities_synth where phone_number is not
null
‘’’

from graphframes import *
from pyspark.sql.functions import *
aml_identity_g = GraphFrame(identity_vertices, identity_edges)
result = aml_identity_g.connectedComponents()

result \
 .select(“id”, “component”, ‘type’) \
 .createOrReplaceTempView(“components”)

Next, we’ll run queries to identify when two entities have overlapping personal
identification and scores. Based on the results of these querying graph
components, we would expect a cohort consisting of only one matching
attribute (such as address), which isn’t too much cause for concern. However,
as more attributes match, we should expect to be alerted. As shown below, we
can flag cases where all three attributes match, allowing SQL analysts to get daily
results from graph analytics run across all entities.

Figure 3

3 3The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Scenario 2 — structuring

Another common pattern is called structuring, which occurs when multiple
entities collude and send smaller “under the radar” payments to a set of banks,
which subsequently route larger aggregate amounts to a final institution (as
depicted below on the far right). In this scenario, all parties have stayed under
the $10,000 threshold amount, which would typically alert authorities. Not only
is this easily accomplished with graph analytics, but the motif finding technique
can be automated to extend to other permutations of networks and locate other
suspicious transactions in the same way.

Now we’ll write the basic motif-finding code to detect the scenario above using
graph capabilities. Note that the output here is semi-structured JSON; all data
types, including unstructured types, are easily accessible in the lakehouse — we
will save these particular results for SQL reporting.

motif = “(a)-[e1]->(b); (b)-[e2]->(c); (c)-[e3]->(d); (e)-[e4]->(f); (f)-[e5]-
>(c); (c)-[e6]->(g)”
struct_scn_1 = aml_entity_g.find(motif)

joined_graphs = struct_scn_1.alias(“a”) \
 .join(struct_scn_1.alias(“b”), col(“a.g.id”) == col(“b.g.id”)) \

 .filter(col(“a.e6.txn_amount”) + col(“b.e6.txn_amount”) > 10000)

Using motif finding, we extracted interesting patterns where money is flowing
through four different entities and kept under a $10,000 threshold. We join our
graph metadata back to structured data sets to generate insights for an AML
analyst to investigate further.

Figure 4

Figure 5

3 4The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Scenario 3 — risk score propagation

The identified high-risk entities will have an influence (a network effect) on
their circle. So, the risk score of all the entities that they interact with must be
adjusted to reflect the zone of influence. Using an iterative approach, we can
follow the flow of transactions to any given depth and adjust the risk scores of
others affected in the network. As mentioned previously, running graph analytics
avoids multiple repeated SQL joins and complex business logic, which can
impact performance due to memory constraints. Graph analytics and Pregel
API was built for that exact purpose. Initially developed by Google, Pregel allows
users to recursively “propagate” messages from any vertex to its corresponding
neighbors, updating vertex state (their risk score here) at each step. We can
represent our dynamic risk approach using Pregel API as follows.

The diagram below left shows the starting state of the network and two
subsequent iterations. Say we started with one bad actor (Node 3) with a risk
score of 10. We want to penalize all the people who transact with that node
(namely Nodes 4, 5 and 6) and receive funds by passing on, for instance, half
the risk score of the bad actor, which then is added to their base score. In the
next iteration, all nodes that are downstream from Nodes 4, 5 and 6 will get their
scores adjusted.

Node # Iteration #0 Iteration #1 Iteration #2

1 0 0 0

2 0 0 0

3 10 10 10

4 0 5 5

5 0 5 5

6 0 5 5

7 0 0 5

8 0 0 0

9 0 0 2.5

10 0 0 0

Starting state:
Entity 3 is a high-risk factor

After Iteration 1:
Entity 4, 5 and 6 add half of 3’s risk score
to their base score

After Iteration 3:
Entity 7’s score is 2.5+2.5=5
Entity 9’s score is 2.5

Figure 6

3 5The Big Book of Data Engineering

https://spark.apache.org/docs/latest/graphx-programming-guide.html#pregel-api
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Using the Pregel API from GraphFrame, we can do this computation and persist
the modified scores for other applications downstream to consume.

from graphframes.lib import Pregel

ranks = aml_entity_g.pregel \
 .setMaxIter(3) \
 .withVertexColumn(
 “risk_score”,
 col(“risk”),
 coalesce(Pregel.msg()+ col(“risk”),
 col(“risk_score”))
) \
 .sendMsgToDst(Pregel.src(“risk_score”)/2) \
 .aggMsgs(sum(Pregel.msg())) \
 .run()

Address matching

A pattern we want to briefly touch upon is address matching of text to actual
street view images. Oftentimes, there is a need for an AML analyst to validate
the legitimacy of addresses that are linked to entities on file. Is this address a
commercial building, a residential area or a simple postbox? However, analyzing
pictures is often a tedious, time-consuming and manual process to obtain, clean
and validate. A lakehouse data architecture allows us to automate most of this
task using Python and ML runtimes with PyTorch and pretrained open source
models. Below is an example of a valid address to the human eye. To automate
validation, we will use a pretrained VGG model for which there are hundreds of
valid objects we can use to detect a residence.

Using the code below, which can be automated to run daily, we’ll now have a
label attached to all our images — we’ve loaded all the image references and
labels up into a SQL table for simpler querying also. Notice in the code below
how simple it is to query a set of images for the objects inside them — the ability
to query such unstructured data with Delta Lake is an enormous time-saver for
analysts, and speeds up the validation process to minutes instead of days or
weeks.

from PIL import Image
from matplotlib import cm

img = Image.fromarray(img)
...

vgg = models.vgg16(pretrained=True)
prediction = vgg(img)
prediction = prediction.data.numpy().argmax()
img_and_labels[i] = labels[prediction]

Figure 7

3 6The Big Book of Data Engineering

https://graphframes.github.io/graphframes/docs/_site/api/python/graphframes.lib.html#graphframes.lib.Pregel
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

As we start to summarize, we notice some interesting categories appear. As
seen in the breakdown below, there are a few obvious labels such as patio,
mobile home and motor scooter we would expect to see as items detected
in a residential address. On the other hand, the CV model has labeled a solar
dish from surrounding objects in one image. (Note: since we are restricted
to an open source model not trained on a custom set of images, the solar
dish label is not accurate.) Upon further analysis of the image, we drill down
and immediately see that i) there is not a real solar dish here and more
importantly ii) this address is not a real residence (pictured in our side-
by-side comparison on Figure 7). The Delta Lake format allows us to store a
reference to our unstructured data along with a label for simple querying in our
classification breakdown below.

Figure 9

Figure 8

patio

solar_dish

motor_scooter

palace

mobile_home

park_bench

3 7The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Entity resolution

The last category of AML challenges that we’ll focus on is entity resolution.
Many open source libraries tackle this problem, so for some basic entity fuzzy
matching, we chose to highlight Splink, which achieves the linkage at scale and
offers configurations to specify matching columns and blocking rules.

In the context of the entities derived from our transactions, it is a simple
exercise to insert our Delta Lake transactions into the context of Splink.

settings = {
 “link_type”: “dedupe_only”,
 “blocking_rules”: [
 “l.txn_amount = r.txn_amount”,
],
 “comparison_columns”: [
 {
 “col_name”: “rptd_originator_address”,
 },
 {
 “col_name”: “rptd_originator_name”,
 }
]
}

from splink import Splink
linker = Splink(settings, df2, spark)
df2_e = linker.get_scored_comparisons()

Splink works by assigning a match probability that can be used to identify
transactions in which entity attributes are highly similar, raising a potential
alert with respect to a reported address, entity name or transaction amount.
Given the fact that entity resolution can be highly manual for matching account
information, having open source libraries that automate this task and save the
information in Delta Lake can make investigators much more productive for
case resolution. While there are several options available for entity matching, we
recommend using Locality-Sensitive Hashing (LSH) to identify the right algorithm
for the job. You can learn more about LSH and its benefits in this blog post.

As reported above, we quickly found some inconsistencies for the NY Mellon
bank address, with “Canada Square, Canary Wharf, London, United Kingdom”
similar to “Canada Square, Canary Wharf, London, UK.” We can store our de-
duplicated records back to a Delta table that can be used for AML investigation.

Figure 10

3 8The Big Book of Data Engineering

https://github.com/moj-analytical-services/splink
https://databricks.com/blog/2021/05/24/machine-learning-based-item-matching-for-retailers-and-brands.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

AML lakehouse dashboard

Databricks SQL on the lakehouse is closing the gap with respect to traditional
data warehouses in terms of simplified data management, performance with
new query engine Photon and user concurrency. This is important since many
organizations do not have the budget for overpriced proprietary AML software
to support the myriad use cases, such as combatting the financing of terrorism
(CFT), that help fight financial crime. In the market, there are dedicated solutions
that can perform the graph analytics above, dedicated solutions to address BI in
a warehouse and dedicated solutions for ML. The AML lakehouse design unifies
all three. AML data platform teams can leverage Delta Lake at the lower cost
of cloud storage while easily integrating open source technologies to produce
curated reports based on graph technology, computer vision and SQL analytics
engineering. In figure 11, we will show a materialization of the reporting for AML.

The attached notebooks produced a transactions object, entities object, as well
as summaries such as structuring prospects, synthetic identity tiers and address
classifications using pretrained models. In the Databricks SQL visualization
below, we used our Photon SQL engine to execute summaries on these and
built-in visualization to produce a reporting dashboard within minutes. There are
full ACLs on both tables, as well as the dashboard itself, to allow users to share
with executives and data teams — a scheduler to run this report periodically is
also built-in. The dashboard is a culmination of AI, BI and analytics engineering
built into the AML solution.

The open banking transformation

The rise of open banking enables FIs to provide a better customer experience via
data sharing between consumers, FIs and third-party service providers through
APIs. An example of this is Payment Services Directive (PSD2), which transformed
financial services in the EU region as part of Open Banking Europe regulation.
As a result, FIs have access to more data from multiple banks and service
providers, including customer account and transaction data. This trend has
expanded within the world of fraud and financial crimes with the latest guidance
from FinCEN under section 314(b) of USA Patriot Act; covered FIs can now share
information with other FIs and within domestic and foreign branches regarding
individuals, entities, organizations and so on that are suspected to be involved in
potential money laundering.

Figure 11

3 9The Big Book of Data Engineering

https://www.ecb.europa.eu/paym/intro/mip-online/2018/html/1803_revisedpsd.en.html
https://www.openbankingeurope.eu/
https://www.fincen.gov/section-314b
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

While information sharing provision helps with transparency and protects
the United States financial systems against money laundering and terrorism
financing, the information exchange must be done using protocols with proper
data and security protections. To solve the problem of securing information
sharing, Databricks recently announced Delta Sharing, an open and secure
protocol for data sharing. Using familiar open source APIs, such as pandas and
Spark, data producers and consumers can now share data using secure and
open protocols and maintain a full audit of all the data transactions to maintain
compliance with FinCEN regulations.

Conclusion

The lakehouse architecture is the most scalable and versatile platform to
enable analysts in their AML analytics. Lakehouse supports use cases ranging
from fuzzy match to image analytics to BI with built-in dashboards, and all of
these capabilities will allow organizations to reduce total cost of ownership
compared to proprietary AML solutions. The financial services team at
Databricks is working on a variety of business problems in the financial services
space and enabling data engineering and data science professionals to start
the Databricks journey through Solution Accelerators like AML.

Figure 12

• Introduction to graph theory for AML

• Introduction to computer vision for AML

• Introduction to entity resolution for AML

Start experimenting with these free Databricks notebooks

4 0The Big Book of Data Engineering

https://databricks.com/blog/2021/05/26/introducing-delta-sharing-an-open-protocol-for-secure-data-sharing.html
https://databricks.com/solutions/industries/financial-services-industry-solutions-detail
https://databricks.com/notebooks/aml/01_aml_network_analysis.html
https://databricks.com/notebooks/aml/02_aml_address_verification.html
https://databricks.com/notebooks/aml/03_aml_entity_resolution.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Across massively multiplayer online video games (MMOs), multiplayer online
battle arena games (MOBAs) and other forms of online gaming, players
continuously interact in real time to either coordinate or compete as they move
toward a common goal — winning. This interactivity is integral to game play
dynamics, but at the same time, it’s a prime opening for toxic behavior — an
issue pervasive throughout the online video gaming sphere.

Toxic behavior manifests in many forms, such as the varying degrees of griefing,
cyberbullying and sexual harassment that are illustrated in the matrix above right
from Behaviour Interactive, which lists the types of interactions seen within the
multiplayer game ”Dead by Night.”

In addition to the personal toll that toxic behavior can have on gamers and the
community — an issue that cannot be overstated — it is also damaging to the
bottom line of many game studios. For example, a study from Michigan State
University revealed that 80% of players recently experienced toxicity, and of
those, 20% reported leaving the game due to these interactions. Similarly, a study
from Tilburg University showed that having a disruptive or toxic encounter in the
first session of the game led to players being over three times more likely to leave
the game without returning. Given that player retention is a top priority for many
studios, particularly as game delivery transitions from physical media releases to
long-lived services, it’s clear that toxicity must be curbed.

SECTION 2 .6 Build a Real-Time AI Model to
 Detect Toxic Behavior in Gaming

 by D A N M O R R I S and D U N C A N D A V I S

 June 16, 2021

Figure 1
Matrix of toxic interactions that players experience

Toxicity diagram

Survivors

Killers

Less toxic Most toxic

Gen
rushing Hiding

Activating
emotes Looping Rush

unhooking Blinding Sandbagging

Teabagging

Text
chattingReporting

FarmingDisconnecting Hatch
camping

Lobby
dodging

Body
blocking

Slugging Face
campingDribbling Tunneling

Being
away from
keyboard

(AFK)

4 1The Big Book of Data Engineering

http://gamestudies.org/2004/articles/deslauriers_iseutlafrancestmartin_bonenfant
https://msutoday.msu.edu/news/2021/faculty-voice-gaming-and-toxicity
https://msutoday.msu.edu/news/2021/faculty-voice-gaming-and-toxicity
https://msutoday.msu.edu/news/2021/faculty-voice-gaming-and-toxicity
https://arno.uvt.nl/show.cgi?fid=145375
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Compounding this issue related to churn, some companies face challenges related
to toxicity early in development, even before launch. For example, Amazon’s
Crucible was released into testing without text or voice chat due in part to not
having a system in place to monitor or manage toxic gamers and interactions.
This illustrates that the scale of the gaming space has far surpassed most teams’
ability to manage such behavior through reports or by intervening in disruptive
interactions. Given this, it’s essential for studios to integrate analytics into games
early in the development lifecycle and then design for the ongoing management of
toxic interactions.

Toxicity in gaming is clearly a multifaceted issue that has become a part of
video game culture and cannot be addressed universally in a single way. That
said, addressing toxicity within in-game chat can have a huge impact given the
frequency of toxic behavior and the ability to automate detection of it using
natural language processing (NLP).

Introducing the Toxicity Detection in Gaming Solution
Accelerator from Databricks

Using toxic comment data from Jigsaw and Dota 2 game match data, this Solution
Accelerator walks through the steps required to detect toxic comments in real
time using NLP and your existing lakehouse. For NLP, this Solution Accelerator uses
Spark NLP from John Snow Labs, an open source, enterprise-grade solution built
natively on Apache Spark.™

The steps you will take in this Solution Accelerator are:

• Load the Jigsaw and Dota 2 data into tables using Delta Lake
• Classify toxic comments using multi-label classification (Spark NLP)

• Track experiments and register models using MLflow
• Apply inference on batch and streaming data
• Examine the impact of toxicity on game match data

Detecting toxicity within in-game chat in production

With this Solution Accelerator, you can now more easily integrate toxicity
detection into your own games. For example, the reference architecture below
shows how to take chat and game data from a variety of sources, such as
streams, files, voice or operational databases, and leverage Databricks to ingest,
store and curate data into feature tables for machine learning (ML) pipelines,
in-game ML, BI tables for analysis and even direct interaction with tools used for
community moderation.

Figure 2
Toxicity detection reference architecture

4 2The Big Book of Data Engineering

https://www.wired.com/story/amazon-crucible-release-first-big-videogame/
https://www.wired.com/story/amazon-crucible-release-first-big-videogame/
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
https://www.kaggle.com/devinanzelmo/dota-2-matches
https://databricks.com/blog/2020/01/30/what-is-a-data-lakehouse.html
https://nlp.johnsnowlabs.com/
https://nlp.johnsnowlabs.com/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Having a real-time, scalable architecture to detect toxicity in the community
allows for the opportunity to simplify workflows for community relationship
managers and the ability to filter millions of interactions into manageable
workloads. Similarly, the possibility of alerting on severely toxic events in real
time, or even automating a response such as muting players or alerting a CRM
to the incident quickly, can have a direct impact on player retention. Likewise,
having a platform capable of processing large data sets, from disparate sources,
can be used to monitor brand perception through reports and dashboards.

Getting started

The goal of this Solution Accelerator is to help support the ongoing management
of toxic interactions in online gaming by enabling real-time detection of toxic
comments within in-game chat. Get started today by importing this Solution
Accelerator directly into your Databricks workspace.

Once imported you will have notebooks with two pipelines ready to move
to production.

• ML pipeline using multi-label classification with training on real-world
English data sets from Google Jigsaw. The model will classify and label
the forms of toxicity in text.

• Real-time streaming inference pipeline leveraging the toxicity model.
The pipeline source can be easily modified to ingest chat data from all
the common data sources.

With both of these pipelines, you can begin understanding and analyzing
toxicity with minimal effort. This Solution Accelerator also provides a foundation
to build, customize and improve the model with relevant data to game
mechanics and communities.

Start experimenting with these
free Databricks notebooks.

4 3The Big Book of Data Engineering

https://databricks.com/notebooks/toxic-test-gam/index.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Digital transformation has been front and center in most contemporary big data
corporate initiatives, especially in companies with a heavy legacy footprint. One
of the underpinning components in digital transformation is data and its related
data store. For 160+ years, Northwestern Mutual has been helping families and
businesses achieve financial security. With over $31B in revenue, 4.6M+ clients and
9,300+ financial professionals, there are not too many companies that have this
volume of data across a variety of sources.

Data ingestion is a challenge in this day and age, when organizations deal
with millions of data points coming in different formats, time frames and from
different directions at an unprecedented volume. We want to make data ready
for analysis to make sense of it. Today, I am excited to share our novel approach
to transforming and modernizing our data ingestion process, scheduling process
and journey with data stores. One thing we learned is that an effective approach
is multifaceted, which is why in addition to the technical arrangements I’ll walk
through our plan to onboard our team.

Challenges faced

Before we embarked on our transformation, we worked with our business
partners to really understand our technical constraints and help us shape the
problem statement for our business case.

The business pain point we identified was a lack of integrated data, with
customer and business data coming from different internal and external teams
and data sources. We realized the value of real-time data but had limited access
to production/real-time data that could enable us to make business decisions
in a timely manner. We also learned that data stores built by the business team
resulted in data silos, which in turn caused data latency issues, increased cost of
data management and unwarranted security constraints.

Furthermore, there were technical challenges with respect to our current state.
With increased demand and additional data needed, we experienced constraints
with infrastructure scalability, data latency, cost of managing data silos, data
size and volume limitations, and data security issues. With these challenges
mounting, we knew we had a lot to take on and needed to find the right
partners to help us in our transformation journey.

SECTION 2 .7 Driving Transformation at Northwestern Mutual (Insights Platform)
 by Moving Toward a Scalable, Open Lakehouse Architecture

 by M A D H U K O T I A N

 July 15, 2021

4 4The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Solution analysis

We needed to become data-driven to be competitive and serve our customers
better and optimize internal processes. We explored various options and
performed several POCs to select a final recommendation. The following were
the must-haves for our go-forward strategy:

• An all-inclusive solution for our data ingestion, data management
and analytical needs

• A modern data platform that can effectively support our developers
and business analysts to perform their analysis using SQL

• A data engine that can support ACID transactions on top of S3 and
enable role-based security

• A system that can effectively secure our PII/PHI information

• A platform that can automatically scale based on the data processing
and analytical demand

Our legacy infrastructure was based on MSBI Stack. We used SSIS for ingestion,
SQL Server for our data store, Azure Analysis Service for tabular model and Power
BI for dashboarding and reporting. Although the platform met the needs of the
business initially, we had challenges around scaling with increased data volume
and data processing demand, and constrained our data analytical expectations.
With additional data needs, our data latency issues from load delays and a data
store for specific business needs caused data silos and data sprawl.

Security became a challenge due to the spread of data across multiple data
stores. We had approximately 300 ETL jobs that took more than 7 hours from
our daily jobs. The time to market for any change or new development was
roughly 4 to 6 weeks (depending on the complexity).

After evaluating multiple solutions in the marketplace, we decided to move
forward with Databricks to help us deliver one integrated data management
solution on an open lakehouse architecture.

Figure 1
Legacy architecture

4 5The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks being developed on top of Apache Spark™ enabled us to use Python
to build our custom framework for data ingestion and metadata management.
It provided us the flexibility to perform ad hoc analysis and other data
discoveries using the notebook. Databricks Delta Lake (the storage layer built on
top of our data lake) provided us the flexibility to implement various database
management functions (ACID transactions, metadata governance, time travel,
etc.) including the implementation of required security controls. Databricks took
the headache out from managing/scaling the cluster and reacted effectively to
the pent-up demand from our engineers and business users.

Migration approach and onboarding resources

We started with a small group of engineers and assigned them to a virtual team
from our existing scrum team. Their goal was to execute different POC, build on
the recommended solution, develop best practices and transition back to their
respective team to help with the onboarding. Leveraging existing team members
favored us better because they had existing legacy system knowledge, understood
the current ingestion flow/business rules, and were well versed in at least one
programming knowledge (data engineering + software engineering knowledge).
This team first trained themselves in Python, understood intricate details of Spark
and Delta, and closely partnered with the Databricks team to validate the solution/
approach. While the team was working on forming the future state, the rest of our
developers worked on delivering the business priorities.

Since most of the developers were MSBI Stack engineers, our plan of action was
to deliver a data platform that would be frictionless for our developers, business
users and our field advisors.

• We built an ingestion framework that covered all our data load and
transformation needs. It had in-built security controls, which maintained
all the metadata and secrets of our source systems. The ingestion process
accepted a JSON file that included the source, target and required
transformation. It allowed for both simple and complex transformation.

• For scheduling, we ended up using Airflow, but given the complexity of the
DAG, we built our own custom framework on top of Airflow, which accepted
a YAML file that included job information and its related interdependencies.

• For managing schema-level changes using Delta, we built our own custom
framework which automated different database type operations (DDL)
without requiring developers to have break-glass access to the data store.
This also helped us to implement different audit controls on the data store.

Figure 2
Architecture with Databricks

4 6The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

In parallel, the team also worked with our security team to make sure we
understood and met all the criteria for data security (encryption in transit,
encryption at rest and column level encryption to protect PII information).

Once these frameworks were set up, the cohort team deployed an end-to-
end flow (source to target with all transformation) and generated a new set of
reports/dashboards on Power BI pointing to Delta Lake. The goal was to test
the performance of our end-to-end process, validate the data and obtain any
feedback from our field users. We incrementally improved the product based on
the feedback and outcomes of our performance/validation test.

Simultaneously, we built training guides and how-tos to onboard our developers.
Soon after, we decided to move the cohort team members to their respective
teams while retaining a few to continue to support the platform infrastructure
(DevOps). Each scrum team was responsible for managing and delivering their
respective set of capabilities/features to the business. Once the team members
moved back to their respective teams, they embarked on the task to adjust the
velocity of the team to include the backlog for migration effort. The team leads
were given specific guidance and appropriate goals to meet the migration goals
for different Sprint/Program Increments. The team members who were in the
cohort group were now the resident experts and they helped their team onboard
to the new platform. They were available for any ad hoc questions or assistance.

As we incrementally built our new platform, we retained the old platform for
validation and verification.

The beginning of success

The overall transformation took us roughly a year and a half, which is quite a feat
given that we had to build all the frameworks, manage business priorities, manage
security expectations, retool our team and migrate the platform. Overall load time
came down remarkably from 7 hours to just 2 hours. Our time to market was about
1 to 2 weeks, down significantly from 4 to 6 weeks. This was a major improvement
in which I know will extend itself to our business in several ways.

Our journey is not over. As we continue to enhance our platform, our next
mission will be to expand on the lakehouse pattern. We are working on
migrating our platform to E2 and deploying Databricks SQL. We are working
on our strategy to provide a self-service platform to our business users to
perform their ad hoc analysis and also enable them to bring their own data
with an ability to perform analysis with our integrated data. What we learned
is that we benefited greatly by using a platform that was open, unified and
scalable. As our needs and capabilities grow, we know we have a robust partner
in Databricks.

Hear more about Northwestern Mutual’s journey to the Lakehouse

A B O U T M A D H U K O T I A N

Madhu Kotian is the Vice President of Engineering (Investment Products Data, CRM, Apps and Reporting)

at Northwestern Mutual. He has over 25+ years of experience in the field of Information Technology

with experience and expertise in data engineering, people management, program management,

architecture, design, development and maintenance using Agile practices. He is also an expert in data

warehouse methodologies and implementation of data integration and analytics.

4 7The Big Book of Data Engineering

https://databricks.com/session_na21/northwestern-mutual-journey-transform-bi-space-to-cloud-us
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

The internal logging infrastructure at Databricks has evolved over the years and
we have learned a few lessons along the way about how to maintain a highly
available log pipeline across multiple clouds and geographies. This blog will give
you some insight as to how we collect and administer real-time metrics using
our lakehouse platform, and how we leverage multiple clouds to help recover
from public cloud outages.

When Databricks was founded, it only supported a single public cloud. Now,
the service has grown to support the three major public clouds (AWS, Azure,
GCP) in over 50 regions around the world. Each day, Databricks spins up
millions of virtual machines on behalf of our customers. Our data platform
team of less than 10 engineers is responsible for building and maintaining the
logging telemetry infrastructure, which processes half a petabyte of data each
day. The orchestration, monitoring and usage is captured via service logs that
are processed by our infrastructure to provide timely and accurate metrics.
Ultimately, this data is stored in our own petabyte-sized Delta Lake. Our Data
Platform team uses Databricks to perform inter-cloud processing so that we
can federate data where appropriate, mitigate recovery from a regional cloud
outage and minimize disruption to our live infrastructure.

Pipeline architecture

Each cloud region contains its own infrastructure and data pipelines to capture,
collect and persist log data into a regional Delta Lake. Product telemetry data
is captured across the product and within our pipelines by the same process
replicated across every cloud region. A log daemon captures the telemetry data
and it then writes these logs onto a regional cloud storage bucket (S3, WASBS,
GCS). From there, a scheduled pipeline will ingest the log files using Auto Loader
(AWS | Azure | GCP), and write the data into a regional Delta table. A different
pipeline will read data from the regional Delta table, filter it and write it to a
centralized Delta table in a single cloud region.

SECTION 2 .8 How Databricks Data Team Built a Lakehouse
 Across Three Clouds and 50+ Regions

 by J A S O N P O H L and S U R A J A C H A R Y A

 July 14, 2021

Figure 1

4 8The Big Book of Data Engineering

https://docs.databricks.com/spark/latest/structured-streaming/auto-loader.html?_gl=1*ep7ogw*_gcl_aw*R0NMLjE2MzA2OTc4NTguQ2p3S0NBandqOGVKQmhBNUVpd0FnM3owbTloT2FXdkFLSWRVNHFhSlVMekJmQ0RVSzNReVk4RHhjMUt6UmZMWXppSlVwNG92OEdBa1FSb0NMek1RQXZEX0J3RQ..&_ga=2.110226381.99660306.1632439883-566957636.1584739382&_gac=1.217318116.1630697859.CjwKCAjwj8eJBhA5EiwAg3z0m9hOaWvAKIdU4qaJULzBfCDUK3QyY8Dxc1KzRfLYziJUp4ov8GAkQRoCLzMQAvD_BwE
https://docs.microsoft.com/en-us/azure/databricks/spark/latest/structured-streaming/auto-loader
https://docs.gcp.databricks.com/spark/latest/structured-streaming/auto-loader.html?_gl=1*hndjxg*_gcl_aw*R0NMLjE2MzA2OTc4NTguQ2p3S0NBandqOGVKQmhBNUVpd0FnM3owbTloT2FXdkFLSWRVNHFhSlVMekJmQ0RVSzNReVk4RHhjMUt6UmZMWXppSlVwNG92OEdBa1FSb0NMek1RQXZEX0J3RQ..
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Before Delta Lake

Prior to Delta Lake, we would write the source data to its own table in the
centralized lake, and then create a view which was a union across all of those
tables. This view needed to be calculated at runtime and became more
inefficient as we added more regions:

CREATE OR REPLACE VIEW all_logs AS
SELECT * FROM (
 SELECT * FROM region_1.log_table
 UNION ALL
 SELECT * FROM region_2.log_table
 UNION ALL
 SELECT * FROM region_3.log_table
 ...
);

After Delta Lake

Today, we just have a single Delta Table that accepts concurrent write
statements from over 50 different regions. While simultaneously handling
queries against the data. It makes querying the central table as easy as:

SELECT * FROM central.all_logs;

The transactionality is handled by Delta Lake. We have deprecated the
individual regional tables in our central Delta Lake and retired the UNION ALL
view. The following code is a simplified representation of the syntax that is
executed to load the data approved for egress from the regional Delta Lakes to
the central Delta Lake:

spark.readStream.format(“delta”)
 .load(regional_source_path)
 .where(“egress_approved = true”)
 .writeStream
 .format(“delta”)
 .outputMode(“append”)
 .option(“checkpointLocation”, checkpoint_path)
 .start(central_target_path)

Disaster recovery

One of the benefits of operating an inter-cloud service is that we are well
positioned for certain disaster recovery scenarios. Although rare, it is not
unheard of for the compute service of a particular cloud region to experience
an outage. When that happens, the cloud storage is accessible, but the ability
to spin up new VMs is hindered. Because we have engineered our data pipeline
code to accept configuration for the source and destination paths, this allows us
to quickly deploy and run data pipelines in a different region to where the data
is being stored. The cloud for which cloud the cluster is created in is irrelevant to
which cloud the data is read or written to.

There are a few data sets which we safeguard against failure of the storage
service by continuously replicating the data across cloud providers. This can
easily be done by leveraging Delta deep clone functionality as described in this
blog. Each time the clone command is run on a table, it updates the clone with
only the incremental changes since the last time it was run. This is an efficient
way to replicate data across regions and even clouds.

4 9The Big Book of Data Engineering

https://databricks.com/blog/2021/04/20/attack-of-the-delta-clones-against-disaster-recovery-availability-complexity.html
https://databricks.com/blog/2021/04/20/attack-of-the-delta-clones-against-disaster-recovery-availability-complexity.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Minimizing disruption to live data pipelines

Our data pipelines are the lifeblood of our managed service and part of a
global business that doesn’t sleep. We can’t afford to pause the pipelines for
an extended period of time for maintenance, upgrades or backfilling of data.
Recently, we needed to fork our pipelines to filter a subset of the data normally
written to our main table to be written to a different public cloud. We were able
to do this without disrupting business as usual.

By following these steps we were able to deploy changes to our architecture into
our live system without causing disruption.

First, we performed a deep clone of the main table to a new location on the
other cloud. This copies both the data and the transaction log in a way to
ensure consistency.

Second, we released the new config to our pipelines so that the majority of
data continues to be written to the central main table, and the subset of data
writes to the new cloned table in the different cloud. This change can be made
easily by just deploying a new config, and the tables receive updates for just
the new changes they should receive.

Next, we ran the same deep clone command again. Delta Lake will only capture
and copy the incremental changes from the original main table to the new
cloned table. This essentially backfills the new table with all the changes to the
data between steps 1 and 2.

Finally, the subset of data can be deleted from the main table and the majority
of data can be deleted from the cloned table.

Now both tables represent the data they are meant to contain, with full
transactional history, and it was done live without disrupting the freshness of
the pipelines.

Summary

Databricks abstracts away the details of individual cloud services whether that
be for spinning up infrastructure with our cluster manager, ingesting data with
Auto Loader, or performing transactional writes on cloud storage with Delta Lake.
This provides us with an advantage in that we can use a single code-base to
bridge the compute and storage across public clouds for both data federation
and disaster recovery. This inter-cloud functionality gives us the flexibility to
move the compute and storage wherever it serves us and our customers best.

5 0The Big Book of Data Engineering

https://databricks.com/blog/2021/04/20/attack-of-the-delta-clones-against-disaster-recovery-availability-complexity.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

03
SECTION

Atlassian

ABN AMRO

J.B. Hunt

Customer Stories

Atlassian is a leading provider of collaboration, development and issue-tracking software

for teams. With over 150,000 global customers (including 85 of the Fortune 100),

Atlassian is advancing the power of collaboration with products including Jira, Confluence,

Bitbucket, Trello and more.

USE CASE

Atlassian uses the Databricks Lakehouse Platform to democratize data across the enterprise and drive
down operational costs. Atlassian currently has a number of use cases focused on putting the customer
experience at the forefront.

Customer support and service experience
With the majority of their customers being server-based (using products like Jira and Confluence),
Atlassian set out to move those customers into the cloud to leverage deeper insights that enrich the
customer support experience.

Marketing personalization
The same insights could also be used to deliver personalized marketing emails to drive
engagement with new features and products.

Anti-abuse and fraud detection
They can predict license abuse and fraudulent behavior through anomaly detection and
predictive analytics.

SECTION 3 .1 Atlassian

5 2The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

SOLUTION AND BENEF ITS

Atlassian is using the Databricks Lakehouse Platform to enable data democratization at scale, both internally
and externally. They have moved from a data warehousing paradigm to standardization on Databricks,
enabling the company to become more data driven across the organization. Over 3,000 internal users in
areas ranging from HR and marketing to finance and R&D — more than half the organization — are accessing
insights from the platform on a monthly basis via open technologies like Databricks SQL. Atlassian is also
using the platform to drive more personalized support and service experiences to their customers.

• Delta Lake underpins a single lakehouse for PBs of data accessed by 3,000+ users across HR, marketing,
finance, sales, support and R&D

• BI workloads powered by Databricks SQL enable dashboard reporting for more users

• MLflow streamlines MLOps for faster delivery

• Data platform unification eases governance, and self-managed clusters enable autonomy

With cloud-scale architecture, improved productivity through cross-team collaboration, and the ability to
access all of their customer data for analytics and ML, the impact on Atlassian is projected to be immense.
Already the company has:

• Reduced the cost of IT operations (specifically compute costs) by 60% through moving 50,000+ Spark
jobs from EMR to Databricks with minimal effort and low-code change

• Decreased delivery time by 30% with shorter dev cycles

• Reduced data team dependencies by 70% with more self-service enabled throughout the organization

At Atlassian, we need to ensure
teams can collaborate well
across functions to achieve
constantly evolving goals. A
simplified lakehouse architecture
would empower us to ingest high
volumes of user data and run the
analytics necessary to better
predict customer needs and
improve the experience of our
customers. A single, easy-to-use
cloud analytics platform allows
us to rapidly improve and build
new collaboration tools based on
actionable insights.

Rohan Dhupelia
Data Platform Senior Manager, Atlassian

“

Learn More

5 3The Big Book of Data Engineering

https://www.youtube.com/watch?v=Xo1U617T-mU
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

As an established bank, ABN AMRO wanted to modernize their business but were hamstrung

by legacy infrastructure and data warehouses that complicated access to data across various

sources and created inefficient data processes and workflows. Today, Azure Databricks

empowers ABN AMRO to democratize data and AI for a team of 500+ empowered engineers,

scientists and analysts who work collaboratively on improving business operations and

introducing new go-to-market capabilities across the company.

USE CASE

ABN AMRO uses the Databricks Lakehouse Platform to deliver financial services transformation on a global scale,
providing automation and insight across operations.

Personalized finance
ABN AMRO leverages real-time data and customer insights to provide products and services tailored to
customers’ needs. For example, they use machine learning to power targeted messaging within their automated
marketing campaigns to help drive engagement and conversion.

Risk management
Using data-driven decision-making, they are focused on mitigating risk for both the company and their
customers. For example, they generate reports and dashboards that internal decision makers and leaders use to
better understand risk and keep it from impacting ABN AMRO’s business.

Fraud detection
With the goal of preventing malicious activity, they’re using predictive analytics to identify fraud before it
impacts their customers. Among the activities they’re trying to address are money laundering and fake credit
card applications.

SECTION 3 . 2 ABN AMRO

5 4The Big Book of Data Engineering

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

SOLUTION AND BENEF ITS

Today, Azure Databricks empowers ABN AMRO to democratize data and AI for a team of 500+ engineers,
scientists and analysts who work collaboratively on improving business operations and introducing new
go-to-market capabilities across the company.

• Delta Lake enables fast and reliable data pipelines to feed accurate and complete data for
downstream analytics

• Integration with Power BI enables easy SQL analytics and feeds insights to 500+ business users
through reports and dashboards

• MLflow speeds deployment of new models that improve the customer experience — with new use
cases delivered in under two months

Databricks has changed the way
we do business. It has put us in
a better position to succeed in
our data and AI transformation
as a company by enabling data
professionals with advanced data
capabilities in a controlled and
scalable way.

Stefan Groot
Head of Analytics Engineering,
ABN AMRO

10x faster
time to market — use cases
deployed in two months

100+
use cases to be delivered
over the coming year

500+
empowered business
and IT users

“

Learn More

5 5The Big Book of Data Engineering

https://databricks.com/customers/abn-amro
https://databricks.com/customers/abn-amro
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

What Databricks has really
given us is a foundation for the
most innovative digital freight
marketplace by enabling us to
leverage AI to deliver the best
carrier experience possible.

Joe Spinelle
Director, Engineering and Technology,
J.B. Hunt

“

In their mission to build North America’s most efficient digital transportation network, J.B. Hunt

wanted to streamline freight logistics and provide the best carrier experience — but legacy

architecture, their lack of AI capabilities and the inability to securely handle big data caused

significant roadblocks. However, after implementing the Databricks Lakehouse Platform and

Immuta, J.B. Hunt is now able to deliver operational solutions that range from improving supply

chain efficiencies to boosting driver productivity — resulting in significant IT infrastructure

savings and revenue gains.

USE CASE

J.B. Hunt uses Databricks to deliver industry-leading freight carrier analytics via their Carrier 360 platform,
driving down costs while increasing driver productivity and safety. Use cases include freight logistics, customer
360, personalization and many more.

SOLUTION AND BENEF ITS

J.B. Hunt uses the Databricks Lakehouse Platform to build North America’s most secure and efficient freight
marketplace — streamlining logistics, optimizing carrier experiences and cutting costs.

• Delta Lake federates and democratizes data for real-time route optimizations
and driver recommendations via the Carrier 360 platform

• Notebooks boost data team productivity to deliver more use cases faster

• MLflow speeds deployment of new models that improve driver experience

SECTION 3 . 2 J.B. HUNT

$2.7M
in IT infrastructure savings,
increasing profitability

5%
increase in revenue driven by
improved logistics

99.8% faster
recommendations for a
better carrier experience

Learn More

5 6The Big Book of Data Engineering

https://databricks.com/customers/j-b-hunt
https://databricks.com/customers/j-b-hunt
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks is the data and AI company. More than 5,000

organizations worldwide — including Comcast, Condé Nast,

H&M and over 40% of the Fortune 500 — rely on the Databricks

Lakehouse Platform to unify their data, analytics and AI. Databricks

is headquartered in San Francisco, with offices around the globe.

Founded by the original creators of Apache Spark,™ Delta Lake

and MLflow, Databricks is on a mission to help data teams solve

the world’s toughest problems. To learn more, follow Databricks on

Twitter, LinkedIn and Facebook.

About Databricks

Contact us for a personalized demo
databricks.com/contact

STA R T YO U R F R E E T R I A L

© Databricks 2021. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation. Privacy Policy | Terms of Use

https://twitter.com/databricks
https://www.linkedin.com/company/databricks/
https://www.facebook.com/databricksinc/
databricks.com/contact
https://databricks.com/try-databricks
https://databricks.com/try-databricks
https://www.apache.org/
https://databricks.com/privacypolicy
https://databricks.com/terms-of-use

