
Database Architects and
Administrators Guide to NoSQL

WHITEPAPER

As a database administrator (DBA) or architect, your

job is to help define, develop, manage, and guard your

company’s single most important asset—data.

The meteoric rise of modern cloud applications—applications that create and leverage
real-time value and run at epic scale—has brought about a change in data management
with an unprecedented transformation to the decades-old way that databases have been
designed and operated. Requirements from cloud applications have pushed beyond the
boundaries of the relational database management system (RDBMS) and have introduced
a new type of database—NoSQL. The latest IDC, Morgan Stanley analyst report predicts
that NoSQL databases will dominate in “New Stack” software development spending.

As a DBA or architect, you may naturally be skeptical of new database systems, having
seen database engines such as object-oriented and OLAP databases come and go.
Why should NoSQL be any different?

This guide was created to help answer all these questions and more. In the following
pages, you’ll learn exactly what NoSQL is, why it’s needed, how it works, what it should
be used for, and (just as importantly) when it shouldn’t be used.

You’ll also learn how all the key areas of database administration work—database design,
creation, security, object management, data replication, backup/recovery, monitoring and
tuning, data migrations, and more—and how they are carried out in a NoSQL database
like Apache Cassandra.

When you’re finished, you’ll discover how being an administrator or architect for
NoSQL platforms like Cassandra is easy. You’ll also understand why having NoSQL
database skills makes you even more valuable today.

In fact, you may be interested to learn that salaries for DBAs and architects who possess
NoSQL and other big data skills are significantly higher than the average RDBMS salary.
Further, the 2019 Dice Tech Report found the rewards of learning Cassandra to be greater
than other NoSQL or relational databases, and Cassandra placed among the top five
technologies to know.

Now, let’s get started.

2 Database Architects and Administrators Guide to NoSQL

https://www.morganstanley.com/ideas/new-software-stack-2019
https://techhub.dice.com/2019-Dice-Tech-Salary-Report-LP-ERL.html

The RDBMS has been the de facto standard for managing data since it
was first made available from IBM in the mid-1980s. The RDBMS really
exploded in the ‘90s with Oracle, Sybase, Microsoft SQL Server, and
other similar databases appearing in the data centers of nearly every
enterprise—databases you likely use today.

Why NoSQL?
01

With the first wave of web applications, open source relational database management
systems such as MySQL and Postgres emerged and became a standard at many
companies that desired alternatives to expensive proprietary databases sold by
vendors such as Oracle.

However, it wasn’t long before things began to change, and the application and data
center requirements of key internet players like Amazon, Facebook, and Google began
to outgrow the RDBMS for certain types of applications. The need for more flexible
data models that supported agile development methodologies and the requirements
to consume large amounts of fast-incoming data from millions of cloud application
users around the globe—while maintaining high levels of performance and uptime—
necessitated the introduction of a new data management platform.

Enter NoSQL.

Today, with every company utilizing modern cloud applications, the data problems
originally encountered by the internet giants have become common issues for every
company, including yours. This means that you and your team of DBAs must realize
that it is no longer a question of if you will be deploying and managing NoSQL database
systems, but when and how much of your company’s data will eventually be stored on
NoSQL platforms.

3 Database Architects and Administrators Guide to NoSQL

NoSQL 101
02

This chapter introduces the basics of NoSQL and then dives
into a perspective on the most scalable and performant
NoSQL database in the market today, Cassandra.

Types of NoSQL Databases

There are different types of NoSQL databases, with the primary difference characterized
by the underlying data model and method for storing data. The main categories of NoSQL
databases are:

Tabular – Also known as wide-column or wide-row stores, these databases store
data in rows and users are able to perform some query operations via column-
based access. A wide-row store offers very high performance and a highly scalable
architecture. Examples include: Cassandra, HBase, and Google Bigtable.

Key/Value – These NoSQL databases are some of the least complex as all of the
data within consists of an indexed key and a value. Examples include: Amazon
DynamoDB, Riak, and Oracle NoSQL database. Some tabular NoSQL databases,
like Cassandra, can also service key/value needs.

Document – Expands on the basic idea of key-value stores where “documents”
are more complex, in that they contain data and each document is assigned a
unique key, which is used to retrieve the document. These are designed for storing,
retrieving, and managing document-oriented information, oftentimes stored as
JSON. Examples include: MongoDB and CouchDB. Note that some RDBMS and
NoSQL databases outside of pure document stores are able to store and query
JSON documents.

Graph – Designed for highly complex and connected data, which outpaces the
relationship and JOIN capabilities of an RDBMS. Graph databases are often exceptionally
good at finding commonalities and anomalies among large data sets. Examples
include: DataStax Enterprise Graph, Neo4j, JanusGraph, and Amazon Neptune.

One trend that is starting to emerge in both the NoSQL and RDBMS markets is the
“multi-model” database. Most database management systems are organized around
a single data model that determines how data can be organized, stored, and manipulated.
By contrast, a multi-model database is designed to support multiple data models against
a single, integrated backend.

The value supplied by multi-model databases is that an enterprise doesn’t have to utilize
multiple data management providers for applications that need to store parts of the
system’s data in different data models, and thus the requirement to shard the application
across different database platforms is removed.

4 Database Architects and Administrators Guide to NoSQL

NoSQL 101

What Are the Advantages of NoSQL over an RDBMS?

While there are hundreds of different “Not Only SQL” (NoSQL) databases offered today,
each with its own particular features and benefits, what you should know is that a NoSQL
database generally differs from a traditional RDBMS in the following ways:

Data model – While an RDBMS primarily handles structured data in a rigid data model,
a NoSQL database typically provides a more flexible and fluid data model and can be
more adept at serving the agile development methodologies used for modern cloud
applications. Note that one misconception about NoSQL data models is that they do
not handle structured data, which is untrue. Lastly, as mentioned above, some NoSQL
engines are designed to support multiple data models against a single backend.

Architecture – Whereas an RDBMS is normally architected in a centralized, scale-up
or sharding, master-slave fashion, NoSQL systems such as Cassandra operate in a
distributed, scale-out, masterless manner (i.e., there is no “master” node, all nodes
are equal). However, some NoSQL databases like MongoDB, DynamoDB, Azure
Cosmos DB, and HBase are master-slave or multi-master by design.

Data distribution model – Because of their master-slave architectures, an RDBMS
distributes data to slave machines that can act as read-only copies of the data and/
or failover for the primary machine. By contrast, a NoSQL database like Cassandra
distributes data evenly to all nodes making up a database cluster and enables both reads
and writes on all machines. Furthermore, the replication model of an RDBMS (including
master-to-master) is not designed well for wide-scale, multi-geographical replication
and synchronization of data between different locales and cloud availability zones,
whereas Cassandra’s replication was built from the ground up to handle such things.

Availability model – An RDBMS typically uses a failover design where a master fails over
to a slave machine, whereas a NoSQL system like Cassandra is masterless and provides
redundancy of both data and function on each node so that it offers continuous availability
with no downtime versus simple high availability in the way an RDBMS does.

Scaling and performance model – An RDBMS typically scales vertically by adding
extra CPU, RAM, etc., to a centralized machine, whereas a NoSQL database like
Cassandra scales horizontally by adding extra nodes that deliver increased scale
and performance in a linear manner.

There’s little doubt that relational database management systems will be around for a long
time and are exactly the right kind of database for handling centralized applications that
require sophisticated transaction handling. But it’s also true that NoSQL databases are
proven to better support widely distributed cloud applications and their specific use cases.

Deciding Between an RDBMS and NoSQL

How do you decide when to use an RDBMS and when to use a specific type of NoSQL
database? In short, an RDBMS is great for centralized applications that need ACID
transactions and whose data fits well within the relational data model. The following chart
provides a general comparison between the characteristics that point toward an RDBMS
versus those that signal a NoSQL database may be a better choice:

But it’s also true that

NoSQL databases

are proven to better

support widely

distributed cloud

applications and their

specific use cases.

5 Database Architects and Administrators Guide to NoSQL

NoSQL 101

RDBMS NoSQL Database Like Cassandra

Masterless architectureMaster-slave architecture

High data volumes; retain forever; horizontal scalability without boundariesMaintain data volumes with purge

Multi-model (tabular, key/value, document, graph)Relational, structured data

Mixed workloads of transactions and analyticsTransaction workloads

High velocity data (time-series data from devices, sensors, etc.)Moderate velocity data

Tunable consistency (eventual to strong)Always strongly consistent

Lightweight transactionsComplex/nested transactions

Protect uptime via distributed and fault-tolerant architectureProtect uptime via failover/log shipping

Continuous availabilityHigh availability

Scale out for more users/dataScale up for more users/data

Figure 1. Top ten determining requirements – RDBMS versus NoSQL

Looking at the data model
requirements is another tactic to use
when evaluating an RDBMS versus
NoSQL. Certain NoSQL databases
require the denormalization of
data and aren’t concerned with the
relationships between data entities
whereas others are built to handle
complex and very intense data
relationship scenarios: Figure 2. The data model continuum by data complexity and connectedness

Data Complexity and Value in Relationships

Relational
Document

NoSQLKey/Value NoSQL

K V

Tabular NoSQL

K V V V V

Graph

6 Database Architects and Administrators Guide to NoSQL

NoSQL 101

RDBMS and graph databases are at the high end of the data model continuum where the relationships between data are
concerned and are somewhat similar in their base characteristics:

One of the key differences between a graph database and an RDBMS is how relationships between entities/ vertexes are
prioritized and managed. While an RDBMS uses mechanisms like foreign keys to connect entities in a secondary fashion, edges
in a graph database are of first-order importance. As such, a graph database is more scalable and performant than an RDBMS
when it comes to complex data that is highly connected (e.g., millions or billions of relationships).

Unlike most other ways of displaying data, graphs are foundationally designed to express relatedness. Graph databases can
uncover patterns that are difficult to detect when using traditional representations, such as RDBMS tables.

Below are suggestions for when to use a graph database versus an RDBMS:

RDBMS RDBMS GRAPH DB

VertexAn identifiable “something” to keep track of Entity

EdgeA connection or reference between two objects Relationship

PropertyA characteristic of an object Attribute

RDBMS GRAPH

Heavy data complexitySimple to moderate data complexity

High incoming data velocity (e.g., sensors)Moderate incoming data velocity

Hundreds of thousands to millions or billions of potential relationshipsHundreds of potential relationships

Continuous availability (no downtime)High availability (handled with failover)

Heavy to extreme JOIN operations requiredModerate JOIN operations with good performance

Distributed application that is location independent (multiple locations
involving multiple data centers and/or clouds) for write and read operations

Centralized application that is location dependent (e.g., single
location), especially for write operations and not just read

Constantly changing and evolving data modelInfrequent to no data model changes

Dynamic and constantly changing dataStatic to semi-static data changes

Structured and unstructured dataPrimarily structured data

Simple transactionsNested or complex transactions

Tunable consistency (eventual to strong)Always strongly consistent

7 Database Architects and Administrators Guide to NoSQL

NoSQL 101

A NoSQL Example – Apache Cassandra

Now that you have a background on how NoSQL differs from an RDBMS, let’s look a little
more closely from a DBA and architect’s point of view at how a NoSQL database like
Cassandra functions and discuss the above characteristics in detail.

Cassandra is a massively scalable open source NoSQL database. It delivers continuous
availability, linear scale performance, operational simplicity, and easy data distribution
across multiple data centers and cloud availability zones. Cassandra was originally
developed at Facebook and sports a design combining capabilities from Amazon’s
Dynamo and Google’s Bigtable architectures. It was open sourced in 2008.

What Makes Cassandra Ideal for Modern Cloud Applications

Cassandra provides a number of key features and benefits to facilitate the development
and management of cloud applications:

Massively scalable architecture
Cassandra has a masterless design
where all nodes are the same,
providing operational simplicity and
easy scale-out capabilities.

Active everywhere design
All Cassandra nodes may be
written to and read from no matter
where they are located.

Linear scale performance
Online node additions produce
predictable increases in performance.
For example, if two nodes produce
200K transactions/sec, four nodes will
deliver 400K transactions/sec, and
eight nodes, 800K transactions/sec.

Continuous availability
Cassandra offers redundancy of
both data and function, which
supply no single point of failure
and constant uptime.

Transparent fault
detection and recovery
Nodes that fail can easily
be restored or replaced.

Flexible and dynamic data models
Primarily supports the tabular data model,
but also accommodates JSON well.

Strong data protection
A commit log design ensures no data
loss for incoming transactions. Also,
built-in security with easy backup/
restore keeps data protected.

Basic transaction support with
tunable data consistency
Cassandra supports the atomicity,
isolation, and durability of transactions
(including batch) with strong or
eventual data consistency supplied
across a widely distributed cluster.

Multi-data center replication
Cassandra provides strong cross
data center (in multiple geographies)
and multi-cloud availability zone
support for writes/reads.

Data compression
Data compressed up to 80% without
performance overhead helps save
on storage costs.

CQL (Cassandra Query Language)
A SQL-like language that makes
moving from an RDBMS easy.

Cassandra is a

massively scalable

open source NoSQL

database.

8 Database Architects and Administrators Guide to NoSQL

NoSQL 101

Top Use Cases

While Cassandra is a general purpose NoSQL database used for a variety of different
applications in all industries, there are a number of use cases where the database excels
over most any other option. These include:

Cloud-native applications
Applications that require the wide
distribution of data, no downtime,
predictable performance no matter the
location of the user, and easy scale
make good targets for Cassandra.

Supply chain management
Successful supply chains have an
end-to-end understanding of their entire
network while being able to connect with
multiple partners and perform real-time
and efficient operations.

Personalization
Customization of an experience tailored to
a particular individual including personal
UX features, languages in response bots,
or other automated, intelligent, and timely
interactions with each customer. DataStax
provides personalization in real time at the
moment of interaction within the application
(e.g., in ecommerce), and personalization
ensures webpages, searches, checkout
processes, and core aspects of the shopping
experience are tailored for each user,
making it easier, more enjoyable, and faster.

Product catalogs and retail apps
For retailers that need durable shopping
cart protection, fast product catalog input
and lookups, and similar retail application
support, Cassandra is a good choice.

Customer 360
This is a single view of all customer
touchpoints across all mediums. Cassandra
drives a system of engagement across
channels and systems of record.

Fraud detection
Solutions monitor and analyze data
transactions to identify out-of-the
ordinary patterns to act in real time,
which is required in a broad array of
industries and use cases.

Other time-series-based applications
Because of Cassandra’s fast write capabilities
and wide-row design, it is well-suited for
any time-series-based application.

User activity tracking and monitoring
Media, gaming, and entertainment
companies use Cassandra to track and
monitor the activity of users’ interactions
with their movies, music, games, website,
and online applications.

Messaging
Cassandra serves as the database
backbone for numerous mobile phone,
telecommunication, cable/wireless,
and messaging providers’ applications.

Social media analytics and
recommendation engines
Online companies, websites, and social
media providers use Cassandra to ingest,
analyze, and provide analysis and
recommendations to their customers.

Security
Whether understanding network attacks
with vector analysis or detecting intrusions,
common security use cases consume
a massive amount of data and must
successfully surface that data in real time
to identify and prevent or stop threats.

Internet of Things (IoT)
Cassandra is good for consuming and
analyzing lots of fast, incoming data from
devices, sensors, and similar mechanisms
that exist in many different locations.

9 Database Architects and Administrators Guide to NoSQL

NoSQL 101

Architecture Overview

The architecture of Cassandra allows the database to scale and perform with no
downtime. Rather than using a legacy RDBMS master-slave or a manual and difficult-
to-maintain sharded design, Cassandra has a masterless “ring” distributed architecture
that is elegant and easy to set up and maintain.

In Cassandra, all nodes are the same; there is no concept of a master node, with all
nodes communicating with each other via a gossip protocol.

Cassandra’s built-for-scale architecture allows it to handle large amounts of data and thousands
of concurrent users/operations per second, across multiple data centers, as easily as it can
manage much smaller amounts of data and user traffic. To add more capacity, you simply add
new nodes in an online fashion to an existing cluster.

Cassandra’s architecture also means that, unlike other master-slave or sharded systems,
it has no single point of failure and therefore offers true continuous availability and uptime.

Writing and Reading Data

One of Cassandra’s hallmarks is its fast I/O operation capability for both writing and reading data.

Data is written to Cassandra in a way that provides both full data durability and high
performance. From a high-level perspective, data written to a Cassandra node is first
recorded in a commit log and then written to a memory-based structure called a memtable.
When a memtable’s size exceeds a configurable threshold, the data is flushed to disk and
written to an SStable (sorted strings table), which is immutable.

Figure 3. Cassandra sports a masterless “ring” architecture

Figure 4. The Cassandra write path

Commit Log SSTable

Flush

Index

memtable

Memory Disk

Write
data

In Cassandra, all

nodes are the same;

there is no concept

of a master node,

with all nodes

communicating with

each other via a

gossip protocol.

10 Database Architects and Administrators Guide to NoSQL

NoSQL 101

Because of the way Cassandra writes data, many SStables can exist for a single
Cassandra table/column family. A process called compaction for a node occurs on
a periodic basis that coalesces multiple SStables into one for faster read access.

Reading data from Cassandra involves a number of processes that can include various
memory caches and other mechanisms designed to produce fast read response times.
For a read request, Cassandra consults a bloom filter that checks the probability of a
table having the needed data. If the probability is good, Cassandra checks a memory
cache that contains row keys and either finds the needed key in the cache and fetches
the compressed data on disk, or locates the needed key and data on disk and then
returns the required result set.

Data Distribution and Replication

While the prior section provides a general overview of read and write operations in
Cassandra, the actual I/O activity that occurs is somewhat more sophisticated, due to the
database’s masterless architecture. Two concepts that impact read and write activity are
the chosen data distribution and replication models.

Automatic Data Distribution

While an RDBMS and some NoSQL databases necessitate manual and developer-driven
methods for distributing data across multiple machines that make up a database (i.e.,
sharding), Cassandra automatically distributes and maintains data across a cluster so
you don’t have to.

Cassandra uses a partitioner to determine how data is distributed across the nodes that make
up a database cluster. A partitioner is a hashing mechanism that takes a table row’s primary
key, computes a numerical token for it, and then assigns it to one of the nodes in a cluster.

While Cassandra has multiple partitioners that can be chosen, the default partitioner is
one that randomizes data across a cluster and ensures an even distribution of all data.
Cassandra also automatically maintains the balance of data across a cluster even when
existing nodes are removed or new nodes are added to a system.

Figure 5. The Cassandra read path

Cassandra

automatically

distributes and

maintains data

across a cluster so

you don’t have to.

Partition
Key Cache

Bloom Filter

Data

Memory Disk

Return
Result
Set

Read
Request

Partition
Summary

Compression
Offsets

Partition
Index

11 Database Architects and Administrators Guide to NoSQL

NoSQL 101

Replication Basics

Unlike many other database management systems, replication in Cassandra is very
straightforward and simple to configure and maintain. Most Cassandra users agree that
the replication model is one of the features that helps the database stand out from other
RDBMS or NoSQL options.

A running Cassandra database cluster can have one or more keyspaces, which are
analogous to a Microsoft SQL Server, MySQL, or Oracle pluggable database. It is at
the keyspace level that replication is configured, allowing different keyspaces to have
different replication models.

Cassandra is able to replicate data to multiple nodes in a cluster, which helps ensure
reliability, continuous availability, and fast I/O operations. The total number of data
copies that are replicated is referred to as the replication factor (RF). For example, a
replication factor of 1 means that there is only one copy of each row in a cluster, whereas
a replication factor of 3 means three copies of the data are stored across the cluster.

Once a keyspace and its replication have been created, Cassandra automatically
maintains that replication even when nodes are removed, added, or go down and become
unavailable for receiving data requests. This equates to no replication babysitting.

Cassandra’s replication is both simple to configure and powerful in that it supports a
wide range of replication capabilities such as replicating data to different hardware racks
(reducing database downtime due to hardware failures) and multiple data centers in
different geographic locations on premises as well as the cloud.

Multi-Data Center and Cloud Support

A very popular aspect of Cassandra’s replication is its support for multiple cloud regions
and availability zones. Many users deploy Cassandra in a multi-region and availability
zone manner to ensure constant uptime for their applications and to supply fast read/
write data access in localized regions.

You can easily set up replication so that data is replicated across on premises or
multi-clouds with users being able to read and write to any data center they choose
and the data being automatically synchronized across all centers.

You can also choose how many copies of your data exist in each data center (e.g.,
two copies in data center 1; three copies in data center 2). Hybrid deployments of
part on-premises data centers and part cloud are also supported.

Using Cassandra in Production Environments

As a DBA or architect, you have a responsibility to ensure that the database software you
use will work and perform as expected in production environments. To provide that type
of guarantee, most NoSQL databases have a commercial software vendor that offers a
production-certified version of the database, which oftentimes possess various enterprise
features that the open source version does not.

Cassandra’s

replication is both

simple to configure

and powerful in that

it supports a wide

range of replication

capabilities

12 Database Architects and Administrators Guide to NoSQL

NoSQL 101

For Cassandra, DataStax provides DataStax Enterprise (DSE) as the commercial software
offering. As a DBA or architect, you should be aware that DSE provides the following
benefits over the open source version of Cassandra that help you manage, secure, and
optimize your database systems:

NoSQL and Hadoop: A Comparison

You’ve no doubt heard about Apache Hadoop™ and perhaps your company is already using
it to handle various new data warehousing projects. Are you wondering how Hadoop differs
from NoSQL?

Hadoop is an open source software project that enables the distributed processing of large data
sets, and uses a scale-out architecture that stores and processes data across many machines.
Hadoop is an ecosystem umbrella term that encompasses many different software components.

In general, Hadoop is not a database, but is instead a framework primarily devoted to handling
modern data warehousing and analytics “data lake” use cases. Hadoop does offer a NoSQL
database as part of its framework (HBase), but it is used mostly for data warehousing situations.

To summarize, the main differences between the two is Hadoop is not a database system but a
software ecosystem that allows for massively parallel computing and NoSQL, on the other hand,
was created specifically with a database framework in mind. By contrast, a NoSQL database like
Cassandra is an operational / transactional database used for cloud applications.

A production-certified version of
Cassandra that is heavily tested and
ready for enterprise environments.

Advanced security with external
security software support,
encryption, and data auditing.

Multi-model database capabilities with support
for the key-value, tabular, JSON / document,
and graph data models, all of which inherit
the capabilities of Cassandra and additional
commercial functionality that follows.

Integrated analytics powered by Apache
Spark, including integration with external
Hadoop and Spark platforms.

Integrated enterprise search on
stored data.

Workload isolation and data replication
that ensures OLTP, analytics, and search
workloads do not compete with each
other for data or compute resources.

In-memory database option for both
OLTP and analytic workloads.

Advanced replication that handles
data distribution among different
clusters in a hub-and-spoke fashion.

Tiered storage that provides
automatic movement of data
between different storage media
(e.g., SSDs, spinning disks).

Visual management and monitoring
tools that work from any device
(laptop, tablet, smart phone).

Multi-instance functionality that assists
with running multiple instances of the
software on single, large servers.

Around-the-clock expert support.

Automatic management services that
transparently automate numerous
database maintenance and performance
monitoring/ management tasks.

Certified software updates.

13 Database Architects and Administrators Guide to NoSQL

NoSQL 101

FEATURES HADOOP CASSANDRA

Batch processing of data Real- time processing of dataUsage

Master-slave DistributedArchitecture

MapReduce Cassandra Query Language, similar to SQLData access

~ 10 - 15% ~ 80%Compression

Challenging SimpleIndexing

HDFS file system Keyspace column family Storage method

3 Number of nodes in data centerReplication factor

Access control through master node Gossip protocolCommunication method

14 Database Architects and Administrators Guide to NoSQL

Data and Object
Management

03

This section takes a look at the core of Cassandra’s data model, what
data objects are used for managing data, CQL (Cassandra Query
Language), and how transactions are handled in the database.

Data Model Overview

Achieving success with Cassandra almost always comes down to getting two things right:

1. The data model
2. The selected hardware, especially the storage subsystem

Cassandra is a wide-column/tabular database that uses a query-driven approach
designed to quickly capture and query data. There are no concepts of foreign keys,
referential integrity, or joins in Cassandra (note that using Spark with Cassandra provides
join capability through SparkSQL).

Although Cassandra has objects that resemble an RDBMS (e.g., tables, primary keys,
indexes), data should not be modeled in a legacy entity-relationship-attribute fashion as
is done with a relational database. Modeling data in Cassandra is done by understanding
what questions you will need to ask the database upfront, whereas in an RDBMS, you
are likely not used to addressing such things until after all entities, relationships, and
attributes are documented.

Unlike an RDBMS that penalizes the use of many columns in a table, Cassandra is highly
performant with tables that have hundreds of columns. You may be used to highly
normalized, third normal form (3NF) models that you translate into a set of physical tables
and their accompanying indexes and such. With Cassandra, you will oftentimes instead have
wide-row tables with some data duplication between tables.

Creating your physical objects, however, still looks very much like what you carry out in an
RDBMS. For example, a new table defining users for an application might look like the following:

CREATE TABLE users (username
 varchar, firstname
 varchar, lastname
 varchar, email
 list<varchar>,
 password varchar,
 created_date timestamp,
 PRIMARY KEY (username)
);

15 Database Architects and Administrators Guide to NoSQL

Data and Object Management

Cassandra Objects

The basic objects you will use in Cassandra include:

Keyspace – A container for data tables and indexes; analogous to a database in many
relational database management systems. It is also the level at which replication is defined.

Table – Somewhat like an RDBMS table only much more flexible and capable
of handling all modern data types.

Primary key – Used to uniquely identify a row in a table and also distribute
a table’s rows across multiple nodes in a cluster.

Index – Similar to an RDBMS index in that it speeds read operations.

User – A login account used to access data objects.

Cassandra Query Language

Earlier versions of Cassandra solely used an interface called Thrift to create database
objects and manipulate data. Today, the CQL has become the primary interface used for
interacting with a Cassandra database cluster.

CQL very closely resembles SQL (Structured Query Language) used by all relational database
management systems. Because of this similarity, your learning curve will be greatly reduced.

DDL (e.g., CREATE, ALTER, DROP), DML (INSERT, UPDATE, DELETE, TRUNCATE), and query
(SELECT) operations are all supported in the manner to which you are accustomed.

CQL data types also reflect RDBMS syntax with numerical (int, bigint, decimal, etc.),
character (ascii, varchar, etc.), date (timestamp, etc.), unstructured (blob, etc.), and
specialized data types (JSON, etc.) being supported.

To learn more about CQL visit the DataStax Documentation website.

Transaction Management

While Cassandra does not offer complex/nested transactions in the same way that your
legacy RDBMS offers ACID transactions, it does offer the “AID” portion of ACID, in that
data written is atomic, isolated, and durable. The “C” of ACID does not apply to Cassandra,
as there is no concept of referential integrity or foreign keys.

With respect to data consistency, Cassandra offers tunable data consistency across a
database cluster. This means you can decide exactly how strong (e.g., all nodes must
respond) or eventual (e.g., just one node responds, with others being updated eventually)
you want data consistency to be for a particular transaction, including transactions that are
batched together. This tunable data consistency is supported across single or multiple
data centers, and you have a number of different consistency options from which to choose.

Moreover, consistency can be handled on a per operation basis, meaning you can decide
how strong or eventually consistent it should be per the SELECT, INSERT, UPDATE,
and DELETE operations. For example, if you need a particular transaction available on
all nodes throughout the world, you can specify that all nodes must respond before a
transaction is marked complete. On the other hand, a less critical piece of data (e.g.,
a social media update) may only need to be propagated eventually, so in that case,
the consistency requirement can be greatly relaxed.

16 Database Architects and Administrators Guide to NoSQL

https://docs.datastax.com/en/dse/6.0/cql/

Data and Object Management

Cassandra also supplies “lightweight transactions” (or compare and set). Using and
extending the Paxos consensus protocol (which allows a distributed system to agree on
proposed data modifications without the need for any one “master” database or two-
phase commit), Cassandra offers a way to ensure a transaction isolation level, similar
to the serializable level offered by an RDBMS, for situations that need it.

Database Query and Management Tools

As a DBA or architect coming from the RDBMS world, you likely use many command line
and visual tools for interacting with the databases you manage. The same kind of tools
are available to you with Cassandra.

Various command line utilities are provided for handling administration functions
(e.g., the nodetool utility), loading data, and using CQL to create and query database
objects (the CQL shell, which is much like Oracle’s SQL*Plus or the MySQL shell).

Figure 6. DSE OpsCenter, used for visual database administration

Figure 7. DataStax Studio, used for visually querying databases

In addition, graphical tools are provided for running CQL commands against database
clusters (e.g., DataStax DevCenter, DataStax Studio) and visually creating/managing/
monitoring your clusters (DSE OpsCenter).

17 Database Architects and Administrators Guide to NoSQL

Security Management
04

As a DBA or architect, data security is one of your top priorities, implementing global
security measures to ensure data protection compliance like Personally Identified
Information (PII) and Sensitive Personal Information (SPI) is a challenge for any
database One of the myths of NoSQL databases like Cassandra is that they don’t
offer the security mechanisms needed for enterprise production environments.

In this section, we’ll review Cassandra’s security capabilities and highlight DSE Advanced
Security features, for more information read this whitepaper. In addition, DSE Security Guide
provides guidance and a checklist that fortifies your DSE database against potential harm.

Similar to relational database, NoSQL database security compliances can be broken
down into a few main areas: authentication and authorization; encryption for “at rest
data” and “data in transit”; auditing for logging and forensics.

Cassandra provides internal-based authentication that allows you to easily create users
who can be authenticated to Cassandra database clusters. You’ll find the authentication
framework extremely familiar - it uses the RDBMS style CREATE/ALTER/DROP USER
commands to create/manage with passwords that will then be internally handled by
Cassandra. To simplify user provisioning process a default superuser, ‘cassandra’, is
supplied to initially enable the security authentication definition process, and as a best
practice it’s recommended to disable or remove default account after custom superuser
account has been established.

For more advanced user authentication, you can leverage DSE Unified Authentication to
manage external, 3rd party security protocols like Kerberos, LDAP, and Active Directory.
Authorization and Access Control Management

Cassandra utilize the very familiar GRANT/REVOKE security paradigm - something you
should have no problem using. Control over DDL, DML, and SELECT operations are all
handled via the granting and revoking of user privileges. Note that a GRANT may be done
with or without the GRANT OPTION, which allows the user receiving the grant to provide
the same privileges on that object to other users just as how it occurs in the RDBMS world.

The following mechanisms are used to grant resource authorizations.

Role-Based Access Control (RBAC)

One of the major security concerns for DBA and architects is who has access to the data.
A smart DBA would take full advantage of Cassandra’s powerful and flexible role based
access control (RBAC), which can greatly reduce and simplify the security workload.

Under this method, administrators can bundle related privileges together by granting them
to roles, which in turn can then be assigned to a specific database user. Once roles are
defined and assigned we can grant or revoke permissions on resources.

18 Database Architects and Administrators Guide to NoSQL

https://www.datastax.com/resources/whitepaper/achieving-data-security-and-compliance-datastax-enterprise
https://docs.datastax.com/en/security/6.7/security/secChecklists.html

Security Management

When combined with auditing capabilities available with DSE, administrators can define
specific administrative actions per role, and then log all those actions. As a result, you are
able to enforce end-to-end operational control while role-based auditing greatly reduces
the audit trail. Read our blog to learn how to implement Role Based Access Control.

RLAC (Row Level Access Control)

RLAC provides authorization to data within a table by matching a filter applied to a
text-based partition key. It provides fine-grain user access control down to the row level
so that only authorized users are able to view or modify subsets of data. RLAC support
comes in handy when you have multi-tenant SaaS applications in a single DSE platform.

Proxy Auth

DSE Proxy Management allows roles to log in and execute CQL queries as other roles.
This is particularly useful for a secure middleware like web servers; the web server can
log in once and proxy execute queries as its clients, keeping the audit log intact and
leveraging DSE role-based access control.

Separation of duties

While roles can define who has access to the data, regulatory mandates require
enterprises to have segregation of duties to insure that no individual person, role or
group have the ability to execute all parts of a transaction or process. DSE helps with
the implementation of separation of duties by providing separate paths for administrative
access and data access. This separation gives administrators full control of the database
administration capabilities but restricts their access to view the data itself.

Encryption In-Flight

This refers to the encryption of data as it moves over a network between nodes. In a
distributed environment like DSE, network traffic is constant. First, Cassandra includes an
optional encrypted form of communication from a client machine to a database cluster.
Client to server SSL ensures data in flight is not compromised and is securely transferred
back/forth from client machines.

Next, node-to-node encryption can be used as well to ensure data is protected
as it is transferred between nodes in a database cluster.

Encryption At-Rest

This refers to the data that is stored on persistent storage such as disk drives in an
encrypted format. Encryption at-rest protects against data exposure in the event of the
physical theft of a device or an environment where storage resources might be re-used
such as public clouds. DSE Transparent Data Encryption (TDE) protects data at rest from
being stolen or used in an unauthorized manner. You can encrypt tables using a local
encryption key file or a remotely stored and managed Key Management Interoperability
Protocol (KMIP) encryption key. An important note is TDE encrypts only specific sensitive
files as opposed to entire filesystems. This increases the security of files that are moved
around and ensure that they aren’t improperly decrypted.

A smart DBA would

take full advantage of

Cassandra’s powerful

and flexible role

based access control

(RBAC), which can

greatly reduce and

simplify the security

workload.

19 Database Architects and Administrators Guide to NoSQL

https://www.datastax.com/blog/2015/03/role-based-access-control-cassandra

Security Management

DSE TDE provides encryption for:

• Entire tables (except partition keys, which are always stored in plain text)

• SStables containing data, including system tables

• Search indexes

• File-based hints

• Commit logs

• Sensitive properties in dse.yaml and cassandra.yaml

Encryption is transparent to all end user activities; data may be read, inserted, updated,
etc, with nothing having to change on the application end. Click here for more information
on Transparent data encryption (TDE).

Data Auditing

Database audit log is a standard tool for enterprises to capture critical information on
data access and database changes, this information can be reviewed later to ensure
compliance with regulatory, security and operational policies. Auditing database activity
ensures that companies meet regulatory compliance laws such as SOX, HIPAA, PCI and
GDPR et al. Security compliance means companies want to know what user activities
took place on a particular node or entire cluster. Data auditing allows for a “who looked
at what/when, who changed what/when” type of documentation that many large-scale
enterprises need to have in order to comply with various internal or external security policies.

The granularity of activities that can be audited include:

• All activity (DDL, DML, queries, errors)

• DML only

• DDL only

• Security changes (e.g., assigning/revoking privileges, dropping users)

• Queries only

• Errors only (e.g., login failures)

Read this to learn more about auditing database activity.

Traditionally in DSE auditing was controlled by database objects you want to monitor,
this can provide a lot of information on an object but not a person’s activity. Security
administrators also want the ability to filter out the noise and only focus on role instead
of just a database object. DSE has now enhanced auditing to audit changes and user
activity by role. This would filter out audit logs generated by machines and let Security
administrators focus on roles such as DBA access vs. machine access.

Private Schemas

Similar to RDBMS DBA and architects need to ensure that only authorized users have
access to certain database objects. This gives administrators more control over schema
visibility which would limit who can see what parts of a table definition, assisting in secure
multi-tenant applications.

Encryption is

transparent to all

end user activities;

data may be read,

inserted, updated, etc,

with nothing having

to change on the

application end.

20 Database Architects and Administrators Guide to NoSQL

https://docs.datastax.com/en/security/6.7/security/secEncryptEnable.html
https://docs.datastax.com/en/security/6.7/security/secAuditTOC.html

Managing Availability and
Multiple Data Centers

05

Another key aspect of your job as a DBA or architect is to ensure the databases you
manage are always available for the applications that use them. One thing you will
like about Cassandra is that ensuring constant uptime is easy. There is no need for
specialized, add-on log shipping software such as Oracle DataGuard.

Further, distributing data to multiple geographies and across various cloud providers is
simple and straightforward with Cassandra.

How to Ensure Constant Uptime

As previously discussed, Cassandra sports a masterless architecture where all nodes are
equal; and it has been built from the ground up with the understanding that outages and
hardware failures will occur. To overcome those and similar issues, Cassandra delivers
redundancy in both data and function to a database cluster with all nodes being the same.

Where data operations are concerned, any node in a cluster may be the target for both
reads and writes. Should a particular node go down, there is no hiccup in the cluster at
all, as any other node may be written to, with reads served from other nodes holding
copies of the downed node’s data.

To ensure constant access to data, you should configure Cassandra’s replication to keep
multiple copies of data on the nodes that comprise a database cluster. The number
of data copies is completely up to you, with three being the most commonly used in
production Cassandra environments.

Should a node go down, new or updated information is simply written to another
node that keeps a copy of that data. When the downed node is brought back online,
it automatically syncs with other nodes holding its data so that it is brought back up
to date in a transparent fashion.

Multi-Data Center and Cloud Options

Cassandra is the leading distributed database for multi-data center and cloud support.
Many production Cassandra systems consist of a database cluster that spans across
multiple physical data centers, cloud regions and availability zones, or a combination
of both. Should a large outage occur in a particular geographical region, the database
cluster continues to operate as normal with the other data centers assuming the operations
previously directed at the now downed data center or cloud zone. Once the downed data
center comes back online, it syncs with the other data centers and makes itself current.
An additional benefit of having a single cluster that spans multiple data centers and
geographies is that data can be read and written to incredibly quickly in each location,
thus keeping performance very high for the customers it serves in those locations.

Figure 8. A single Cassandra

database cluster can span multiple

data centers and the cloud

Dubai
San

Francisco

21 Database Architects and Administrators Guide to NoSQL

Analyzing and
Searching Data

06

Many applications have requirements that their underlying transactional database
easily service analytic and search operations. As a DBA or architect, you are likely
familiar with analytic capabilities that can be run via SQL and full-text search options
in an RDBMS, and might wonder how the same things are handled in Cassandra.

DataStax Enterprise (DSE) Analytics, built on a production-certified version of Apache
Spark™, with enhanced capabilities like AlwaysOn SQL and highly available Spark
resource manager, enables enterprises to build real-time, contextual applications to
make highly relevant, in-the-moment decisions.

Be it to process streaming and historical data or to improve your ongoing BI reporting,
DSE Analytics gives you the flexibility to transform all your meaningful data into action —
at cloud scale.

Real Time and Batch Analytics

Because Cassandra has a distributed, shared-nothing architecture, the framework for
running analytics on it compared to a centralized RDBMS will be different.

There are two options in DataStax Enterprise that allow you to run analytic operations easily
on Cassandra data You can run both real-time and batch (i.e., longer running) analytics on
data via the platform’s built-in components that utilize Apache Spark for analytics work.

The analytics capability in the platform provides you with a number of the SQL functions
and abilities that you are used to in the RDBMS world (e.g., joins, aggregate functions).
In addition, analytics can be run across multiple data centers and cloud availability zones.
Built-in continuous availability options are also included.

External Hadoop and Spark Support

You also have the ability to connect the data in DataStax Enterprise to an external
Hadoop and/or Spark cluster and run analytic queries on data that combines both the
operational data in Cassandra with historical data stored in a Hadoop deployment such
as Cloudera or Hortonworks (e.g., a single query can join a Cassandra table with a
Hadoop object). If you have used RDBMS connection options such as Oracle’s database
links or Microsoft SQL Server’s linked servers to integrate external database systems,
the concept is somewhat similar.

Searching Data

Some architects still shard their systems and use something like Cassandra for
operational data management and a separate system and set of software for search
operations as a DBA, you’d likely prefer to have everything under one roof.

22 Database Architects and Administrators Guide to NoSQL

Analyzing and Searching Data

DataStax Enterprise supplies DSE Search, which uses Apache Solr™ as its foundation to
manage search tasks. With DSE Search, you don’t have to shard your application and you
have the typical search bases covered including full-text search, hit highlighting, faceted
search, rich document (e.g., PDF, Microsoft Word) handling and geospatial search.

Search operations can scale out across multiple nodes so you can add more nodes
dedicated to search tasks when the need arises. Multi-data center and cloud support
is built in, as is redundancy for continuous availability.

Workload Management for Analytics and Search

When enabling analytics and search on a database cluster, you have a number of
configuration options available. If you choose, you can run transactional (OLTP),
analytics and search operations on all nodes in a database cluster.

Another deployment methodology includes separating OLTP, analytics, and search
workloads so that each runs on its own series of nodes. This strategy ensures that
differing workloads do not compete with each other for either compute or data resources.
Replication can be set up between all nodes so that data is transparently replicated to
each set of nodes without manual intervention.

This translates into you not having to worry about complex ETL jobs that transfer data
between different systems, as you might be used to doing with an RDBMS.

This also holds true if you are running graph database operations in a cluster –
operational, analytical and search tasks can either be combined or separated across
different nodes.

Search operations

can scale out across

multiple nodes so

you can add more

nodes dedicated to

search tasks when

the need arises.

23 Database Architects and Administrators Guide to NoSQL

Backup and
Recovery

07

One of your key responsibilities as a DBA is to ensure that proper backup
and recovery procedures are in place should a database become corrupted
or a large data loss occurs. This section describes how backup and recovery
processes work on a NoSQL database like Cassandra.

Using Replication and Multi-Data Center for Backup and Recovery

Some administrators simply use Cassandra’s built-in replication and multi-data center
capabilities for backup. Because the functionality is native to Cassandra, there is no need
for add-on software (e.g., Oracle DataGuard). Since replication is so easy to use, some
DBA’s just create one or more physical or virtual data centers for a cluster and utilize
them for disaster recovery purposes.

While such a strategy can be satisfactory for some situations, it is important to note
that it will not protect you in cases where large amounts of data are deleted, tables are
dropped, and other similar unintended actions are carried out - such activities will be
replicated and applied to the other data centers.

Cassandra Backup Options

Cassandra allows you easily backup all keyspaces in a cluster, certain selected
keyspaces, or only desired tables in a keyspace.

Snapshot-based Backups

Cassandra provides node-level snapshot via the nodetool command. Snapshots make
a copy of all or part of the keyspaces and tables in a node and save it into a separate
file. When you take a snapshot, Cassandra flushes data in the memtables into the disk
(SStable) and makes a hard link to each SStable file. Each snapshot contains a mainfest.
json file that list the SStable files included in the snapshot.

You can take snapshots of your cluster via either a command line utility or visually
through DataStax OpsCenter. While you can script your own backups via command
line utilities, OpsCenter provides an easy way to design and schedule your backups.

Note that you can also customize backups in OpsCenter by writing and including scripts
that run both before and after a backup.

24 Database Architects and Administrators Guide to NoSQL

Backup and Recovery

Incremental Backups

Incremental (only new or changed data versus full) backups are also supported for
Cassandra, although it’s not exactly the same as with an RDBMS. An incremental backup
will backup only changed SStables vs change rows as in an RDBMS. In Cassandra,
incremental backups contain only new SStables files, making them dependent on the
previously created snapshot.

Incremental Backups in Combination with Snapshot

You can combine both methods to create a better granularity of the backups. Data is
backed up periodically via the snapshot and incremental backup files are used to obtain
granularity between scheduled snapshots.

Commit Log Backup in Combination with Snapshot

This method is similar to incremental backup. Instead of backing up the newly added
SStable, commit logs are archived. Similar to the previous methods, snapshots provide
the bulk of backup data, while archive of the commit log is used for point-in-time backup.

Restoring Data

Database recovery operations can be carried out with either command line utilities or visually
through DataStax OpsCenter. Restores can be full, utilize incremental backups, and also be
object-level if needed (e.g., you can only restore one backed up table versus all tables).

Figure 10. Restoring a keyspace with OpsCenter

OpsCenter simplifies restore operations and handles restore tasks on all affected nodes.

Figure 9. DataStax OpsCenter’s backup interface

25 Database Architects and Administrators Guide to NoSQL

Performance
Management

08

Monitoring, troubleshooting, and tuning databases are a top priority for
you as a DBA This section details how you can carry out your performance
management tasks on a NoSQL database like Cassandra.

Monitoring Basics

There are a number of command line utilities that enable you to get a status of
your database clusters as well as general metrics for the network, objects and I/O
operations both at a high level and low level (e.g., table) fashion. For example, the
Cassandra nodetool utility lets you quickly determine the up/down status and current
datavdistribution of a cluster:

Advanced Command Line Performance Monitoring Tools

From a performance metrics standpoint, Cassandra delivers many different statistics
that can be accessed in various ways If you are coming from an RDBMS like Oracle or
Microsoft SQL Server and are used to performance data dictionaries like Oracle’s V$
views or SQL Server’ dynamic management tables, the most familiar interface for you is
the one supplied by DataStax Enterprise’s Performance Service.

The Performance Service collects, organizes, and maintains an in-depth diagnostic data
dictionary for each cluster. It consists of various tables that can be accessed via any CQL
utility (e.g., the CQL shell utility, DataStax DevCenter, and DataStax Studio) and gives you
both high-level and detailed performance views of how well a cluster is running.

Figure 11. Checking a cluster’s status with the nodetool utility

26 Database Architects and Administrators Guide to NoSQL

Performance Management

The Performance Service maintains the following levels of performance information:

System level – Supplies general memory, network and thread pool statistics.

Cluster level – Provides metrics at the cluster, data center and node level.

Database level – Provides drill down metrics at the keyspace, table and
table-per-node level.

Table histogram level – Delivers histogram metrics for tables being accessed.

Object I/O level – Supplies metrics concerning ‘hot objects’ and data on what
objects are being accessed the most.

User level – Provides metrics concerning user activity, top users (those
consuming the most resources on the cluster) and more.

Statement level – Captures queries that exceed a certain response time
threshold along with all their relevant metrics.

Slow queries – Identify and tune poorly performing queries

You can configure the service to collect nothing, all, or selected performance metrics for the
above categories. Once the service has been configured and is running, statistics are populated
in their associated tables and stored in a special keyspace (dse_perf). You can then query
the various performance tables to get statistics such as the I/O metrics for certain objects:

cqlsh:dse_perf> use dse_perf;
cqlsh:dse_perf> expand on;
cqlsh:dse_perf> select * from object_io;

@ Row 1

node_ip 127001

read_latency 104

keyspace_name weatherdb

total_reads 6

table_name weather_station

total_writes 33

last_activity 2014-06-24 08:24:11-0400

write_latency 51

memory_only False

27 Database Architects and Administrators Guide to NoSQL

Performance Management

Visual Database Monitoring

In addition to monitoring your database clusters from the command line, you can also
easily check the health of all clusters you’re managing visually by using DataStax
OpsCenter. OpsCenter gives you both global, at-a-glance dashboards that help
you understand how all clusters under your control are doing, as well as drill down
capabilities into each cluster and its individual nodes.

A global dashboard helps you understand how well all clusters are running and if
there are any alerts or issues for one or more clusters that need your attention:

cqlsh:dse_perf> expand on;
cqlsh:dse_perf> select * from object_io;

@ Row 2

node_ip 127001

read_latency 0

keyspace_name weatherdb

total_reads 0

table_name weather_station_by_day

total_writes 30

last_activity 2014-06-24 08:24:01-0400

write_latency 45

memory_only False

Figure 12. Checking OpsCenter’s global cluster dashboard

28 Database Architects and Administrators Guide to NoSQL

Performance Management

From the global dashboard, you can drill down into each individual cluster and create
customized monitoring dashboards for the performance metrics you care about the most:

You can also create proactive alerts that notify you far in advance of a problem
actually occurring in one of your clusters:

Figure 13. Examining performance metrics for a single database cluster

Figure 14. Creating an alert in OpsCenter

In addition, you can utilize built-in expert services like the Best Practice service that
will scan your clusters and provide expert advice on how to configure and tune
things for better uptime and performance:

Figure 15. OpsCenter’s Best Practice service

29 Database Architects and Administrators Guide to NoSQL

Performance Management

These and other capabilities in OpsCenter help monitor and tune database clusters via
any Web browser (laptop, tablet, smart phone) no matter if they are in your own data
center or are running on one of the cloud providers.

Finding and Troubleshooting Problem Queries

As a DBA or architect, you’re sometimes called upon to locate a database’s worst running
queries that slow the performance of the system as a whole. You’ll find this isn’t hard to
do with Cassandra.

First, you can use the DataStax Enterprise Performance Service to automatically capture
long-running queries (based on response time thresholds you specify) and then query a
performance table that holds those statements:

cqlsh:dse_perf> select* from node_slow_log;

@ Row 1

node_ip 127001

table_names weather_station

date 2014-06-24 00:00:00-0400

username anonymous

commands
select *from weather_station where

station_id=2 and date=”2014-01-01”;

duration 183

parameters null

In addition, there is a background query tracing utility available that you can use on an
ad-hoc basis. You can choose to trace all statements coming into a database cluster or
only a percentage of them, and then look at the results. The trace information is stored
in the systems_traces keyspace that holds two tables: sessions and events, which can
be easily queried to answer questions such as what the most time-consuming query has
been since a trace was started, and much more.

You can also use the tracing utility much in the same way you do an EXPLAIN PLAN on an
RDBMS query. For example, to understand how a Cassandra cluster will satisfy a single
CQL INSERT statement, you would enable the trace utility from the CQL command shell,
issue your query, and review the diagnostic information provided:

30 Database Architects and Administrators Guide to NoSQL

Performance Management

cqlsh>tracing on; Now tracing requests.
cqlsh:foo>INSERT INTO test (a, b) VALUES (1, ‘example’);
Tracing session 4ad36250-1eb4-11e2-0000-fe8ebeead9f9

Activity

execute_cqL3_query

Sending message to /127002

Sending message to /127001

execute_cqL3_query

Message received from /127001

Message received from /127002

Parsing statement

Appending to commitlog

Applying mutation

Processing response from /127002

Preparing statement

Adding to memtable

Acquiring switchLock

Request complete

Determining replicas for mutation

Enqueuing response to /127001

Time Stamp

00:02:37, 015

00:02:37, 015

00:02:37, 016

00:02:37, 015

00:02:37, 016

00:02:37, 017

00:02:37, 015

00:02:37, 016

00:02:37, 016

00:02:37, 017

00:02:37, 015

00:02:37, 016

00:02:37, 016

00:02:37, 017

00:02:37, 015

00:02:37, 016

Source

127001

127001

127002

127001

127002

127001

127001

127002

127002

127001

127001

127002

127002

127001

127001

127002

Source_Elapsed

0

779

888

0

63

2334

81

277

220

2550

273

378

250

2581

540

710

With Cassandra’s tracing capabilities, OpsCenter’s visual monitoring, DataStax
Enterprise’s Performance service and general command line monitoring tools, you will
have most, if not all, of the typical performance tools at your disposal with Cassandra
as you do today with your favorite RDBMS.

NoSQL Performance Benchmarks

When picking the NoSQL database it is critical to understand your use case and finding the
right fit for your use case. Instead of conducting a formal proof of concept (PoC), we have
provided the following benchmark test to provide a graphical, ‘at a glance’ view of how
Cassandra stacks up against MongoDB, HBase and Couchbase. You can also find a three
additional benchmarks; taking a look at write/read performance and performance at a scale.

31 Database Architects and Administrators Guide to NoSQL

https://www.datastax.com/products/compare/nosql-performance-benchmarks
https://academy.datastax.com/planet-cassandra/nosql-performance-benchmarks
https://academy.datastax.com/planet-cassandra/nosql-performance-benchmarks

Migrating Data
09

Moving data from an RDBMS or other database to Cassandra is generally
quite easy. The following options exist for migrating data to Cassandra:

COPY command – CQL provides a copy command (very similar to Postgres) that is
able to load data from an operating system file into a Cassandra table.

DataStax Bulk loader(dsbulk) – This utility is designed for more quickly loading a
Cassandra table with a file that is delimited in some way (eg comma, tab, etc) Note:
there is a separate bulk loader available for DSE Graph. For more information, take
a moment to read our blog post on Introducing DataStax Bulk Loader.

ETL tools – There are a variety of ETL tools (eg Talend, Informatica and Streamsets)
that support Cassandra as both a source and target data platform Many of these
tools not only extract and load data but also provide transformation routines that can
manipulate the incoming data in many ways A number of these tools are also free to
use (eg Pentaho, Jaspersoft, Talend)

sstableloader – Provides the ability to bulk load external data into a cluster.

DSE Analytics – Can use Apache Spark to connect to a wide variety of data sources
and save the data to DSE using either the older RDD or newer DataFrame method.

DataStax Apache Kafka Connector – Synchronizes records from a Kafka topic with
rows in one or more DSE database tables.

32 Database Architects and Administrators Guide to NoSQL

https://www.datastax.com/blog/2018/05/introducing-datastax-bulk-loader

Strategies for
Implementing NoSQL

10

This section provides basic checklists to use when evaluating a NoSQL database
for production environments, guidelines for deciding when NoSQL should be
deployed versus an RDBMS and what deployment scenarios are most common.

Evaluating NoSQL for Your Enterprise

Although not exhaustive, below are technical and business considerations designed to
ask the right questions when evaluating whether a particular NoSQL database is suited
for your production environment.

Technical Considerations

• Can the NoSQL database serve as the primary data source for the intended online application?

• How safe is the NoSQL database where the possibility of losing critical data is concerned?
Are writes durable in nature by default so that data is safe?

• Is the NoSQL database fault tolerant (i.e., has no single point of failure) and is it capable
of providing not just high availability, but continuous availability?

• Can the NoSQL database easily replicate data between the same and multiple data centers,
as well as different cloud regions and availability zones?

• Does the NoSQL database offer read/write anywhere capabilities (i.e. can any node in the
cluster be written to and read from)?

• Does the NoSQL database provide a robust security feature set?

• Does it support easy-to-create and manage backup and recovery procedures?

• Does the NoSQL database require or remove the need for special caching layers?

• Is the NoSQL database capable of dealing with data velocity, data variety and data
complexity issues?

• Does the NoSQL database offer linear scalability where adding new nodes is concerned?

• Can new nodes be added and removed online (i.e., without business impact)?

• Does the NoSQL database support key platforms/developer languages?

• Does the NoSQL database provide an SQL-like query language?

• Can the NoSQL database run on commodity hardware with no special hardware requirements?

• Is the NoSQL database easy to implement and maintain for large deployments?

• Does the NoSQL database provide data compression that supplies real storage savings?

• Can analytic operations be run easily on the NoSQL database?

33 Database Architects and Administrators Guide to NoSQL

Strategies for Implementing NoSQL

• Does the NoSQL database have automatic workload and data balancing?

• Can search operations and functions be easily and directly carried out on the NoSQL database?

• Can the NoSQL database provide workload isolation between online, analytic, and search
operations in a single application?

• Does the database have solid command-line and visual tools for development, administration,
and performance management?

Business Requirements

• Is the NoSQL solution backed by a commercial entity?

• Does the commercial entity provide enterprise 24x7 support and services?

• Does the NoSQL solution have professional training resources and online documentation?

• Does the NoSQL solution have referenceable customers across a wide range of industries
that use the product in critical production environments?

• Does the NoSQL database have an attractive cost/pricing structure?

• If open source, does the NoSQL database have a thriving open source community?

Practical Guidelines for Selecting NoSQL vs. an RDBMS

How do you determine whether a NoSQL database like Cassandra or DSE Graph should be
used for all or part of an application versus an RDBMS? Some basic questions to ask include:

• Do you need a more flexible data model to manage data that goes beyond the RDBMS table/
row data structure and instead includes a combination of structured, semi-structured and
unstructured data?

• Do you find that complex JOIN operations are overwhelming your RDBMS and response times
are slow because of them?

• Do you care more about the value derived from the relationships that form between the tables
vs the tables themselves?

• Do you need continuous availability with redundancy in both data and function across one or
more locations versus simple failover for the database?

• Do you need a database that runs over multiple data centers / cloud availability zones?

• Do you need to handle high velocity data coming in via sensors, mobile devices, and the like,
and have extreme write speed and low latency query speed?

• Do you need to go beyond single machine limits for scale-up and instead go to a scale-out
architecture to support the easy addition of more processing power and storage capacity?

• Do you need to run different workloads (e.g. online, analytics, search) on the same data
without needing to manually ETL the data to separate systems/machines?

• Do you need to manage a widely distributed system with minimal staff?

34 Database Architects and Administrators Guide to NoSQL

Strategies for Implementing NoSQL

Deployment Considerations

From a practical perspective, as a DBA or an architect, how do you go about actually
moving to NoSQL and implementing your first application? In general, there are three
ways to deploy a NoSQL database like Cassandra:

New applications – Many begin with NoSQL by choosing a new application and
starting from the ground up Such an approach mitigates the issues of application
rewrites, data migrations, etc.

Augmentation – Some choose to augment an existing system by adding a NoSQL
component to it This oftentimes happens with applications that have outgrown
an RDBMS due to scale problems, the need for better availability, or other issues
Parts of the existing system continue to use the existing RDBMS whereas other
components of the application are modified to utilize the NoSQL database.

Full Rip-Replace – For systems that simply are proving too costly from an
RDBMS perspective to keep, or are breaking in major ways due to increases of
user concurrency, data velocity, or data volume from cloud applications, a full
replacement is done with a NoSQL database.

35 Database Architects and Administrators Guide to NoSQL

DataStax Enterprise (DSE) was natively built to deploy modern applications in hybrid cloud environments and to consume

time series and sensor-based information faster than any other database. Based on Cassandra, DSE provides a contextual,

always-on, real-time data management platform which can grow to unlimited scale. The platform is complemented by DSE

Search, which provides real-time indexing, DSE Analytics, which delivers streaming and batch processing, and DSE Graph,

which enables users to derive powerful insights from graph data.

Learn More

This guide has been designed to provide you with a preliminary understanding
from a DBA or architect perspective on the basics of NoSQL, and how a NoSQL
database like Apache Cassandra differs from an RDBMS like Oracle, SQL
Server, and MySQL. It has been written to supply you with an overview of how
you will go about designing, managing, deploying, and monitoring Cassandra
or multi-model database systems.

To find out more about Apache Cassandra and DataStax, and to obtain downloads of Apache Cassandra and
DataStax Enterprise software, visit www.datastax.com. DataStax Enterprise Edition is completely free to use in
non-production environments, while production deployments require a software subscription be purchased.

Conclusion

datastax.com/resources

https://www.datastax.com/
https://www.datastax.com/
https://www.datastax.com/resources

