

 Macrometa 1

Macrometa’s approach to solving
complex, geo distributed data challenges

Introduction
The last 15 years have seen several successive waves of big data platforms and companies offering
new database and analytics capabilities. Leveraging the public cloud, these large scale distributed
data systems work well in centralized, single region or single data center topologies and are geared
for “Read intensive” data problems.

Companies such as Cloudera, Snowflake, and more recently Databricks are examples of successful
companies that have innovated with novel “read architectures” that reduce the structural cost of
reading immutable data and built new big data orientated analytics apps and capabilities by
exploiting their lower costs of reads.

We are now faced with new challenges with workloads and use cases that are “write intensive”.
The write path is far more challenging than the read path. This is because the read path is built on
immutable or non-changing data. The write path necessarily involves mutable data with varying
rates of change and growth in the data sets of use cases.

Additionally, the write path today has also evolved from the client/server’s “request – response”
based interaction model to new, streaming data architectures where streams of “events” need to
be processed as they are created or generated by various sources.

A similar cascade of innovations is needed on the write path to solve the structural costs of data
writes as big data platforms have done to change the structural costs of data reads.

We summarize the challenges of the write path in modern cloud data platforms as follows:

1. Expensive Writes - (Ex: DynamoDB - writes are 16x to 64x more expensive than reads).
2. Centralized architectures - Introduces large access latencies for globally distributed users

and as well as large transit latencies and network transfer costs for data to be shipped to
the cloud.

3. Require network communication intensive and coordinated approaches to consistency such
as using state machine replication or consensus and therefore are only feasible within a
single cloud region (due to the need for ultra-low latency and reliable data center class
networks).

4. Require synchronous replication to ensure all nodes in a distributed system make forward
progress on writes with transaction semantics where either all related writes are accepted

 Macrometa 2

or all are rejected. In combination with point #3 above, replication and coordination end
up being the Achilles heel for write-intensive distributed systems.

Today’s enterprise apps and cloud workloads are no longer “read intensive”, but are a combination
of:

1. “Write intensive” (ex: IoT, Monitoring, ClickStreams, Fraud Detection etc) or
2. “Read-Write balanced” (ex: E-Commerce, Gaming, Adtech etc)

This is because modern cloud native architectures don’t use just one database behind them for
persistence but instead use several, specialized databases and data stores for different types of
semi structured and unstructured data. This “polyglot persistence” pattern used by modern apps
further exacerbates the write path and write intensity problem as now a single application level
write generates a successive cascade of amplified writes to multiple datastores underneath the
application.

The “Multi database/datastore mutations” pattern where an application level write results in
several cascading updates to multiple independent databases or datastores causes very high
levels of write amplification and resulting costs.

Attempts to solve these problems using conventional techniques of “write back” and “write
through” caching no longer work for such polyglot backend patterns – one simply cannot buffer
writes in a single buffer and fan out to multiple databases and data stores underneath without
completely giving up on consistency and transaction semantics.

For use cases where multi-region data, or edge based data processing are needed, the problems
are further exacerbated by the physical link latency, topology and reliability of the wide area
network. These use cases have to contend with well known problems such as:

1. Network latencies with 100s of ms,
2. Unreliable & jittery networks.

Given the challenges just described, current centralized distributed data systems and the
technologies that underpin them cannot be generalized well to fit edge & multi-cloud workloads.

Macrometa has been now for several years, focused on solving the challenges of the write path.
We don’t just want to solve the cost and consistency problem of the write path but also enable
globally distributed stateful apps & web services that can run in 10s and 100s of regions worldwide
concurrently with less than 50 ms end to end latency for data access by 95% of the world’s
population.

This is a non trivial computer science problem because:

 Macrometa 3

1. It requires our platform to run in wide-area deployments where nodes forming the
database may be separated by more than 100ms of latency and unreliability in the
network connections.

2. It requires our platform to run across 10s to 100s of data centers and yet present a single
system image (SSI).

3. It requires us to have a significantly better write cost structure and cost-performance
ratio than current cloud data systems built on centralized architectures.

Macrometa accomplishes this with a novel architecture that combines geo-distributed, coordination
free write and replication techniques and a multi-modal data platform with tunable consistency levels
to solve these problems in a edge-native way.

The approach for cheaper writes

In current centralized cloud data architectures, writes are expensive due to the sheer number of
writes an application generates that result in 2 levels of amplification:

1. Writes are amplified as they fan In the polyglot persistence pattern and
2. Further amplified by multiple inline updates to the underlying indexes and associated

metadata structures in the persistence layer for each underlying database or datastore.

Macrometa solves this via a combination of two approaches:

1. Single copy of data with multiple data models and unified noSQL query. Instead of having
different databases for every type of unstructured or semi structured data, Macrometa
keeps a single copy of data that may be read and mutated by different query interfaces
(K/V, docs, graphs, streams etc.). This enables the use and benefit of polyglot persistence
patterns but without the amplification cost of Multi database/datastore mutations

2. Using Append-only logs to process writes and generates in-memory materialized views in real-
time for each mutation. Changes to the views are transformed into CRDT operations and
shipped with causal ordering to the peers. This reduces considerably the cost of writes
for Macrometa within a region.

The approach to a Coordination Free Architecture

Today’s cloud databases and distributed data platforms are built on coordination based
architectures. They rely on state machine replication and consensus protocols which are highly
chatty & synchronous in nature.

 Macrometa 4

Coordination creates 3 primary penalties for distributed systems -

1. Increased Latency (due to stalled execution)
2. Decreased Throughput
3. Unavailability

For example, if a transaction takes “d” seconds to execute, the maximum throughput of the
coordinating transactions operating on the same data items is 1/d. Source: Coordination
Avoidance in Database Systems (vldb.org)

This is typically not an issue if the database is within a single availability zone or a single data
center. There the network delays are small (i.e., hundreds of microsecond or low single digit
milliseconds), thereby permitting from few 100s to few 1000s of coordinating transactions per
item per second. However, if the database is spread across multiple regions/PoPs, the costs will
dramatically increase. The delays are lower bound by the network latencies which run into 100s of
milliseconds as shown in the below picture.

Source: Highly Available Transactions: Virtues and Limitations (Extended Version) (arxiv.org)

This in turn leads to a dramatic reduction in throughput. For example, 2 to 3 coordinating
transactions per second within an 8-region cluster. This throughput is too low and unfeasible for
write-intensive or read-write balanced workloads and use cases.

On average, intra-datacenter communication is

 Macrometa 5

1. 1.82 to 6.38 times faster than geographically co-located data centers and
2. 40 to 647 times faster than geographically distributed datacenters.

Source: Highly Available Transactions: Virtues and Limitations (Extended Version) (arxiv.org)

Macrometa eschews the use of coordination in its architecture and instead utilizes Conflict Free
Replicated Data Types (CRDTs) to achieve coordination free architecture and side steps the
problems created by coordination based systems (described above).

A CRDT is an abstract data type, with a well-defined interface, designed to be concurrently
modified by multiple, independent processes or replicated to be modified by multiple
independent processes. CRDTs exhibit the following important properties:

1. Any replica can be modified without coordinating with another replicas;
2. When any two replicas have received the same set of updates, they reach the same state,

deterministically, by adopting mathematically sound rules to guarantee state
convergence. Source: Conflict-free Replicated Data Types (CRDTs) (arxiv.org)

CRDTs have 3 very important properties that enable coordination free synchronization -
Commutativity, Associativity & Idempotence. These properties enable a system to replicate in a
coordination free manner while converging to the same state independently and
deterministically.

In Macrometa, mutation operations to the database like inserts, updates and deletes are
transformed into very specific CRDT operations and shipped to peers as a partially ordered log
of operations on reliable geo-replicated streams.

To solve the issues with geo distributed time stamping (synchronizing clocks over the WAN is
another well-known problem), Macrometa attaches an optimized variant of vector clocks called
“Version Vectors” to each message broadcast as a logical timestamp and uses the causality
information in the vector clock to decide at each destination how a message should be
processed.

Note: Macrometa transforms and ships the operations (using Operations-Based CRDTs) and not
the delta state of the system (like State-Based CRDTs).

This coordination free architecture enables Macrometa platform to sidestep the 3 penalties introduced
by current coordination-based architectures i.e., increased latency (due to stalled execution),
decreased throughput & unavailability.

 Macrometa 6

Solving the challenge of unbounded log growth

One common challenge with CRDT systems is that the nodes (i.e., PoPs) have to keep the entire
history of operations so that new nodes/PoPs may join and converge. This increases the storage
cost as the history of operations can grow in an unbounded fashion. Getting around this side
effect of CRDTs and logs requires coordination between nodes to pick a causally stable
checkpoint and truncate the log at the said checkpoint.

In concurrent data types, the order information provided by timestamps may only be needed for
an operation as long as its concurrent operations are being delivered or expected. However this
op log information is useless once no concurrent operations are expected for a given operation.
This operation can then be called as a “causally stable” operation and thus, it makes sense to get
rid of this extra meta-data. Source: Pure Operation-Based Replicated Data Types (arxiv.org)

Given our philosophy of being completely coordination free, Macrometa implements a novel
coordination free approach to creating causally stable checkpoints in the log without needing
nodes to synchronize metadata about causal stability across regions/PoPs.

Our co-ordination free approach to log truncation determines a set of causally stable operations and
garbage collects the extraneous operations and vector clock metadata in the log at each PoP. This
enables Macrometa to substantially reduce the storage costs and associated log traversal IO costs
(again). This also enables Macrometa to scale to a large number of PoPs (100s of regions).

Tunable Consistency Levels

Tunable consistency levels enable developers to granularly choose the best consistency and
performance for their data at a table/collection level. Many of the hardest challenges of
distributed data platforms involve consistency guarantees.

Geo-replicated, distributed data platforms that support complex online applications, such as e-
commerce etc., must provide an “always-on” experience where operations always complete with
low latency. Today’s systems often sacrifice consistency to achieve these goals, exposing
inconsistencies to their clients and necessitating complex application logic.

For example, AWS DynamoDB, Cassandra, LinkedIn Voldemort etc. provide Eventual Consistency
to achieve Availability & Partition Tolerance. Eventual Consistency ensures that writes to one
data center will eventually appear at other data centers, and if all data centers have received the
same set of writes, they will have the same values for all data.

 Macrometa 7

The problem with eventual consistency is that it does not say anything about the ordering of
operations. This means that different data centers can reflect arbitrarily different sets of
operations. For example, if someone connected to the West Coast data center sets A=1, B=2,
and C=3, then someone else connected to the East Coast data center may see only B=2 (not A=1
or C=3), and someone else connected to the European data center may see only C=3 (not A=1 or
B=2).

This makes programming with eventually consistent systems very hard and opens up many
corner cases where the application or the data platform do not know how to solve for operations
that appear out of order. The out-of-order arrival leads to many serious anomalies in eventually
consistent systems.

We recommend a reading of Don't Settle for Eventual: Scalable Causal Consistency for Wide-
Area Storage with COPS (cornell.edu) for a thorough discussion of these anomalies.

Macrometa platform provides tunable consistency levels that are stronger than Eventual
Consistency seen in current distributed databases:

1. Strict Serializability within a region (default)
2. Casual+ consistency across regions (default) and
3. Strict Serializability across regions at a collection level.

Strict Serializability provides ACID semantics within a region. Macrometa platform uses MVCC to
provide snapshot isolation. With snapshot isolation, a transaction observes a state of the data as
when the transaction started. Read and write transactions are thus isolated from each other
without any need for locking. Each mutation generates new versions of a document with
automatic garbage collection.

 Macrometa 8

Source: Consistency Models (jepsen.io)

Macrometa platform provides Casual+ (Causal plus) consistency across regions. This automatically
covers the following consistency guarantees:

● Causal consistency. If process A has communicated to process B that it has updated a data
item, a subsequent access by process B will return the updated value, and a write is
guaranteed to supersede the earlier write. Access by process C that has no causal
relationship to process A is subject to the normal eventual consistency rules.

● Read-your-writes consistency. This is an important model where process A, after it has
updated a data item, always accesses the updated value and will never see an older value.
This is a special case of the causal consistency model.

● Session consistency. This is a practical version of the previous model, where a process
accesses the storage system in the context of a session. As long as the session exists, the
system guarantees read-your-writes consistency. If the session terminates because of a
certain failure scenario, a new session needs to be created and the guarantees do not
overlap the sessions.

● Monotonic read consistency. If a process has seen a particular value for the object, any
subsequent accesses will never return any previous values.

● Monotonic writes consistency. In this case the system guarantees to serialize the writes
by the same process. Systems that do not guarantee this level of consistency are
notoriously hard to program.

Source: Eventually Consistent - Revisited - All Things Distributed

 Macrometa 9

Macrometa platform also provides Strict serializability across regions at a collection level for use
cases that require it. For example, in use cases related to account withdrawals (in banking
applications), concurrent coordination free operations can result in undesirable outcomes like
negative account balances. This is typically called the “double spend problem”.

To ensure correct behavior, the database system must coordinate the execution of these
operations across all regions the data resides in. Macrometa platform enables users to choose
collections that should have strict consistency to address these types of use cases. Macrometa
then behaves as a “CP” system for these operations here at the expense of latency & availability.

Typically in most applications, 95% of the workflows are satisfied by Strict serializability within a
region or by Causal consistency across regions. These don’t require strict serialization across the
globe.

So by utilizing the flexible consistency levels model, Macrometa platform users can make better trade-
offs between latency, throughput, availability & consistency using global strict consistency only where
needed.

Polyglot multi modal data persistence patterns

Today when one chooses a database, they are actually choosing three things -

1. Storage Technology
2. Data Model and
3. Query/API Language.

For example,

● If you choose AWS DynamoDB, you are choosing the dynamo dB storage engine, its
columnar data model and the dynamo query language.

● Similarly, if you choose MongoDB you are choosing the MongoDB storage engine, a
document data model, and the MongoDB API.

● Similarly, for Neo4j i.e., you are choosing its storage engine, a graph data model and the
Cypher Query language.

All these databases need the same set of features and are tightly coupled between all of the
layers. For example, all these systems provide indexes, and the notion of an index exists in all
three layers. This commonality extends to some extent to messaging systems as well like Kafka

 Macrometa 10

where you are in essence choosing a storage technology (aka append-only logs), data model (aka
messages) and query language (aka pub-sub APIs).

Key-Value databases, Document databases, Graph databases, Streams etc. all make sense in the
right context, and quite often different parts of an application call for different choices. This
creates a tough decision:

● Use a whole new database to support a new data model, or
● Try to shoehorn data into your existing database.

Using a whole new database approach leads to making N copies of data in different formats and
processing multiple times. This also forces developers to expend a substantial portion of time
and effort in writing substantial integration glue code. On other hand, shoehorning data into an
existing database leads to unnecessary complexity and lower performance.

Macrometa platform takes a layered approach and decouples these 3 layers:

● For the storage layer, it uses Append-only logs & Log-Structured Merge trees.
● For the data model layer, it adds rich data models like Key-Value, Docs, Graphs, Search &

Streams on top of the storage layer.
● For the Query/API layer, it layers multiple query engines like C8QL, Dynamo Mode, Redis

Mode* & Mongo Modes* on top of the data model layer. Similarly it layers Apache Kafka,
Apache Pulsar & AWS Kinesis* protocols for data-in-motion.

Being an edge platform with the ability to connect and cache data from centralized databases
also means that Macrometa must support a heterogeneous mix of noSQL interfaces on its own
but in a way that does not create additional storage and IO overhead by keeping copies of data
for each specific storage format (K/V, docs, graphs, streams etc.).

The salience of our approach is that it enables our data platform to provide multiple data models on a
single copy of data reducing storage & processing costs while still supporting the polyglot persistence
pattern, increasing performance and developer velocity for both data-in-motion and data-at-rest use
cases.

Architecture

Macrometa architecture brings together all the above aspects to provide a geo-distributed
coordination free multimodal data platform as shown in the below image. User mutations are
transformed into CRDT ops, tagged with version vectors and shared with peer nodes (PoPs) via
geo-replicated causal ordered reliable streams utilizing publish-subscribe semantics.

 Macrometa 11

Incoming CRDT ops are processed by our Real Time convergence engine (RICE) to update
materialized views in real-time and also stored in event source storage (aka storage layer). These
views form the data model layer providing a common abstraction to support polyglot data model
patterns i.e., key-value, doc, graphs, search & streams.

The query/api layer builds on top of the data model layer and provides multiple query engines like
C8QL (a unified query language for KV, Docs, Graphs & Search) as well as wire compatible
interfaces like Dynamo mode, Redis mode* & Mongo mode*. Similarly for the streams, the
query/api layer provides native support for Apache Kafka protocol, Apache Pulsar protocol and
AWS Kinesis mode*.

Edge & multi-cloud environments require geo-distributed data platforms that handle natively the
constraints imposed by these environments. Bottom line, do not use a hammer to chop the wood!

