
 March 24, 2021

Page 1

Subject7, Inc. | Dev and Test – Switching Lanes

Dev and Test - Switching Lanes?

By Matt Heusser for Subject7

In computer science we strive for more and more power. The way to do that is typically through

reuse and high-level logic. Write a function, call it, reuse it, never write it again. In other words,

Don't Repeat Yourself (DRY). Sometimes it can be helpful to understand what is going on at

lower levels. For me that was one college course in Assembler and a graduate course in

computer architecture. Besides those two courses, the key to power was always to work at

higher and higher levels. That trend continues in low code tools for programmers. Yet as

programmers, we are getting away from code by moving to drag and drop; testers seem to be

going the other way, learning to code, and expressing tests in "regular" programming languages

like C# or Java.

What is happening here?

Developers and Low-Code Tools

It's easy enough to create a simple Create Read Update Delete (CRUD) application based on

database tables. In Visual Basic you can get a database control and connect text fields; in

Ruby on Rails, you give the table a name and have the application render itself. The low-code

tools take things to a new level. There is often no software to install; the low-code tool runs in

your web browser in the cloud. Upload a spreadsheet and the software will create a database

and website for you. Add your company CSS to automatically style it. For simple, straight-

forward workflow automation, low-code tools are gaining a place. You can even drag and drop

complex flows. That might include selecting flight, seat assignment, adding credit card

information, then clicking to change only the return flight information.

The example below, from Salesforce Lightning, shows the drag and drop interface how screens

are connected. These ideas have been around in development for decades but are finally

achieving acceptance. Mendix,

the leading low-code platform, had

$100 million in annual sales in

2019, representing only a fraction

of the market. Microsoft, Oracle,

and Salesforce all offer tools that

integrate deeply with their

traditional software tools yet

provide drag-and-drop, from the

cloud functionality.

And then there is testing...

https://www.oreilly.com/library/view/extreme-programming-pocket/9781449399849/ch19.html
https://searchapparchitecture.techtarget.com/opinion/Low-code-development-combats-microservices-complexity

 March 24, 2021

Page 2

Subject7, Inc. | Dev and Test – Switching Lanes

Once Bitten, Twice Shy

In software testing, we tried the high-level tools approach. We called it record & playback.

Those days currently exist in the back of some testers’ minds, in a time period one might call the

paleolithic. That is so far back that very few practitioners even remember. That was the time

when the articles like Hey Vendors, Give Us Real Scripting Languages or Test Automation

Snake Oil were written. I am talking about a different century, when software was burned on

disks and sent in the mail to run on Windows. Windows itself was a graphical hack on top of

MS-DOS not designed to be "driven" by any sort of tool. There was a complex build pipeline

that kicked out a Windows application. Testers could set up the data and run the application on

their desk during lunch, or else not work. Personal computers were expensive; laptops were for

executives.

Most testers of today weren't practicing their craft at that time. What has happened is that the

thinking of testing communities, to the extent that we have them, was heavily influenced by

people who read those articles, or even influenced by the people who were influenced by

people who read the articles - and so on. Along the way we have lost more than a little context,

which is why I like to point back to those tools. Around that time, I was programming in Visual

Basic myself, which was incredibly powerful at doing a very limited set of things, and incredibly

frustrating once you exceeded what it was good at. Too many testers look at low-code, and

"know" that "we tried that trick, and it didn't work."

The alternative is to go deep code - to write in a production programming language. That gives

us the problem that James Whittaker pointed out at Google's Test Conference in 2010; trying to

write a program on top of a program that is changing. That means testers spend a great deal of

time programming, debugging, and maintaining test code, instead of focusing on exploring and

reducing the risk in today's changes. To put it differently, we saw a problem two decades ago in

record-playback and, in some circles, the pendulum swung too far the other way. The question

to ask is: with a rich ecosystem and flexible tooling available, is heavyweight coding still the

correct option for your organization?

Programmers are always reaching for

more powerful, higher levels of building

software. This is a meme-level

conversation in the programming world.

People write jokes about it with images,

like this one.

It is possible that some testers have

"programming envy." They see

programmers as getting respect and

honor by automating things with code

and want to repeat the behavior.

Certainly, at some of the programmer-

first companies, like Google, the way to promotions, credit, and respect is through code. Given

all this, it is understandable that testers might be attracted to "high code" solutions.

https://www.stickyminds.com/article/hey-vendors-give-us-real-scripting-languages
https://www.satisfice.com/download/test-automation-snake-oil
https://www.satisfice.com/download/test-automation-snake-oil
https://www.youtube.com/watch?v=cqwXUTjcabs

 March 24, 2021

Page 3

Subject7, Inc. | Dev and Test – Switching Lanes

Four Choices

Taking a step back, I see that programmers can use traditional or low-code tools; testers can

create work with traditional or low/no-code tools. That creates four options. Let's talk about

them.

 TESTER PREFERENCE

 Low-Code High-Code

1

2

3

4

1. Developer Low-Code/Tester Low Code. Some of the low-code frameworks are

providing their own low-code test tools. These tend to demo the software, to create a

sort of living documentation, and to show how the software should work through

execution. If these tools are tied together in the same platform, there can be a little bit

extra potential, as the test can reuse libraries from the tool. If the tool does not have an

affordance for testing, the application may look like any other web application, and

adaptive tools may be appropriate.

2. Developer Low-Code/Tester High Code. This seems unlikely. In the simplest of

applications, there is just no need for the power and flexibility that writing code creates.

In this environment writing and running the tests may take longer than writing the

production application!

3. Developer High-Code/Tester Low Code. The same combination the test community

was critical about ten years ago has grown up. There is something to be said for being

able to view a test in business terms, yet drill in for detail. This sort of test work can be

done by analysts who are less technical, read and understood by product management,

and act as a sort of working specification of what the software should do.

4. Developer High-Code/Tester High Code. In this environment it is possible for the

testers and programmers to program in the same language. The two groups can use

shared libraries, can blur the line between test and code, can check the test code into

the same place as production code and use the same branches. This use of the same

branches minimizes the problem of trying to run "new" tests on "old" code, for example,

verifying a small change that is a production patch.

Low

Code

High

Code

D
E

V
E

L
O

P
E

R

P
R

E
F

E
R

E
N

C
E

https://www.subject-7.com/blog/2020/8/24/why-adaptive-testing-is-beating-the-west-coast-school

 March 24, 2021

Page 4

Subject7, Inc. | Dev and Test – Switching Lanes

Conclusions

As we have added web, phone, tablet, watch and other form-factors, we keep pushing the

software test tool industry backwards, from maturity to growth. That is fantastic as the number

of valid test approaches keeps expanding, now to include writing code, record/playback, and

now adaptive testing tools.

When I started my career, programmers were writing sort functions in C++; today they use a

vector object with a .sort() built in. The habit of programmers is to look for more powerful

programming languages with less custom code. Today's low-code trend took decades to arrive

and had several fits and starts. The same sort of lesser-code tools exist for testing and promise

to reduce the code-testing-code, or "two targets" problem. While these tools appear "new,"

Mercury's WinRunner software debuted in 1995 - making them about twenty-five years old.

There's no need to wait. The waiting has been done. What are you waiting for?

Ready to learn more about Subject7?

Contact us today to request a free demo.

https://www.subject-7.com/blog/2020/8/24/why-adaptive-testing-is-beating-the-west-coast-school
https://www.subject-7.com/request-a-demo-of-subject7

