
1

Bare Metal CloudphoenixNAP | Global IT Services

By Seow Lim, Sergio Muriana
April, 2021

BARE METAL CLOUD

Automating the Provisioning of
Kubernetes Cluster on
Bare Metal Servers in Public Cloud

2

Bare Metal Cloud phoenixNAP | Global IT Services

Addressing the Challenges of Adopting Cloud-Native Infrastructure

Adopting the agile methodologies has become a priority for organizations of different sizes, helping improve
project quality and efficiency. Some of the most common challenges in this effort, however, are related to
optimizing the infrastructure to support demanding and highly dynamic workloads. While cultural changes
with development teams and the lack of training remain the biggest issue for most respondents in the
CNCF survey (41% and 40%), infrastructure security, storage, and networking follow closely behind:

• Security (38%)

• Monitoring (34%)

• Storage (30%)

• Networking (30%)

Building a cloud-native platform that provides all these capabilities is a key to
success. While traditional dedicated servers provide advanced resources to
overcome these challenges, their limited scaling options cannot always meet the
needs for instant deployment, scalability, and flexibility.

The phoenixNAP Bare Metal Cloud (BMC) offers the elasticity and flexibility of
Public Cloud, while at the same time provides performance and isolation of bare
metal servers. Powered by the latest generation Intel® Xeon® Scalable processors,
BMC instances provide a platform for even the most demanding workloads
such as high-traffic web servers, SaaS app hosting, database workloads, high
performance computing (HPC), machine learning (ML), etc. Launching instances
based on the latest 3rd Gen Intel Xeon Scalable processors (codenamed Ice Lake)
in 2021, BMC expanded the deployment options, enabling access to advanced
features of the new generation CPUs.

With the continued evolution of Public Cloud technology and platforms, more and more companies are
leveraging their elasticity and flexibility to meet their compute workload requirements. While virtual machine
(VM)-based cloud platforms are sufficient for many types of workloads, there are still demands for the
performance and isolations provided by bare metal servers.

According to Gartner, as companies adopt Cloud Native technology, one of the top emerging trends is bare
metal containers. In a bare metal containers setup, container platforms such as Kubernetes are deployed
to run directly on bare metal servers instead of VMs. This helps remove the resource and performance
overhead of VMs without losing the benefits of operational simplicity and security.

In the context of accelerated container adoption, which is increasingly used for production environments
as suggested in the 2019 CNCF Survey, bare metal platform gains even more importance. The ability to
leverage dedicated resources with the flexibility of the public cloud helps overcome some of the most
common challenges of organizations looking to adopt agile business models and go to market faster.

https://phoenixnap.com/bare-metal-cloud
https://www.gartner.com/en/documents/3927407/top-emerging-trends-in-cloud-native-infrastructure
https://www.cncf.io/blog/2020/03/04/2019-cncf-survey-results-are-here-deployments-are-growing-in-size-and-speed-as-cloud-native-adoption-becomes-mainstream/

3

Bare Metal CloudphoenixNAP | Global IT Services

Architecture Overview

Following the fast-changing cloud market conditions, phoenixNAP adopted microservices architecture,
cloud-native infrastructure, and continuous integration/continuous delivery (CI/CD) practice to develop and
deliver Bare Metal Cloud in an agile manner. These microservices integrate with third-party solutions to
provide an API-based multi-tenant bare metal server platform.

The major components of the phoenixNAP Bare Metal Cloud system include:

• Bare metal automation system

• API management and gateway

• Identity and access management

• Bare Metal Cloud microservices

• Bare Metal Cloud portal

• Version Control and CICD pipeline

• Cloud native infrastructure

Bare Metal Automation System

The heart of the phoenixNAP Bare Metal Cloud is a bare metal automation system that automatically
discovers newly racked servers and PXE boot into them to prepare for provisioning. The system is responsible
for performing the actual provisioning, de-provisioning, power controls, OS install, and configurations
operations. As a scalable and mature bare metal automation solution, Canonical Metal-as-a-Service (MaaS)
provides BMC with critical capabilities for making this possible.

Version
Control CICD

Scheduler

API Management
& Gateway

Bare Metal
Cloud Portal

Micro
Service

Micro
Service

Bare Metal Cloud Services

Identity and Access
Management

Bare Metal Server
Automation

Billing / Payment

Cloud Native Infrastructure

Container
Images

SERVERSERVER SERVER

CI

CD

In this article, we discuss the high-level architecture of Bare Metal Cloud, focusing on the APIs that are built
on top of Canonical Metal-as-a-Service (MaaS) to provide public-cloud-like capabilities and speeds for
provisioning and managing of bare metal servers. To demonstrate the capabilities of the system, this article
provides an example (with Python code) on how to leverage the BMC API to automate the provisioning of
Kubernetes cluster and WordPress application on Bare Metal Cloud.

https://maas.io/

4

Bare Metal Cloud phoenixNAP | Global IT Services

MaaS provides a command line interface (CLI), a web user interface (web UI), and a REST API that enables
developers to control and query the system. The operations that can be performed through the MaaS API
include querying the properties and status of servers, deploying operating systems, initiating power actions
on servers (e.g. reboot), and running custom scripts. By leveraging MaaS and its API, we saved significant
development efforts as we did not have to build a bare metal automation system from scratch.

Since MaaS is designed and built for enterprises, it does not support multi-tenancy. Thus, we dedicated a
big portion of our architecture and development efforts around extending and securing the MaaS API, while
providing business capabilities to support multi-tenancy, such as billing and network segregation.

API Management and Gateway

To protect and secure the Bare Metal Cloud API, we utilize Google Apigee, which is an industry-leading API
management and gateway solution [2]. We leverage the API gateway functionalities of Apigee, such as rate
limiting and OAuth integration to properly protect the API from security threats. For instance, we implement
the OAuth 2.0 client credentials flow, which involves using unique client_id and client_secret to generate
temporary access token to authenticate and authorize an API session.

In addition, we publish the BMC API documentation to the Apigee integrated developer portal, which also
provide sandbox capabilities for developers to try out the API directly from the portal.

Identity and Access Management

To integrate phoenixNAP Control Panel (PNCP) authentication and authorization s ystem with ApiGee, we
leverage the open source KeyCloak identity and access management solution to facilitate access control to
the Bare Metal Cloud portal and API. Specifically, we develop a custom Keycloak service provider interface
(SPI), which allows phoenixNAP clients to use their PNCP credentials to access Bare Metal Cloud while
leveraging the standard authentication and authorization mechanism provided by Keycloak.

Bare Metal Cloud Microservices

The core business logic of the Bare Metal Cloud system is embedded within a couple microservices.
Following is a list of capabilities provided by these microservices:

• Server inventory

• Server provisioning and de-provisioning

• Server power controls

• Network automation

• Billing

• Telemetry

The billing and telemetry microservices keep track of client servers and bandwidth usages. They integrate
with an external billing/payment system to handle invoices and payments for clients.

https://developers.phoenixnap.com/docs/bmc/1/overview

5

Bare Metal CloudphoenixNAP | Global IT Services

Bare Metal Cloud Portal

By leveraging the BMC API, the portal allows phoenixNAP clients to access the capabilities of Bare Metal
Cloud through a modern web interface, which is built with Angular framework and NG Zorro UI widgets.
Users of the portal, after authenticating against the Keycloak identity and access management system, can
provision servers, deprovision servers, view the status of their bare metal servers, and manage the OAuth
client credentials of the API.

Responsive design is incorporated into the interface to optimize the user experience from different types of
devices, including desktop/laptop computers, tablets, and smart phones. In addition, the portal is built as
a progressive web application (PWA), which can be added to home screens of devices or browsers that has
native support for it. Being a PWA enables the BMC Portal to provide the user experience of a traditional
application or native mobile application.

Version Control and CICD Pipeline

To facilitate agile software development and delivery, we utilize GitLab version control and CI/CD system
to provide continuous integration, testing, and automated deployment of microservices to the cloud native
infrastructure. The microservices are built and packaged into Docker containers for deployment.

Cloud Native Infrastructure

The cloud native infrastructure that hosts the microservices consists of Kubernetes (k8s) clusters and
Rancher k8s cluster management system. The k8s clusters run on top of VMs deployed on phoenixNAP
Data Security Cloud, which is built on top of VMware vCloud platform. Due to the containerization and
microservices architecture, these services can be deployed or scaled out to other k8s-compatible cloud if
needed.

EXAMPLE: Automating the Provisioning of Kubernetes Cluster

The phoenixNAP Bare Metal Cloud exposes a RESTFul API interface which enable developers to automate
the creation of bare metal servers. Detailed information of the API interface is documented at Bare Metal
Cloud API Portal. Once the bare metal servers are provisioned, additional platform or applications can be
provisioned in an automated manner to run on the servers. In this section, we will walk through and highlight
a subset of the Python code segments which leverage the BMC API and shell commands to:

The entire code example can be found in the phoenixNAP GitHub bare-metal-cloud-demo-scripts repository,
where the k8s-demo.py file contains the main program flow.

Create bare metal server instances
running Ubuntu operating systems

Provision a Kubernetes cluster that run
on the bare metal servers

Install a WordPress application that run
on the Kubernetes cluster

Install Kubernetes dashboard

1

2

3

4

https://developers.phoenixnap.com/docs/bmc/1/overview
https://developers.phoenixnap.com/docs/bmc/1/overview
https://github.com/phoenixnap/bare-metal-cloud-demo-scripts
https://ubuntu.com/

6

Bare Metal Cloud phoenixNAP | Global IT Services

Get Access Token

Before invoking the BMC API, we need to obtain an OAuth access token using the client_id and client_secret
registered in BMC Portal. Steps on how to register for the client_id and client_secret are documented in
Bare Metal Cloud API Portal.

This is the Python function that gets the access token for the API.

Create Bare Metal Server Instances

Bare metal server instances can be created by making the POST /servers REST API calls and specifying
parameters, such as data center location, type of server etc.

This is the Python function that makes a call to the BMC API to create a bare metal server.

def get _ access _ token(client _ id: str, client _ secret: str) -> str:

 """Retrieves an access token from BMC auth by using the client ID and the client

Secret."""

 credentials = "%s:%s" % (client _ id, client _ secret)

 basic _ auth = standard _ b64encode(credentials.encode("utf-8"))

 response = requests.post('https://api.phoenixnap.com/bmc/v0/servers',

 headers={

 'Content-Type': 'application/x-www-form-urlencoded',

 'Authorization': 'Basic %s' % basic _ auth.decode("utf-8")},

 data={'grant _ type': 'client _ credentials'})

 if response.status _ code != 200:

 raise Exception('Error: {}. {}'.format(response.status _ code, response.json()))

 return response.json()['access _ token']

def _ _ do _ create _ server(session, server):

 response = session.post('https://api.phoenixnap.com/bmc/v0/servers'),

 data=json.dumps(server))

 if response.status _ code != 200:

 print("Error creating server: {}".format(json.dumps(response.json())))

 else:

 print("{}".format(json.dumps(response.json())))

 return response.json()

https://developers.phoenixnap.com/resources

7

Bare Metal CloudphoenixNAP | Global IT Services

{

"ssh-key" : "ssh-rsa xxxxxx== username",

"servers _ quantity" : 3,

"server _ type" : "d0.t1.tiny"

}

In this example, three bare metal servers of type “d0.t1.tiny” are created, as specified in the server-settings.
conf file.

The output from the Python scripts as a result of generating the token and creating the three bare metal
servers are as followed:

Retrieving token
Successfully retrieved API token
Creating servers...
{
 “public”: true,
 “id”: “5e848339ed8dd52b946f0386”,
 “status”: “creating”,
 “hostname”: “host-2”,
 “description”: “host-2”,
 “os”: “ubuntu/bionic”,
 “type”: “d0.t1.tiny”,
 “location”: “PHX”,
 “cpu”: “Dual Silver 4110”,
 “ram”: “64GB RAM”,
 “storage”: “1x 1TB NVMe”,
 “privateIpAddresses”: [
 “10.0.3.1”
],
 “publicIpAddresses”: [
 “198.15.65.30”,
 “198.15.65.29”,
 “198.15.65.28”,
 “198.15.65.27”,
 “198.15.65.26”
]
}
Server created, provisioning host-2...
{
 “public”: true,
 “id”: “5e848339ed8dd52b946f0388”,
 “status”: “creating”,
 “hostname”: “host-1”,
 “description”: “host-1”,
 “os”: “ubuntu/bionic”,
 “type”: “d0.t1.tiny”,
 “location”: “PHX”,
 “cpu”: “Dual Silver 4110”,
 “ram”: “64GB RAM”,
 “storage”: “1x 1TB NVMe”,
 “privateIpAddresses”: [
 “10.0.1.1”
],

 “publicIpAddresses”: [
 “198.15.65.14”,
 “198.15.65.13”,
 “198.15.65.12”,
 “198.15.65.11”,
 “198.15.65.10”
]
}
Server created, provisioning host-1...
{
 “public”: true,
 “id”: “5e848339ed8dd52b946f0387”,
 “status”: “creating”,
 “hostname”: “host-0”,
 “description”: “host-0”,
 “os”: “ubuntu/bionic”,
 “type”: “d0.t1.tiny”,
 “location”: “PHX”,
 “cpu”: “Dual Silver 4110”,
 “ram”: “64GB RAM”,
 “storage”: “1x 1TB NVMe”,
 “privateIpAddresses”: [
 “10.0.7.1”
],
 “publicIpAddresses”: [
 “198.15.65.62”,
 “198.15.65.61”,
 “198.15.65.60”,
 “198.15.65.59”,
 “198.15.65.58”
]
}
Server created, provisioning host-0...
Waiting for servers to be provisioned...

8

Bare Metal Cloud phoenixNAP | Global IT Services

The following screenshot from Bare Metal Cloud portal lists the three bare metal servers that are created:

Provisioning Kubernetes Cluster

Once the three bare metal servers are created, the script poll the BMC API to check for the server status until
the provisioning is completed and the server is powered on. The first server to be provisioned is assigned as
the Kubernetes master node. The following Python function performs these steps.

def wait _ server _ ready(function _ scheduler, server _ data):

 json _ server = bmc _ api.get _ server(REQUEST, server _ data['id'])

 if json _ server['status'] == "creating":

 main _ scheduler.enter(2, 1, wait _ server _ ready, (function _ scheduler,

server _ data))

 elif json _ server['status'] == "powered-on" and not data['has _ a _ master _ server']:

 server _ data['status'] = json _ server['status']

 server _ data['master'] = True

 server _ data['joined'] = True

 data['has _ a _ master _ server'] = True

 data['master _ ip'] = json _ server['publicIpAddresses'][0]

 data['master _ hostname'] = json _ server['hostname']

 print("ASSIGNED MASTER SERVER: {}".format(data['master _ hostname']))

 else:

 server _ data['status'] = json _ server['status']

sudo snap install microk8s --classic --channel=1.17/stable

Once the servers are provisioned, the Python script make an SSH connection to the servers using its
public address to start the installation of Canonical Microk8s Kubernetes cluster by invoking the following
command line:

https://microk8s.io/

9

Bare Metal CloudphoenixNAP | Global IT Services

def setup _ k8s _ addons(master _ ip: str):

 print("Installing k8s add-ons in master server: {}".format(data['master _ hostname']))

 run _ shell _ command([ssh + 'ubuntu@{} \'sudo microk8s.enable dns ingress\''.

format(master _ ip)])

def join _ to _ cluster(worker _ ip: str, master _ ip: str, token: str) -> str:

 return run _ shell _ command([ssh + 'ubuntu@{} sudo microk8s.join {}:25000/{}'.

format(worker _ ip, master _ ip, token)])

For the master node, the script configures local Kubernetes CLI to connect to the node, and install Kubernetes
add_ons, such as DNS and nginx ingress controllers. This is the Python function that installs the add-ons.

After the master node is set up, the other two nodes are joined to the Kubernetes cluster. This is the Python
function that issues the shell command to perform the join operation:

At this point, the provisioning of the Kubernetes cluster is completed. Below is the output from the Python
script:

ASSIGNED MASTER SERVER: host-1
Server provisioned host-0
Installing kubernetes in host-0
Server provisioned host-2
Installing kubernetes in host-2
Server provisioned host-1
Installing kubernetes in host-1
2020-04-01T12:05:20Z INFO Waiting for restart...
microk8s (1.17/stable) v1.17.4 from Canonical* installed

Kubernetes installed host-0
2020-04-01T12:05:31Z INFO Waiting for restart...
microk8s (1.17/stable) v1.17.4 from Canonical* installed

Kubernetes installed host-2
2020-04-01T12:05:26Z INFO Waiting for restart...
microk8s (1.17/stable) v1.17.4 from Canonical* installed

Kubernetes installed host-1
Configure local kubernetes cli for connect to master
Local kubernetes cli configured to connect to master
Installing k8s add-ons in master server: host-1
Enabling DNS
Applying manifest
serviceaccount/coredns created
configmap/coredns created
deployment.apps/coredns created
service/kube-dns created
clusterrole.rbac.authorization.k8s.io/coredns created
clusterrolebinding.rbac.authorization.k8s.io/coredns created
Restarting kubelet
DNS is enabled
Enabling Ingress

10

Bare Metal Cloud phoenixNAP | Global IT Services

namespace/ingress created
serviceaccount/nginx-ingress-microk8s-serviceaccount created
clusterrole.rbac.authorization.k8s.io/nginx-ingress-microk8s-clusterrole created
role.rbac.authorization.k8s.io/nginx-ingress-microk8s-role created
clusterrolebinding.rbac.authorization.k8s.io/nginx-ingress-microk8s created
rolebinding.rbac.authorization.k8s.io/nginx-ingress-microk8s created
configmap/nginx-load-balancer-microk8s-conf created
daemonset.apps/nginx-ingress-microk8s-controller created
Ingress is enabled

Add-ons installed, the master node is ready to use
Setup servers done
Adding node
Join node with: microk8s join 198.15.65.10:25000/umZAYUifCsbTWUJBNcaJNohFVBNMmtlq

If the node you are adding is not reachable through the default interface you can use one of the following:
 microk8s join 192.168.100.102:25000/umZAYUifCsbTWUJBNcaJNohFVBNMmtlq
 microk8s join 10.0.1.1:25000/umZAYUifCsbTWUJBNcaJNohFVBNMmtlq
 microk8s join 198.15.65.10:25000/umZAYUifCsbTWUJBNcaJNohFVBNMmtlq
 microk8s join 198.15.65.11:25000/umZAYUifCsbTWUJBNcaJNohFVBNMmtlq
 microk8s join 198.15.65.12:25000/umZAYUifCsbTWUJBNcaJNohFVBNMmtlq
 microk8s join 198.15.65.13:25000/umZAYUifCsbTWUJBNcaJNohFVBNMmtlq
 microk8s join 198.15.65.14:25000/umZAYUifCsbTWUJBNcaJNohFVBNMmtlq
 microk8s join 10.1.2.0:25000/umZAYUifCsbTWUJBNcaJNohFVBNMmtlq

umZAYUifCsbTWUJBNcaJNohFVBNMmtlq

Joining node host-2 to master node
Finished: ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -o LogLevel=ERROR ubuntu@198.15.65.30 sudo
microk8s.join 198.15.65.14:25000/umZAYUifCsbTWUJBNcaJNohFVBNMmtlq

Setup servers done
Adding node
Join node with: microk8s join 198.15.65.10:25000/xBmcEzciEQBGleGisjRaBhrYzmIrmvNb

If the node you are adding is not reachable through the default interface you can use one of the following:
 microk8s join 192.168.100.102:25000/xBmcEzciEQBGleGisjRaBhrYzmIrmvNb
 microk8s join 10.0.1.1:25000/xBmcEzciEQBGleGisjRaBhrYzmIrmvNb
 microk8s join 198.15.65.10:25000/xBmcEzciEQBGleGisjRaBhrYzmIrmvNb
 microk8s join 198.15.65.11:25000/xBmcEzciEQBGleGisjRaBhrYzmIrmvNb
 microk8s join 198.15.65.12:25000/xBmcEzciEQBGleGisjRaBhrYzmIrmvNb
 microk8s join 198.15.65.13:25000/xBmcEzciEQBGleGisjRaBhrYzmIrmvNb
 microk8s join 198.15.65.14:25000/xBmcEzciEQBGleGisjRaBhrYzmIrmvNb
 microk8s join 10.1.2.0:25000/xBmcEzciEQBGleGisjRaBhrYzmIrmvNb

xBmcEzciEQBGleGisjRaBhrYzmIrmvNb

Joining node host-0 to master node
Finished: ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -o LogLevel=ERROR ubuntu@198.15.65.62 sudo
microk8s.join 198.15.65.14:25000/xBmcEzciEQBGleGisjRaBhrYzmIrmvNb

Installing WordPress Application

Once the Kubernetes cluster is provisioned, the Python script installs a WordPress application on the cluster.
The installation information for the application, such as version number, is specified in the wordpress.yaml
file. This is the Python function that invoke the shell commands to install WordPress:

11

Bare Metal CloudphoenixNAP | Global IT Services

def install _ wordpress():

 print("Installing wordpress")

 run _ shell _ command(['kubectl create namespace wordpress')

 run _ shell _ command(['kubectl apply -f ./wordpress.yaml -nwordpress'])

Following is the output from running the WordPress application:

Following is the screenshot that displays the welcome screen from the WordPress application that is
created:

Installing wordpress
namespace/wordpress created

service/mysql created
deployment.apps/mysql created
service/wordpress created
deployment.apps/wordpress created
ingress.networking.k8s.io/wordpress created
persistentvolume/mysql-pv-volume created
persistentvolumeclaim/mysql-pv-claim created

Wordpress installed

12

Bare Metal Cloud phoenixNAP | Global IT Services

Install Kubernetes Dashboard

The last installation the Python script performs is Kubernetes dashboard. The script issues the following
shell commands to install Kubernetes dashboard.

sudo microk8s.enable dashboard

sudo microk8s.kubectl -n kube-system patch service kubernetes-dashboard --patch

'{"spec": {"type":"NodePort"}}'

The output from running of the commands are:

Installing kubernetes dashboard
Applying manifest
serviceaccount/kubernetes-dashboard created
service/kubernetes-dashboard created
secret/kubernetes-dashboard-certs created
secret/kubernetes-dashboard-csrf created
secret/kubernetes-dashboard-key-holder created
configmap/kubernetes-dashboard-settings created
role.rbac.authorization.k8s.io/kubernetes-dashboard created
clusterrole.rbac.authorization.k8s.io/kubernetes-dashboard created
rolebinding.rbac.authorization.k8s.io/kubernetes-dashboard created
clusterrolebinding.rbac.authorization.k8s.io/kubernetes-dashboard created
deployment.apps/kubernetes-dashboard created
service/dashboard-metrics-scraper created
deployment.apps/dashboard-metrics-scraper created
service/monitoring-grafana created
service/monitoring-influxdb created
service/heapster created
deployment.apps/monitoring-influxdb-grafana-v4 created
serviceaccount/heapster created
clusterrolebinding.rbac.authorization.k8s.io/heapster created
configmap/heapster-config created
configmap/eventer-config created
deployment.apps/heapster-v1.5.2 created

If RBAC is not enabled access the dashboard using the default token retrieved with:

token=$(microk8s kubectl -n kube-system get secret | grep default-token | cut -d “ “ -f1)
microk8s kubectl -n kube-system describe secret $token

In an RBAC enabled setup (microk8s enable RBAC) you need to create a user with restricted
permissions as shown in:
https://github.com/kubernetes/dashboard/blob/master/docs/user/access-control/creating-sample-user.md

service/kubernetes-dashboard patched

Kubernetes dashboard installed

13

Bare Metal CloudphoenixNAP | Global IT Services

Below is the screenshot from the Kubernetes dashboard that shows the cluster roles and namespaces of
the Kubernetes that the script created:

REFERENCES

[1] Gartner - Top Emerging Trends in Cloud-Native Infrastructure, May 28, 2019, Arun Chandrasekaran and
Wataru Katsurashima.

[2] Gartner – Magic Quadrant for Full Life Cycle API Management, October 9, 2019, Paolo Malinverno, Mark
O’Neill, Aashish Gupta, Kimihiko Iijima.

14

Bare Metal Cloud phoenixNAP | Global IT Services

2.35 Tbps Bandwidth Capacity | 20,000+ Servers Available Worldwide

100% Network Uptime with World-Class Carrier Blend

April, 2021

GLOBALLY CONNECTED.
LOCALLY AVAILABLE.

https://twitter.com/phoenixNAP
https://www.facebook.com/phoenixnap
https://www.youtube.com/user/PhoenixNAPdatacenter
https://www.instagram.com/phoenixnap/
https://www.linkedin.com/company/phoenix-nap
https://phoenixnap.com/blog

