
Cassandra NoSQL
Data Model Design

Abstract
This paper describes the process that we follow at
Instaclustr to design a Cassandra data model for
our customers.

While not a prescriptive, formal process it does
define phases and steps that our team follows
when we are design a new data model for our

White Paper

Phase 1: Understand the data
Phase 2: Define the entities
Phase 3: Review and tune

As well as defining the process we also provide a
worked example based on building a database to
store and retrieve log messages from multiple
servers.

www.instaclustr.com 2

Overview
We recently published a blog post on the most common data modeling mistakes that we see
with Cassandra. This post was very popular and led me to think about what advice we could
provide on how to approach designing your Cassandra data model so as to come up with a
quality design that avoids the traps.

There are a number of good articles around that with rules and patterns to fit your data model
into
(e.g. http://www.datastax.com/dev/blog/basic-rules-of-cassandra-data-modeling and https://
academy.datastax.com/demos/getting-started-time-series-data-modeling).

However, we haven’t found a step by step guide to analyzing your data to determine how to fit
in these rules and patterns. This white paper is a quick attempt at filling that gap.

Phase 1: Understand the Data
This phase has two distinct steps that are both designed to gain a good understanding of the
data that you are modeling and the access patterns required.

Step 1: Define the data domain

The first step is to get a good understanding of your data domain. As someone very familiar
with relation data modeling, I tend to sketch (or at least think) ER diagrams to understand the
entities, their keys, and relationships. However, if you’re familiar with another notation then it
would likely work just as well. The key things you need to understand at a logical level are:

 •	 What are the entities (or objects) in your data model?

 •	 What are the primary key attributes of the entities?

 •	 What are the relationships between the entities (i.e. references from one to the other)?

 •	 What is the relative cardinality of the relationships (i.e. if you have a one to many is it one 	
	 to 10 or one to 10,000 on average)?

Basically, these are the same things you’d expect in from logical ER model (although we
probably don’t need a complete picture of all the attributes) along with a more complete
understanding of the cardinality of relationships that you’d normally need for a relational model.

An understanding of the demographics of key attributes (cardinality, distribution) will also be
useful in finalizing your Cassandra model. Also, understand which key attributes are fixed and
which change over the life of a record.

http://www.instaclustr.com

www.instaclustr.com 3

Step 2: Define the required access patterns

The next step, or quite likely a step carried out in conjunction with step 1, is to understand how
you will need to access your data:

 •	 List out the paths you will follow to access the data, such as:

	 	 Start with a customer id, search for transactions in a date range and then look up 	
		 all the details about a particular transaction from the search results.

		 Start with a particular server and metric, retrieve x metrics values in ascending 	
		 age starting at a particular point in time.

		 For a given sensor, retrieve all readings of multiple metrics for a given day.

		 For a given sensor, retrieve the current value.

 •	 Remember any updates of a record are an access path that needs to be considered.

 •	 Determine which accesses are the most crucial from a performance point of view—are 	
	 there some which need to be as quick as possible while performance requirements for 	
	 others allow time for multiple reads or range scans?

 •	 Remember that you need a pretty complete understanding of how you will access your 	
	 data at this stage—part of the trade-off for Cassandra’s performance, reliability, and 	
	 scalability is a fairly restricted set of methods for accessing data in a particular table.

Phase 2: Define the Entities

This phase has two specific steps designed to gain an understanding of both the primary and
secondary entities associated with the data.

Step 3: Identify primary access entities

Now we’re moving from analyzing your data domain and application requirements to starting to
design your data model. You really want to be pretty solid on steps 1 and 2 before moving on
to this stage.

The idea here is to denormalize your data into the smallest number of tables possible based
on your access patterns. For each lookup by key that your access patterns require, you will
need a table to satisfy that lookup. I’ve coined the term primary access entity to describe the
entity your using for the lookup (for example, a lookup by client id is using client as the primary
access entity, a lookup by server and metric name is using a server-metric entity as the
primary access entity).

http://www.instaclustr.com

www.instaclustr.com 4

The primary access entity defines the partition level (or grain if you’re familiar with dimensional
modelling) of the resulting denormalized table (i.e. there will be one partition in the table for
each instance of the primary access entity).

You may choose to satisfy some access patterns using secondary indexes rather than
complete replicas of the data with a different primary access entity. Keep in mind that columns
included in a secondary index should have a significantly lower cardinality than the table being
indexed and be aware of the frequency of updates of the indexed value.

For the example access patterns above, we would define the following primary access entities:

 •	 customer and transaction (get a list of transactions from the customer entity and then 	
	 use that to look up transaction details from the transaction entity)
 •	 server-metric
 •	 sensor.

Step 4: Allocate Secondary Entities

The next step is to find a place to store the data that belongs to entities that have not
been chosen as primary access entities (I’ll call these entities secondary entities).
You can choose to:

 •	 Push down by taking data from a parent secondary entity (one side) of a one to many 	
	 relationship and storing multiple copies of it at the primary access entity level (for 	
	 example, storing customer phone number in each customer order record); or

 •	 Push up by taking data from the child secondary entity (many side) of a one to many 	
	 relationship and storing it at the primary access entity level either by use of cluster 	
	 keys or by use of multi-value types (list and maps)—for example adding a list of line 	
	 items to a transaction level table.

For some secondary entities, there will only be one related primary access entity and so there
is no need to choose where and which direction to push. For other entities, you will need to
choose will need to choose which primary access entities to push the data into.

For optimal read performance, you should push a copy of the data to every primary access
entity that is used as an access path for the data in the secondary entity.

However, this comes at an insert/update performance and application complexity cost of
maintaining multiple copies the data. This trade-off between read performance and data
maintenance cost needs to be judged in the context of the specific performance requirements
of your application.

http://www.instaclustr.com

www.instaclustr.com 5

The other decision to be made at this stage is between using a cluster key or a multi-value
type for pushing up. In general:

 •	 Use a clustering key where there is only one child secondary entity to push up and 	
	 particularly where the child secondary entity itself has children to roll-up.

 •	 Use multi-value types where there are multiple child entities to push up into the primary 	
	 entity.

Note that these rules are probably oversimplified but serve as a starting point for more detailed
consideration.

Phase 3: Review and Tune
The last phase provides an opportunity to review the data model, test, and tune as necessary.

Step 5: Review partition and cluster keys

Entering this stage, you have all the data you need to store allocated to a table or tables and
your tables support accessing that data according to your required access patterns. The next
step is to check that the resulting data model makes efficient use of Cassandra and, if not, to
adjust. The items to check and adjust at this stage are:

 •	 Do your partition keys have sufficient cardinality? If not, it may be necessary to move	
	 columns from the clustering key to the partition key (e.g. changing primary key (client 	
	 id, timestamp) to primary key ((client_id, timestamp))) or introduce new columns which 	
	 group multiple cluster keys into partitions (e.g. changing primary key (client_id, 		
	 timestamp) to primary key ((client_id, day), timestamp).

 •	 Will the values in your partition keys be updated frequently? Updates of a primary key 	
	 value will result in deletion and re-insertion of the record which can result in issues with 	
	 tombstones. For example, trying to maintain a table with all clients of a particular status, 	
	 you might have primary key (status, client ID). However, this will result in a delete and re-	
	 insert every time a client’s status changes. This would be a good candidate to use a set 	
	 or list data type rather than including client ID as the cluster key.

 •	 Is the number of records in each partition bounded? Extremely large partitions and/or 	
	 very unevenly sized partitions can cause issues. For example, if you have a client_		
	 updates table with primary key (client_id, update_timestamp) there is potentially no 	
	 limit to how many times a particular client record can be update and you may have 	
	 significant unevenness if you have a small number of clients that have been around for 	
	 10 years and most clients only having a day or two’s history. This is another example 	
	 where it’s useful to introduce new columns which group multiple cluster keys into 		
	 partitions partitions (e.g. changing primary key (client_id, update_timestamp) to primary 	
	 key ((client_id, month), update_timestamp).

http://www.instaclustr.com

www.instaclustr.com

Source Type

Log Source

Log Message

Message Category

Message TypeLog Message

Message Part

part name (PK)
message ID (PK,FK)
part value

source type name (PK)

source ID (PK)
source name
source type name (FK)

message ID (PK)
source ID (FK)
message type ID (FK)
message time
message body

message category name (PK)

message type ID (PK)
message type name
message type urgency
message category name (FK)

6

Step 6: Test and tune

The final step is perhaps the most important—test your data model and tune it as required.
Keep in mind that issues like partitions or rows growing too large or tombstones building
up in a table may only become visible after days (or longer) of use under real-world load. It’s
therefore important to test as closely as possible to real-world load and to monitor closely for
any warning signs (the nodetool cfstats and cfhistograms commands are very useful for this).

At this stage you may also consider tuning some of the settings that effect the physical
storage of your data. For example:

 •	 changing compaction strategy;

 •	 reducing gc_grace_seconds if you are only deleting data using TTL; or

 •	 setting caching options.

A Worked Example
To illustrate this, I’ll walk though a basic example based on building a database to store and
retrieve log messages from multiple servers. Note this is quite simplified compared to most
real-world requirements.

Step 1: Define the data domain

http://www.instaclustr.com

www.instaclustr.com 7

The previous ER diagram illustrated the data domain. We have:

 •	 Lots (millions) of log messages which have a timestamp and a body. Although message 	
	 ID is shown as the primary key in the ER diagram, message time plus message type is 	
	 an alternate primary key.

 •	 Each log message has a message type and types are further grouped into a message 	
	 category (for example a message type might be “out of memory error” and category 	
	 might be “error”). There a couple of hundred message types and around 20 categories.

 •	 Each log message comes from a message source. The message source is the server 	
	 that generated the message. There are 1000s of servers in our system. Each message 	
	 source has a source type to categorise the source (e.g. red hat server, ubuntu server, 	
	 windows server, router, etc.). There are around 20 source types. There are ~10,000 	
	 messages per source per day.

 •	 The message body can be parsed and stored as multiple message parts (basically key, 	
	 value pairs). There is typically less than 20 parts per message.

Step 2: Define the data domain

We need to be able to:

 •	 Retrieve all available information about the most recent 10 messages for a given source 	
	 (and be able to work back in time from there).

 •	 Retrieve all available information about the most recent 10 message for a given source 	
	 type.

Step 3: Identify primary access entities

There are two primary access entities here —source and source type. The cardinality (~20)
of source type makes it a good candidate for a secondary index so we will use source as the
primary access entity and add a secondary index for source type.

Step 4: Allocate secondary entities

In this example, this step is relatively simple as all data needs to roll in to the log source primary
access entity. So we:

 •	 Push down source type name

 •	 Push down message category and message type to log message

 •	 Push up log message as the clustering key for the new entity

 •	 Push up message part as a map type with.

http://www.instaclustr.com

www.instaclustr.com 8

The end result is that would be a single table with a partition key of source ID and a clustering
key of (message time, message type).

Step 5: Review partition and cluster keys

Checking these partition and cluster keys against the checklist:

 •	 Do your partition keys have sufficient cardinality? Yes, there are 1000s of sources.

 •	 Will the values in your partition keys being updated frequently? No, all the data is write-	
	 once.

 •	 Is the number of records in each partition bounded? No – messages could build up 	
	 indefinitely over time.

So, we need to address the unbound partition size. A typical pattern to address that in time
series data such as this is to introduce a grouping of time periods into the cluster key. In this
case 10,000 messages per day is a reasonable number to include in one partition so we’ll use
day as part of our partition key.

The resulting Cassandra table will look some like:

		 CREATE TABLE example.log_messages (
			 message_id uuid,
 			 source_name text,
 			 source_type text,
 			 message_type text,
 			 message_urgency int,
 			 message_category text,
 			 message_time timestamp,
 			 message_time_day text,
 			 message_body text,
 			 message_parts map<text, frozen <text>> 				
				 PRIMARY KEY ((source_name, message_time_day,
						 message_time, message_type)
) WITH CLUSTERING ORDER BY (message_time DESC);
		 CREATE INDEX log_messages_sourcetype_idx ON
		 example.log_messages (source_type);

Conclusion

Hopefully this process and basic example will help you start to get familiar with Cassandra
data modeling. We’ve only covered a basic implementation that fits well with Cassandra,
however there are many other examples on the web which can help you work through more
complex requirements. Instaclustr also provides our customers with data modeling review and
assistance, so get in touch with us if you need some hands-on assistance.

http://www.instaclustr.com

www.instaclustr.com

About
Instaclustr

9

Instaclustr delivers reliability at scale through our integrated data platform of open
source technologies such as Apache Cassandra®, Apache Kafka®, Apache Spark™,
Elasticsearch, and Redis.

Our expertise stems from delivering more than 70 million node hours under
management, allowing us to run the world’s most powerful data technologies
effortlessly.

We provide a range of managed, consulting, and support services to help our
customers develop and deploy solutions around open source technologies. Our
integrated data platform, built on open source technologies, powers mission critical,
highly available applications for our customers and help them achieve scalability,
reliability, and performance for their applications.

Build, run, and scale your app with confidence

Like what you see?

If you’re looking at building a proof of concept for your application, or looking for
production grade nodes, contact a member of our Sales team to discuss your specific
needs.

Apache Cassandra®, Apache Spark™, Apache Kafka®, Apache Lucene Core®, Apache Zeppelin™ are trademarks of the Apache Software Foundation in
the United States and/or other countries. Elasticsearch and Kibana are trademarks for Elasticsearch BV, registered in U.S. and in other countries.

http://www.instaclustr.com
https://www.instaclustr.com/solutions/managed-apache-cassandra/
https://www.instaclustr.com/solutions/managed-apache-kafka/
https://www.instaclustr.com/solutions/managed-apache-spark/
https://www.instaclustr.com/solutions/managed-elasticsearch/
https://www.instaclustr.com/solutions/managed-redis/
mailto:mailto:sales%40instaclustr.com?subject=I%20like%20what%20I%20see%21

